
31. Generic Refactoring
for Programming and
Modeling Languages

Technical University Dresden Department of Computer Science Chair for Software Technology

Jan Reimann, Mirko Seifert, Prof. Uwe Aßmann

Version 11-1.1, 17.1.11

1. From Code to Models
2. Related Work
3. Role-based Generic Model Refactoring
4. Evaluation
5. Contributions

Obligatory Literature

•  Sander Tichelaar, Stéphane Ducasse, Serge Demeyer,
and Oscar Nierstrasz. A meta-model for language-
independent refactoring. In Proceedings of
International Symposium on Principles of Software
Evolution (ISPSE '00), pages 157-167. IEEE
Computer Society Press, 2000.
•  doi:10.1109/ISPSE.2000.913233,

•  MOOSE framework http://www.moosetechnology.org/
•  Jan Reimann, Mirko Seifert, and Uwe Aßmann. Role-

based generic model refactoring. In Dorina C. Petriu,
Nicolas Rouquette, and Øystein Haugen, editors,
MoDELS (2), volume 6395 of Lecture Notes in
Computer Science, pages 78-92. Springer, 2010.
Best Paper Award.

Prof. U. Aßmann, J. Reimann Role-based Generic Model Refactoring Folie 2 von XYZ

An Example of Code Refactoring
Extract Method (Outlining)

Prof. U. Aßmann, J. Reimann Slide 3

From Code to Models
Why is Refactoring needed for
Models?

•  Model-Driven Software Development:
•  Models are partial code
•  Models are primary artefacts in MDSD
•  Good model design is essential for understandability
•  Some models are domain-specific, and belong to

domain-specific languages (DSL)

Prof. U. Aßmann, J. Reimann Role-based Generic Model Refactoring Slide 4

Why should it be generic?
•  Known code refactorings are transferable to many DSLs
•  Core steps of refactorings are equal for different metamodels
•  A lot of additional effort to specify refactorings from scratch

Related Work – Limitations
M3 layer specification

•  Common meta-metamodel to static
•  Lack of exact control of structures to be refactored

Prof. U. Aßmann, J. Reimann Role-based Generic Model Refactoring Slide 5

M3

M2

Common	
 Object-­‐Oriented	

Meta-­‐Metamodel

Target	
 Metamodel
Adaptation

Based	
 on

[Moha, Naouel, Vincent Mahé, Olivier Barais und Jean-Marc Jézéquel: Generic Model Refactorings, MODELS 2009]

Related Work – Limitations
M2 layer specification

Prof. U. Aßmann, J. Reimann Role-based Generic Model Refactoring Slide 6

•  No genericity
•  No reuse

M2

Target	
 Metamodel

Based	
 on

[Taentzer, Gabriele, Dirk Müller and Tom Mens: Specifying Domain-Specific Refactorings for AndroMDA Based on
Graph Transformation, AGTIVE 2007]

Related Work – Limitations
M1 layer specification

Prof. U. Aßmann, J. Reimann Role-based Generic Model Refactoring Slide 7

•  No genericity
•  No reuse

M2

M1

Target	
 Metamodel

Example	
 Model
Propagation	
 into

Recorded	
 in

[Brosch, Petra, Philip Langer, Martina Seidl, Konrad Wieland, Manuel Wimmer, Gerti Kappel, Werner Retschitzegger
and Wieland Schwinger: An Example is Worth a Thousand Words: Composite Operation Modeling By-Example,
MODELS 2009]

31.2 MOOSE

Prof. U. Aßmann, J. Reimann Role-based Generic Model Refactoring Folie 8 von XYZ

FAMIX Upper Metamodel

Prof. U. Aßmann, J. Reimann Role-based Generic Model Refactoring Folie 9 von XYZ

http://www.moosetechnology.org/?_s=5k2-x-GDJjdd2YIX

•  The FAMIX upper metamodel
•  Enables generic refactoring for all entities above

methods, class restructurings, etc.
•  The MOOSE framework supplies basic graph

algorithms for reengineering and refactoring:
•  Strongly connected components
•  Dominance
•  Kruskal spanning trees

•  Concept recognition in texts
•  Formal concept analysis

Prof. U. Aßmann, J. Reimann Role-based Generic Model Refactoring Folie 10 von XYZ

31.2 Refactory

The generic refactorer of TU Dresden
Jan Reimann

Prof. U. Aßmann, J. Reimann Design Patterns and Frameworks Folie 11 von XYZ

Role-based Generic Model
Refactoring

•  Definition of collaborations of objects in different
contexts

•  Here: Context = model refactoring
•  Participants play role in concrete refactoring à Role

Model
•  Role-based transformation à Refactoring Specification
•  Application to desired parts of metamodel à Role

Mapping

Prof. U. Aßmann, J. Reimann Role-based Generic Model Refactoring Slide 12

Role-based Design (Reenskaug, Riehle & Gross)

DSL
User

DSL
Designer

Refactoring	

Designer

Role	

Model

DSL	
 Meta	

Model

Refactoring	

Specification

DSL	
 Model Refactored
DSL	
 Model

Role	

Mapping

refers	
 to input	
 for instance	
 of

Refactoring	

Interpreter

returns

Role-based Generic Model
Refactoring

•  Refactory sees a role model (a view) of the
metamodel

Prof. U. Aßmann, J. Reimann Role-based Generic Model Refactoring Slide 13

Role-based Metamodeling

DSL Designer Ref. Designer

DSL User

Role-based Generic Model
Refactoring

•  The roles of this role-metamodel can be used to write
refactoring scripts and operators

Prof. U. Aßmann, J. Reimann Role-based Generic Model Refactoring Slide 14

Refactoring Specification on Role Model

DSL Designer Ref. Designer

DSL User

Role-based Generic Model
Refactoring

•  A mapping maps roles to metaclasses in a concrete
metamodel

Prof. U. Aßmann, J. Reimann Role-based Generic Model Refactoring Slide 15

Role Mapping to Specific DDL

DSL Designer Ref. Designer

DSL User
Evaluation of Refactory

Starting point
•  16 target metamodels of different complexity (Java, UML,

Ecore…)
•  53 concrete model refactorings

Result
•  9 generic model refactorings
•  6 metamodel specific extensions were needed
•  7 metamodels are multiple target of same model refactoring
•  2 metamodels are at least target of every model refactoring

Prof. U. Aßmann, J. Reimann Role-based Generic Model Refactoring Slide 16

Component

A

Real-
time

Safety

Dyna
mics

Energy

Component

B

Real-time contract checking
(Technical Space 1)

Safety contract checking
(Technical Space 2)

Dynamics contract checking
(Technical Space 3)

Energy contract checking
(Technical Space 4)

New: Multi-Quality Contracts in
CPS (Multi-Technical Spaces)

Component

B

Real-time contract checking
(Technical Space 1)

Safety contract checking
(Technical Space 2)

Dynamics contract checking
(Technical Space 3)

New: Multi-Quality Contracts in
CPS (Multi-Technical Spaces)

Refactorer 1

Refactorer 2

Refactorer 3

Refactorer 4

Component

A

Real-
time

Safety

Dyna
mics

Energy
Energy contract checking

(Technical Space 4)

Component

B

Real-time contract checking
(Technical Space 1)

Safety contract checking
(Technical Space 2)

Dynamics contract checking
(Technical Space 3)

New: Multi-Quality Contracts in
CPS (Multi-Technical Spaces)

Refactorer 1

Refactorer 2

Refactorer 3

Refactorer 4

Generic
Refactorer

Component

A

Real-
time

Safety

Dyna
mics

Energy
Energy contract checking

(Technical Space 4)

Lessons Learned

•  Refactorings generically specifiable if abstractable and
structurally transferable

•  Metamodel-specific refactorings possible
•  Design decisions

•  ”Specific” generic refactoring
•  Metamodel-specific extension or
•  Implementation of metamodel-specific refactoring (Java)

•  Reuse beneficial if model refactoring appliable to at
least two metamodels

Prof. U. Aßmann, J. Reimann Role-based Generic Model Refactoring Slide 20

Contributions

•  Generic refactoring works!!

•  Definition of generic model refactorings based on roles
•  Role models form a dedicated context for every model

refactoring
•  Approach allows both for genericity and control of the

structures to be refactored
•  Control is achieved by mapping of role models into

arbitrary sections of the target metamodel
•  Interpretation by resolving roles and collaborations

into the target metamodel

Prof. U. Aßmann, J. Reimann Role-based Generic Model Refactoring Slide 21

Contributions

•  Pre- and postconditions with role-based OCL
interpreter

•  Preservation of behavior with formalization of
semantics

•  Specification of model smells
•  Co-Refactoring
•  Automatic mapping to metamodels

Prof. U. Aßmann, J. Reimann Role-based Generic Model Refactoring Slide 22

Outlook

Prof. U. Aßmann, J. Reimann Slide 23

jan.reimann@tu-dresden.de

Role-based Generic Model Refactoring

http://www.emftext.org/refactoring

Students looked for in Resubic Lab
Co-Refactoring of mulit-quality specificatios
http://resubic.inf.tu-dresden.de

Prof. U. Aßmann, J. Reimann Slide 24

Mapping to Paths

Role-based Generic Model Refactoring

Classifier Generalization

1 specific generalization 0..*

1 general

SubElement

SuperElement

SubElement SuperElement

