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An Example of Code Refactoring 
Extract Method (Outlining) 
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From Code to Models  
Why is Refactoring needed for 
Models? 
 

•  Model-Driven Software Development: 
•  Models are partial code 
•  Models are primary artefacts in MDSD 
•  Good model design is essential for understandability 
•  Some models are domain-specific, and belong to 

domain-specific languages (DSL) 
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Why should it be generic? 
•  Known code refactorings are transferable to many DSLs 
•  Core steps of refactorings are equal for different metamodels 
•  A lot of additional effort to specify refactorings from scratch 



Related Work – Limitations 
M3 layer specification 
 

•  Common meta-metamodel to static 
•  Lack of exact control of structures to be refactored 
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M3

M2

Common	
  Object-­‐Oriented	
  
Meta-­‐Metamodel

Target	
  Metamodel
Adaptation

Based	
  on

[Moha, Naouel, Vincent Mahé, Olivier Barais und Jean-Marc Jézéquel: Generic Model Refactorings, MODELS 2009] 

Related Work – Limitations 
M2 layer specification 
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•  No genericity 
•  No reuse 

M2

Target	
  Metamodel

Based	
  on

[Taentzer, Gabriele, Dirk Müller and Tom Mens: Specifying Domain-Specific Refactorings for AndroMDA Based on 
Graph Transformation, AGTIVE 2007] 

Related Work – Limitations 
M1 layer specification 
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•  No genericity 
•  No reuse 

M2

M1

Target	
  Metamodel

Example	
  Model
Propagation	
  into

Recorded	
  in

[Brosch, Petra, Philip Langer, Martina Seidl, Konrad Wieland, Manuel Wimmer, Gerti Kappel, Werner Retschitzegger 
and Wieland Schwinger: An Example is Worth a Thousand Words: Composite Operation Modeling By-Example, 
MODELS 2009] 

31.2 MOOSE 
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FAMIX Upper Metamodel 
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http://www.moosetechnology.org/?_s=5k2-x-GDJjdd2YIX 

•  The FAMIX upper metamodel 
•  Enables generic refactoring for all entities above 

methods, class restructurings, etc.  
•  The MOOSE framework supplies basic graph 

algorithms for reengineering and refactoring: 
•  Strongly connected components 
•  Dominance 
•  Kruskal spanning trees 

•  Concept recognition in texts 
•  Formal concept analysis 
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31.2 Refactory 

The generic refactorer of TU Dresden 
Jan Reimann  
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Role-based Generic Model 
Refactoring 

•  Definition of collaborations of objects in different 
contexts 

•  Here: Context = model refactoring 
•  Participants play role in concrete refactoring à Role 

Model 
•  Role-based transformation à Refactoring Specification 
•  Application to desired parts of metamodel à Role 

Mapping 
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Role-based Design (Reenskaug, Riehle & Gross) 
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Role-based Generic Model 
Refactoring 

•  Refactory sees a role model (a view) of the 
metamodel 

Prof. U. Aßmann, J. Reimann Role-based Generic Model Refactoring Slide 13 

Role-based Metamodeling 

DSL Designer Ref. Designer 

DSL User 

Role-based Generic Model 
Refactoring 

•  The roles of this role-metamodel can be used to write 
refactoring scripts and operators 
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Refactoring Specification on Role Model 

DSL Designer Ref. Designer 

DSL User 

Role-based Generic Model 
Refactoring 

•  A mapping maps roles to metaclasses in a concrete 
metamodel 
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Role Mapping to Specific DDL  

DSL Designer Ref. Designer 

DSL User 
Evaluation of Refactory 

Starting point 
•  16 target metamodels of different complexity (Java, UML, 

Ecore…) 
•  53 concrete model refactorings 
 
Result 
•  9 generic model refactorings 
•  6 metamodel specific extensions were needed 
•  7 metamodels are multiple target of same model refactoring 
•  2 metamodels are at least target of every model refactoring 
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Lessons Learned 

•  Refactorings generically specifiable if abstractable and 
structurally transferable 

•  Metamodel-specific refactorings possible 
•  Design decisions 

•  ”Specific” generic refactoring 
•  Metamodel-specific extension or 
•  Implementation of metamodel-specific refactoring (Java) 

•  Reuse beneficial if model refactoring appliable to at 
least two metamodels 
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Contributions 

•  Generic refactoring works!! 

•  Definition of generic model refactorings based on roles 
•  Role models form a dedicated context for every model 

refactoring 
•  Approach allows both for genericity and control of the 

structures to be refactored 
•  Control is achieved by mapping of role models into 

arbitrary sections of the target metamodel 
•  Interpretation by resolving roles and collaborations 

into the target metamodel 
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Contributions 

•  Pre- and postconditions with role-based OCL 
interpreter 

•  Preservation of behavior with formalization of 
semantics 

•  Specification of model smells 
•  Co-Refactoring 
•  Automatic mapping to metamodels 
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Outlook 
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jan.reimann@tu-dresden.de 

Role-based Generic Model Refactoring 

http://www.emftext.org/refactoring 

Students looked for in Resubic Lab 
Co-Refactoring of mulit-quality specificatios 
http://resubic.inf.tu-dresden.de  
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Mapping to Paths 

Role-based Generic Model Refactoring 

Classifier Generalization

1  specific generalization  0..*

1  general

SubElement

SuperElement

SubElement SuperElement


