
Design Patterns and Frameworks, © Prof. Uwe Aßmann

1

33. Unifying Refactorings and
Compositions as Software Operators

Prof. Dr. Uwe Aßmann

TU Dresden

Lehrstuhl
Softwaretechnologie

12-1.0, 1/26/13

Software Operators in Code Algebras and Composition
Systems as a Basis for a Unified View on Software
Engineering

1)Refactorings as Operators

2)Model and class composition

3)Software Operators

4)Unifying Build and Refactoring P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

2

Obligatory Literature

► Class algebra:
► Gilad Bracha, William Cook. Mixin-based inhertiance. OOPSLA 1990.

citeseer.nj.nec.com/bracha90mixinbased.html
► James O. Coplien, Liping Zhao. Symmetry Breaking in Software Patterns.

Springer Lecture Notes in Computer Science, LNCS 2177, October 2001, ff.
37.
http://users.rcn.com/jcoplien/Patterns/Symmetry/Springer/SpringerSymmetry.
html

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

3

Objectives

► There are, beyond class and role models, other composition systems
► Model algebras, class algebras, code algebras and composition systems are

different
► The algebraic features of the composition operators make the difference
► Refactorings are symmetries, algebraic code operators retaining invariants

Design Patterns and Frameworks, © Prof. Uwe Aßmann

4

33.1 From Refactoring to
Software Composition

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

5

Refactorings
(structural transformations)

Time

Refactorings are
Harmless Evolution Operations
► To arrive at a design pattern in the code, one has to refactor
► Idea: split of operations into harmless, enhancing (additive), and

dangerous ones.

Evolution = Refactorings + Enhancements + Transformations

Transformation
(dangerous)

Enhancement
(additive)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

6

Harmless Operators

► Harmless operators do preserve the semantics of the program
■ Lowerings lower an expressive language construct to less expressive ones.

Lowerings prepare optimizations on lower level
. Transform inheritance to flat records
. Transform recursion to loops
. Unroll loops

■ Refactorings change the structure of the program
■ Higherings recognize a more expressive language construct from a set of

less expressive one
. Higherings are used in reengineering
. Recognize a loop or recursions from gotos
. Recognize a vector operation from a loop (vectorizer)

■ Optimizers replace program elements with more efficient ones
. Peephole optimization
. Strength reduction

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

7

Enhancement Operators

► There are other software operators in modern software engineering
approaches

► Enhancement operators augment the semantics of a program with new
features (see CBSE)

■ Composition operators compose components
 Connectors connect components at ports (architecture languages)

■ Inheritance compose superclasses with mixins
 [Braha&Cook 90 OOPSLA]

 Parameterizations fill templates with values
 Generic programming with BETA or C++ template metaprogramming
 [GenVoca/Batory parameterization as composition]

 Role Model merge composes roles into classes

► Transformation operators (dangerous)
 Rewrite rule systems (graph rewrite rules, term rewrite rules)
 Strategic rewriting (rewriting with higher order functions)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

8

Enhancement in Software Build and
Composition

► Enhancements also occur, when components are composed together to a system
(system build, system composition): linking, template expansion, connector
composition, etc.

► Transformations also occur (e.g., compilations)

Build: Enhancements (Compositions), harmless transformations

Enhancement
(additive)

Refactoring
(harmless) Enhancement

(additive)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

9

Can There Be A Uniform Operator-Based
Software Technology?

► Scaling for all these approaches
► Supported by uniform tools
► Implemented in a library
► Embedded in the every-day software process (as refactorings)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

10

Software Development as
Operations of an Algebra
► Idea: the activities for build and evolution are represented as operators in a

model algebra or code algebra
 Implementation: library

► How do the elements of the algebra look:
 Refactorings: change the abstract syntax graph (ASG) directly
 Inheritance: Classes with feature list
 Package merges: Packages with sets of classes

► Can there be a component model for all of them?
 Solution: graybox components

Design Patterns and Frameworks, © Prof. Uwe Aßmann

11

33.2 Model and Code Algebras

Merging classes...

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

12

Model Algebra

► A model algebra contains a carrier set (models) and operations on these:
► union: Model x Model → Model
► merge: Model x Model → Model
► diff: Model x Model → Model
► join: Model x Model → Model
► patch: Model x Model → Model

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

13

Class Algebra

► A class algebra contains a carrier set (classes) and operations on these:
► union: Class x Class → Class
► merge: Class x Class → Class
► diff: Class x Class → Class
► join: Class x Class → Class
► patch: Class x Class → Class
► mixin: Class x Class → Class

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

14

Discussion

► Model and class algebrae have problems:
 Coarse-grained composition: it is hard to adapt a class or a model during

merge in a fine-grained way
 From a merge, too many model element merges result
 The larger the models, the more difficult it becomes

Design Patterns and Frameworks, © Prof. Uwe Aßmann

15

33.3 Software Operators Unify
Refactorings and Composition Operators

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

16

Refactorings
Transformations

Operations on Different Levels

► Refactoring works directly on the AST/ASG
► Attaching/removing/replacing fragments

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

17

Composition
with implicit
hooks

Refactorings
Transformations

Operations on Different Levels

► Class composition, model composition, aspect weaving, view composition,
GenVoca parameterization works on implicit hooks (join points), role model
merge

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

18

Refactorings
Transformations

Operations on Different Levels

► Templates in generic programming, connectors work on declared hooks

Composition
with declared
hooks

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

19

Composition
with declared
hooks

Composition
with implicit
hooks

Refactorings
Transformations

Systematization Towards Graybox
Component Models

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

20

ComposerComposer

Invasive Composition Builds On
Transformation on Declared Hooks

Invasively transformed codeInvasively transformed code

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

21

ComposerComposer

Invasive Composition Builds On
Transformation Of Implicit Hooks

Invasively transformed codeInvasively transformed code P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

22

RefactoringRefactoring

Refactoring Builds On Transformation Of
Abstract Syntax

Design
Pattern

Anti-
Pattern

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

23

Unification of Approaches

► Invasive composition, based on refactoring operations, can realize most of
the current composition operations
 inheritance
 views, aspects, role-model merging
 connectors

► But the component models differ slightly

Design Patterns and Frameworks, © Prof. Uwe Aßmann

24

33.4 Unifying Composition and Evolution

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

25

Refactorings and Enhancements
Time

The Dimension of Refactoring

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

26

Product
Build

Compo-
sitions

The Dimension of Build

OP

OP

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

27

Refactorings and Enhancements
Time

Product
Build

Compo-
sitions

A Uniform Operator-Based View on Two
Dimensions of Software Engineering

OP

OP

OP
OP

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

28

Algebraic Features of Refactoring
Operators
► Identity (Semantics preserving)

 Refactorings are identity operations concerning the semantics
 Connector exchange is semantics preserving

► Identity (Syntactic)
 Refactorings should be syntax-preserving
 Y2K problem

 Only syntax-preserving transformations were accepted by the developers and
companies

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

29

Regression Test

Time

Regression Tests as Composition Operations
on Subsequent Versions

► Regression tests are operators that check semantic identity

Regression Test Enhancement Test

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

30

Other Useful Algebraic Features

► Idempotence +; + == +
● Syntactically, refactorings must be idempotent

● RECODER is syntactically idempotent

► Commutativity a+b = b+a
● If two operations are commutative, they can be interchanged to implement the

more important requirement
● Connections on different parts are commutative
 Order of build becomes unimportant

► Associativity (a+b)+c = a+(b+c)
 Order of build becomes unimportant

► Monotonicity: Refactorings that merely add stuff
 Glueing operations (Adapters, Bridges): Do not modify, but produce glue
 Enrichments (extensions)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

31

Semantically Invariant Composers are
Symmetries

► Symmetries [Coplien]
 Symmetric operations have an invariant which they preserve

 Rotation preserves shape, but reorients a symmetric artifact

 Symmetric operations form symmetry groups

► Examples:
 Refactorings are symmetries

 Because they preserve the semantics of the code, but only change the structure

 Conformant inheritance is a symmetry
 Conformance maintains the contracts of arguments of methods

 Connectors are symmetries
 Because they preserve communication semantics

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

32

Central Idea of Refactoring-Based Software
Development

► Harmless
 Semantics preserving (refactoring)
 Contract preserving
 Syntax preserving

► Additive (enhancements, but preserving)
 Symmetries (invariant preserving)

► Dangerous
 Non-preserving enhancements
 Modifications

Split up development steps into applications of harmless,
additive, and dangerous software operators

Split up development steps into applications of harmless,
additive, and dangerous software operators

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

33

Refactorings and Enhancements
Time

Inheritance
Symmetries

Build:
Compo-
sitions

Use Harmless Steps in
Two Dimensions

Connectors
SemanticPreserving

Compositions
Enhancements

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

34

Beyond Refactoring

► What started as refactorings, is now ending up in a concept of harmless
software evolution operators
 Refactoring is strong, due to its harmlessness
 We will split development into harmless, monotonous and difficult operations

► Software build and evolution get a common background
 Both are based on transformation operators from an algebra
 Design patterns are no isolated concept, but are related to component-based

software engineering (graybox component systems)
 Both forms of operators can be realized as static metaprograms with graybox

component models
 Can be supported by common tools (RECODER and COMPOST as examples,

http://sf.recoder.net http://www.the-compost-system.org)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

35

Software Engineering
Beyond Refactoring
► Use harmless operations as long as possible

 Semantics-preserving (refactorings)
 Symmetries (conformant inheritance)
 Syntax-preserving
 Idempotents

► Validate algebraic features
 Program analysis
 Contract checker
 Regression test
 diff

► Compositions are software operators, too

► Software Engineering needs more harmless operations!!

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

36

Vision

► Replace old tools by refactoring operators and composition languages...
 Build tools

 Linker

 Modelling
 Inheritance
 Architecture systems

 Evolution
 Refactorings

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

37

Vision: Automated Design, Build, And
Evolution

Rk

Dk

Ik

Rk+1

Dk+1

Ik+1

Requirements

Design

Automated
Code

Design Patterns and Frameworks, © Prof. Uwe Aßmann

38

Appendix

www.the-compost-system.org

recoder.sourceforge.net

Book “Invasive Software Composition”

Springer, Feb 2003

Design Patterns and Frameworks, © Prof. Uwe Aßmann

39

33.A Invasive Software Composition
Operators

... preview onto the summer

(CBSE course)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

40

Composition Systems

Component Model
structured elements

Composition Technique
(composition operators)

Composition Language

► A composition system is a two-level composition algebra, whose elements
(called components) have a composition interface (hooks, ports)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

41

Invasive Software Composition

Component Model
Graybox

Composition Technique
Hook Transformation

Composition Language
Standard Languages

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

42

Composer

Invasively transformed codeInvasively transformed code

Invasive Composition as Hook
Transformations

• Invasive Composition
• adapts and extends

•components
•at hooks

•by transformation
•(2-level composition

algebra)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

43

The Component Model of Invasive
Composition

► The basic element is a fragment component (fragment box), a set of
program elements

► May be
 a class
 a package
 a method
 an aspect
 a meta description
 a composition program

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

44

 Boxes have Hooks

Hooks are arbitrary fragments or spots
in a fragment component

which are subject to change

► beginning/end of lists
► method entries/exits
► generic parameters

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

45

Implicit Hooks (aka Static Join Points)

► Given by the programming language, the DTD or Xschema
 Example Method Entry/Exit

m (){

 abc..
 cde..

}

Method.entry

Method.exit

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

46

Declared Hooks (Generic Parameters)

Declarations

 Declared Hooks are declared by the box writer as
variables in the hook’s tags.

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

47

X
SuperClass

<superclasshook> X </superclasshook>

class Set extends genericXSuperClass { }

class Set /* @superClass */ {
 // …
}

Declaration of Hooks

► by special keywords
► by markup tags
► Language Extensions (keywords..)
► Standardized Names
► Comment Tags

class Set
 /* @superClass */ {
 // …
}

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

48

The Composition Technique of Invasive
Composition

A composer is a code transformer
from unbound to bound hooks

composer: box with hooks --> box with tags

 Invasive Composition
 adapts and extends

components
at hooks

by transformation

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

49

MethodEntry MethodEntry

MethodExitMethodExit

m (){

 abc..
 cde..

}

m (){
 print(“enter m”);
 abc..
 cde..
 print(“exit m”);
}

box.findHook(„.MethodEntry“).extend(“print(\”enter m\”);”);

box.findHook(„MethodExit“).extend(“print(\”exit m\”);”);

Composition on Implicit Hooks

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

50

Element

List(<hook>Element</hook>) le;

....
le.add(new <hook>Element</hook>());

...

box.findHook(„Element“).bind(“Apple”);

Element

List(Apple) le;

....
le.add(new Apple());

...

Composition on Declared Hooks
P

ro
f.

U
w

e
A

ß
m

a
n

n,
 D

e
si

g
n

P
a

tte
rn

s
an

d
 F

ra
m

ew
or

k s

51

Composer

Invasively transformed tags

Invasive Composition as Hook
Transformations

► Invasive Composition works
uniformly on
 declared hooks
 implicit hooks

► Allows for unification of
 Inheritance
 Views
 Aspect weaving
 Parameterization
 Role model merging

Invasively transformed codeInvasively transformed code

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

52

The Composition Language of Invasive
Composition

► As a composition language, arbitrary languages can be used
 Standard languages (Java)
 XML
 Rule languages

► Meta-composition possible
■ composition classes, methods

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

53

Atomic and Compound Composition
Operators

► bind hook (parameterize)
■ generalized generic program

elements

► rename component, rename hook
► copy component
► extend

 extend in different semantic
versions

Compound composition operators:
► inheritance
► views

 Class merge
 Role model merge
 Package merge
 Intrusive data functors

► connect
► distribute

■ aspect weaving

Design Patterns and Frameworks, © Prof. Uwe Aßmann

54

33.4.2 What Can You Do With
Invasive Composition?

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

55

Composers Generalize Connectors

boxes + composers + declared hooks

operators

boxes + connectors + ports

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

56

Composers Generalize Inheritance
Operators

boxes + composers + declared hooks

boxes + mixin + feature lists

operators

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

57

Composers Generalize Role Model
Merge

boxes + composers + implicit hooks

class + role merging + feature list

operators

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

58

ASG + refactorings

Refactorings are Operators on the ASG

operators

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

59

Refactoring Can Be Regarded As
Primitive Composition

Component Model
Abstract Syntax Graphs

Composition Technique
Static Metaprogramming

Transformation

Composition Language

