
Design Patterns and Frameworks, © Prof. Uwe Aßmann

1

30. Refactoring based on
Metaprogramming

Andreas Ludwig

Prof. Uwe Aßmann

http://recoder.sf.net

1) Refactoring

2) Metaprogramming and source
transformation

3) The Architecture of RECODER

4) Requirements, Separation of
concerns, Dataflow, Models,
Algorithms

5) Towards Generic Refactoring
Systems

http://recoder.sf.net/

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

2

Obligatory Literature

► Tom Mens and Tom Tourwe. A survey of software refactoring. IEEE
Transactions on Software Engineering, 30, 2004.

► http://informatique.umons.ac.be/genlog/resources/refactoringPapers.
html

► Ludwig, Andreas and Heuzeroth, Dirk. Meta-Programming in the
Large, Generative Component-based Software Engineering (GCSE),
ed. Eisenecker, U. W. and Czarnecki, K., Erfurt, Germany, pages
443-452, Springer, Lecture Notes in Computer Science 2177, 2001

http://dx.doi.org/10.1007/3-540-44815-2_13
http://www.springerlink.com/content/f56841633653q258/

http://dx.doi.org/10.1007/3-540-44815-2_13

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

3

Non-Obligatory Literature

► MOOSE refactoring tool set www.moosetechnology.org
► W. Zimmer. Frameworks und Entwurfsmuster. Dissertation, Universität Karlsruhe,

1997, Shaker-Verlag.
► Benedikt Schulz, Thomas Genssler, Berthold Mohr, Walter Zimmer. On the

Computer-Aided Introduction of Design Patterns into Object-Oriented Systems.
Proceedings of TOOLS 27 -- Technology of Object-Oriented Languages and
Systems, J. Chen, M. Li, C. Mingins, B. Meyer, 1998.

■ The first time, refactorings were automated in a CASE tool (Together)

http://www.moosetechnology.org/

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

4

30.1 Refactoring

► Refactorings are important
■ To introduce design patterns into programs
■ To change a framework's interface during evolution together with the plugins

A refactoring is a semantics-preserving, but structure-changing
transformation of a program.

Often, the goal is a design pattern.

A refactoring is a semantics-preserving, but structure-changing
transformation of a program.

Often, the goal is a design pattern.

A extension preparator is
a refactoring introducing an extensibility pattern.

Often, the goal is a design pattern.

A extension preparator is
a refactoring introducing an extensibility pattern.

Often, the goal is a design pattern.

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

5

Refactoring – Main Steps

Program
transformations

Program
transformations

Program
analysis

Program
analysis

Hand-written
transformations

Graph
rewriting

Hand-written
analyses

Graph analysis
with logic

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

6

Bad Smell Detection Methods

► Demeter
► Adaptive Programming
► Metriken

■ Coupling, Cohesion

► Analyse
■ Unstructuring
■ Reducibility

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

7

A Little History of Refactoring

► 80s: Broad-spectrum languages (CIP) introduce semantic-preserving
transformations for program refinement

► 1987 System REFINE
► 1992, William Opdyke coined the term refactoring
► 1997, Karlsruhe University started a refactoring tool

■ Based on Walter Zimmer's PhD thesis “Design patterns as operators”
■ Idea: a refactoring is a semantics preserving operator, transforming class

graphs to class graphs
■ A refactoring operator can be implemented as a static metaprogram

► 1998, during Zimmer's work was reimplemented into the Together CASE
tool, the world-wide first CASE tool with refactoring support

► 2000, MOOSE implemented language-independent refactoring
► 2010, Reimann showed role-based generic refactoring

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

8

Classes of Refactorings

► Rename Entity
■ Entity = class, method, attribute, event, parameter, module, package
■ Problem: update all references on definition-use-graph

► Move Entity
■ Pull Up Entity (the inheritance hierarchy)
■ Push Down Entity
■ Move class feature (attribute, method, exception,...)
■ Problem: shadowing of features along scoping

► Split Entity or Join Entity
■ Method, class, package
■ Problem: updating of references

► Outline Entity (Split Off) or Inline Entity (Merge)
■ Method, generic class
■ Problem: introduction of parameters

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

9

Steps of a Refactoring

► [Mens/Tourwe]

1) Find the place

2) Select the appropriate refactoring

3) Analyze and verify that the refactoring does not change semantics

4) Do it

5) Reanalyze software with regard to qualities such as structure, performance, etc.

6) Maintain consistency of software with secondary artefacts (documentation, test
suites, requirement and design specifications etc)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

10

class Person { .. }
class Course {

Person teacher = new Person(“Jim”);
Person student = new Person(“John”);

}

Example: Rename Refactorings in
Programs
How to change the name of variable Foo and keep the program consistent?

Refactor the name Person to Human:

Definition

Reference (Use)

class Human { .. }

class Course {

Human teacher = new Human(“Jim”);

Human student = new Human(“John”);

}

class Human { .. }

class Course {

Human teacher = new Human(“Jim”);

Human student = new Human(“John”);

}

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

11

An Example of Code Refactoring - Extract
Method (Outlining)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

12

Definition-Use Graphs (Def-Use Graphs)
as a Basis of Refactorings
► Every language and notation has

■ Definitions of entities (define the variable Foo)
■ Uses of entities (references to Foo)

► This is because we talk about names of objects and their use
■ Definitions are done in a data definition language (DDL)
■ Uses are part of a data manipulation language (DML)

► Starting from the abstract syntax, the name analysis finds out about the
definitions, uses, and their relations (the Def-Use graph)

■ Def-Use graphs exist in every language!
■ How to specify the name analysis, i.e., the def-use graph?

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

13

Refactoring on Def-Use Graphs

► For renaming of a definition, all uses have to be changed, too
■ We need to trace all uses of a definition in the Def-Use-graph
■ Refactoring works always on Def-Use-graphs

► Refactoring works always in the same way:
■ Change a definition
■ Find all dependent references
■ Change them
■ Recurse handling other dependent definitions

► Refactoring can be supported by tools
■ The Def-Use-graph forms the basis of refactoring tools

► However, building the Def-Use-Graph for a complete program costs a lot of
space and is a difficult program analysis task

■ Every method that structures the Def-Use-Graph benefits immediately the
refactoring

■ either simplifying or accelerating it

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

14

Programming in the Large (1)

How to organize and maintain systems with
thousands of components?
► Software development becomes more than Algorithms & Data Structures.

■ Interface design is a global optimization problem

► There are non-local dependencies: Changes concerning interfaces become a
risk.

■ Hard to foresee what further changes will emerge.
■ Risks: Delay, failure, new bugs...

► Change is important
■ Reconfiguration: Replace old solutions
■ Variability and extensibility
■ Adaptation: Migrate to new interfaces
■ Reengineering: Problem detection comes first
■ Evolution: Improve the program iteratively and incrementally.

► An ideal developer would refactor changing interfaces and dependent code

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

15

Refactorings Transform Antipatterns Into
Design Patterns

► A DP can be a goal of a refactoring

Defect pattern
(Bad smell)

Design pattern
(good smell)

Step 1
Refactoring 1

Refactoring 2 Refactoring 3

Design Patterns and Frameworks, © Prof. Uwe Aßmann

16

30.2 Basic Ways to Realize Refactorings

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

17

The Metaprogramming Approach to
Refactoring

► Program sources are formal languages and contain a lot of accessible information.
■ We can analyze and transform programs, especially interface related code (“glue”).

► A program manipulates data.
► A metaprogram is a program that manipulates programs.

■ A metaprogram is a source-to-source transformer
■ At compile time?
■ Used iteratively for incremental changes?

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

18

Metaprogramming Variants

Times

S → S

S → S'

S → B

B → S

B → B

B → B'

Compile / Link Load / Run
Program Transformations,
Pattern Refactorers

Preprocessor,
Code Generator, Aspect
Weaver

Compiler

Decompiler

Loader,
Run Time Optimizer

Emulator

Reflexive Program

Binary Code Optimizer,
Linker

Binary Code Cross Compiler

Languages

Static Dynamic

Just-In-Time Compiler

Code Structuring

Code Extension

Code Formatting

Incrementality

Incrementality

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

19

Source Code Token Stream
Syntax Tree

Attributed
Syntax Tree

010111

010101

010101

110111

101010

Maschine Code
L

e
x

er

P
a

rs
e

r

S
e

m
a

n
ti

c
A

n
a

ly
si

s

O
p

ti
m

iz
er

+

C
o

d
e

 G
e

n
e

ra
to

r

Source Code

Open Interfaces

Data Base

U
n

p
a

rs
e

r

Compiler versus Source Transformation
System

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

20

Refactoring can be Based on Graph
Rewriting

► [Mens/Tourwe]
► See also course “software tools” (Softwareentwicklungswerkzeuge, SEW)

Design Patterns and Frameworks, © Prof. Uwe Aßmann

21

30.3 Refactoring Engine RECODER

 Contains a compiler-like front-end and a source-
to-source transformation library
(metaprograms)

 ≈ 100000 LOC (core: ≈ 75000 LOC)

 ≈ 650 classes (core: ≈ 500 classes)

 5 person-years development.

 Supports Java, including nested classes.

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

22

Design Requirements for Refactoring
Tools

► Easy to use refactoring-API
■ Split functionality into services.

 Deal with any query at any time: Lazy evaluation.

► Retain Source Structure (source code hygenic)
■ Model must contain structural information.

► Incremental Evaluation
■ Keep cached data consistent, efficiently

► Incremental Analysis

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

23

Program Repr.
Concrete
Syntax

Abstract
Syntax

Derived
Data

Reports

Semantic
Analysis
Modules

Meta Program
Library

Source
Code

Manager

Changes

ApplicationsReloading

Updates

S
yn

tax Trees

Source
Code

C
ontrol

Project Setup

Formatting

Syntax Analysis

Queries

Event-
Based

Architecture

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

24

RECODER Java Model

► Java attributed syntax graph (ASG)
► Parent links for efficient upward navigation in the scopse

■ Linking and unlinking must be done consistently.

► Abstract supertypes
■ Containment properties
■ Scoping properties
■ Commonalities with byte code

► Bidirectional definition-reference relation (use-def-use graph for name
resolution + cross referencing)

Feature

Declaration Reference
0..1 0..∗

11

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

25

Abstract Java Program Metamodel

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

26

Event-based Architecture: Changes and
Change Events in a Refactorer

XAttach(X,Y,p)

Y
✎

Attached(X)

Detach(X) X

Detached(X,Y,p)

R

Replace(X,Z) {
 Y = Parent(X);
 p = Position(X,Y);
 Detach(X);
 Attach(Z,Y,p);
}

Z

✎
X

Y

Replaced(X,Y)

Define changes
in terms of atomic
Transformations

Reduce all
complex
changes to
atomic ones.

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

27

Example: Change Report of a
Refactoring

AddBlock(S) {
 B = new Block;
 Replace(S, B);
 S' = CloneTree(S);
 Attach(S', B, 0);
 return B
}

AttachDetach

Replace

if (expr) stmtS;

if (expr) {
 stmtR;
 stmtS;
}

AddBlock

Attach

PrependStatement

Attach

PrependStatement(R, S) {
 B = Parent(S)
 if B is no Block {
 B = AddBlock(S);
 p = 0;
 } else {
 p = Position(S)
 }
 Attach(R, B, p);
}

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

28

Semantic
Analysis Meta Program

Library

Source
Manager

Change
History

2
1: Change Submission
Changes are reported.
Reject obviously wrong chains
for fail-fast behavior.

2: Update Request
Enforce that model
is up to date now.

3: Change Notification
Listeners will interpret reports
and traverse reported trees.

1

3

3

Change Report Propagation

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

29

Change Report Handling

► Change notification optimization:
■ Delay changes in a queue to avoid traversals.
■ Tag subtree changes as minor to avoid traversals.
■ Clear queue after notification.

► Rollback support:
■ Keep changes on a stack.
■ To roll back, reverse changes and create reports for changes that already

have been reported.
■ Clear stack after commit (or before overflow).

X

Y
✎

A
✎Minor

Change

Major
Change

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

30

Model Elements and Services/Subtools

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

31

Dataflow between Subtools

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

32

Change Impact Analysis

► Efficient updates of reference information:
■ If something changes, what are possibly effected declarations and

references?
. Examples follow...

■ Does the target of a reference really change?
. Access the former result to compare: Cache everything!
. Only verified cached results can be used for the update.
. May lead to new change tests, but is guaranteed to stop.

■ Update cached information efficiently.
. Reference sets instead of lists.

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

33

Examples for Change Impacts

► If an expression changes...
■ ...its parent reference might change.

► If a method declaration/interface changes...
■ ...all inherited, inheriting, inner, outer, possibly overloaded and possibly

overloading method references with compatible name and signature might
change.

► If a subtype relation changes...
■ ... references might change as if all former and now inherited member

declarations changed.

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

34

Transformation Model

► Reify as objects (Command/Objectifier Pattern of GOF).
■ Transformations must be managed for nested transactions.

■ Transformations often have to access analysis results and generated code
fragments of subtransformations.

► Each transformations can yield a problem report or assert program states (e.g.
compileable, or idempotent)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

35

Transformation Composition

► Transformations may have dependencies.
► Ideal Case: 2-pass (analyze - transform)

■ Combinations result in another 2-pass operation.
■ This case is not too rare: Changes of disjoint declarations will affect disjoint

references.

► Usual Case: 1-pass (analyze & transform)
■ Parent transformation must update local data.
■ Restart traversal at the “first” change location.
■ Check idempotency to ensure termination.
■ Worst case: Restart always - O(n²)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

36

Extensibility: Program Models

► New Program Model Entities
■ Add entities as subclasses of the proper types (ModelElement if nothing else

applies).
■ Optionally add a management service to locate or create the new entities or

keep them persistent.

► Examples:
■ Design pattern instances documenting interesting structures for quick

retrieval (change of design).
■ Box & Hook Model maintained by a BoxInfo.

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

37

Extensibility: Metaprograms

► New Analyses
■ Add as auxiliary class/method if there is no need for cached data.
■ Create and register a service to participate at the change propagation, if you

need incrementality.

► New Transformations
■ Simply add new subclasses of Transformation.

► Examples
■ Reachability analysis (conservative version is local)
■ Composers

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

38

30.4 Towards Generic Refactoring

► What kind of document can we transform?
■ Strongly typed source code.
■ Makefiles?
■ XMI documents?
■ HTML pages?
■ A spreadsheet document?

► They all obey certain formal rules...
► The RECODER change mechanisms operate on syntactic level.
► Formal documents are structured.

■ Terminal nodes, non terminal nodes, containment relation forming a tree.
■ Syntax Trees, XML Documents.

► The architecture works for syntactic documents, if we add content type
handlers.

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

39

How to Refactor Everything?

► Formal documents have a static semantic.
■ Different node types (e.g. Identifier, Operator)
■ Statically computable n-ary predicates

. e.g. isAbstract(Method), refersTo(Reference, Definition)

■ Computation of these properties, relations etc. is highly specific.

class X {
 /*nonsense*/
 X myself;
}

nonsense
myself

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

40

How to Refactor Everything?

► Except for some parts of the parser, RECODER has been created manually.
► We need toolkits that create

■ a parser (including comment assignment and indentation information),
■ an unparser (customizable),
■ incremental semantic analyzers,
■ atomic type-safe transformations
■ from some suitable definitions (AGs?)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

41

The End

► Talk courtesy to Andreas Ludwig (2004)
► Work on RECODER started 1997 (A. Ludwig), still running

■ recoder.sf.net
■ Attempt to commercialize in 2001-2 (Sweden)
■ Open source since 2001

► A. Ludwig. Automatische Anpassung von Software. Dissertation. Universität
Karlsruhe, 2002.

	COMPOST The Architecture of a Software Composition System
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	An Example of Code Refactoring
	Folie 12
	Folie 13
	Programming in the Large (1)
	Folie 15
	Folie 16
	Metaprogramming Approach
	Metaprogramming Variants
	Compiler versus Source Transformation System
	Folie 20
	COMPOsition SysTem COMPOST
	Design Requirements
	The Big Picture
	Program Model
	Abstract Java Program Model
	Change Report Model
	Example Report
	Change Report Propagation
	Change Report Handling
	Model Elements and Services
	Dataflow
	Change Impact Analysis
	Examples for Change Impacts
	Transformation Model
	Transformation Composition
	Extensibility: Program Models
	Extensibility: Metaprograms
	Composing Everything? (1)
	Composing Everything? (3)
	Composing Everything? (4)
	Folie 41

