
Design Patterns and Frameworks, © Prof. Uwe Aßmann

1

33. Unifying Refactorings and
Compositions as Software Operators

Prof. Dr. Uwe Aßmann

TU Dresden

Lehrstuhl
Softwaretechnologie

12-1.0, 1/26/13

Software Operators in Code Algebras and Composition
Systems as a Basis for a Unified View on Software
Engineering

1)Refactorings as Operators

2)Model and class composition

3)Software Operators

4)Unifying Build and Refactoring

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

2

Obligatory Literature

► Class algebra:
► Gilad Bracha, William Cook. Mixin-based inhertiance. OOPSLA 1990.

citeseer.nj.nec.com/bracha90mixinbased.html
► James O. Coplien, Liping Zhao. Symmetry Breaking in Software Patterns.

Springer Lecture Notes in Computer Science, LNCS 2177, October 2001, ff.
37.
http://users.rcn.com/jcoplien/Patterns/Symmetry/Springer/SpringerSymmetry.
html

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

3

Objectives

► There are, beyond class and role models, other composition systems
► Model algebras, class algebras, code algebras and composition systems are

different
► The algebraic features of the composition operators make the difference
► Refactorings are symmetries, algebraic code operators retaining invariants

Design Patterns and Frameworks, © Prof. Uwe Aßmann

4

33.1 From Refactoring to
Software Composition

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

5

Refactorings
(structural transformations)

Time

Refactorings are
Harmless Evolution Operations
► To arrive at a design pattern in the code, one has to refactor
► Idea: split of operations into harmless, enhancing (additive), and

dangerous ones.

Evolution = Refactorings + Enhancements + Transformations

Transformation
(dangerous)

Enhancement
(additive)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

6

Harmless Operators

► Harmless operators do preserve the semantics of the program
■ Lowerings lower an expressive language construct to less expressive ones.

Lowerings prepare optimizations on lower level
. Transform inheritance to flat records
. Transform recursion to loops
. Unroll loops

■ Refactorings change the structure of the program
■ Higherings recognize a more expressive language construct from a set of

less expressive one
. Higherings are used in reengineering
. Recognize a loop or recursions from gotos
. Recognize a vector operation from a loop (vectorizer)

■ Optimizers replace program elements with more efficient ones
. Peephole optimization
. Strength reduction

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

7

Enhancement Operators

► There are other software operators in modern software engineering
approaches

► Enhancement operators augment the semantics of a program with new
features (see CBSE)

■ Composition operators compose components
 Connectors connect components at ports (architecture languages)

■ Inheritance compose superclasses with mixins
 [Braha&Cook 90 OOPSLA]

 Parameterizations fill templates with values
 Generic programming with BETA or C++ template metaprogramming
 [GenVoca/Batory parameterization as composition]

 Role Model merge composes roles into classes

► Transformation operators (dangerous)
 Rewrite rule systems (graph rewrite rules, term rewrite rules)
 Strategic rewriting (rewriting with higher order functions)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

8

Enhancement in Software Build and
Composition

► Enhancements also occur, when components are composed together to a system
(system build, system composition): linking, template expansion, connector
composition, etc.

► Transformations also occur (e.g., compilations)

Build: Enhancements (Compositions), harmless transformations

Enhancement
(additive)

Refactoring
(harmless) Enhancement

(additive)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

9

Can There Be A Uniform Operator-Based
Software Technology?

► Scaling for all these approaches
► Supported by uniform tools
► Implemented in a library
► Embedded in the every-day software process (as refactorings)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

10

Software Development as
Operations of an Algebra
► Idea: the activities for build and evolution are represented as operators in a

model algebra or code algebra
 Implementation: library

► How do the elements of the algebra look:
 Refactorings: change the abstract syntax graph (ASG) directly
 Inheritance: Classes with feature list
 Package merges: Packages with sets of classes

► Can there be a component model for all of them?
 Solution: graybox components

Design Patterns and Frameworks, © Prof. Uwe Aßmann

11

33.2 Model and Code Algebras

Merging classes...

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

12

Model Algebra

► A model algebra contains a carrier set (models) and operations on these:
► union: Model x Model → Model
► merge: Model x Model → Model
► diff: Model x Model → Model
► join: Model x Model → Model
► patch: Model x Model → Model

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

13

Class Algebra

► A class algebra contains a carrier set (classes) and operations on these:
► union: Class x Class → Class
► merge: Class x Class → Class
► diff: Class x Class → Class
► join: Class x Class → Class
► patch: Class x Class → Class
► mixin: Class x Class → Class

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

14

Discussion

► Model and class algebrae have problems:
 Coarse-grained composition: it is hard to adapt a class or a model during

merge in a fine-grained way
 From a merge, too many model element merges result
 The larger the models, the more difficult it becomes

Design Patterns and Frameworks, © Prof. Uwe Aßmann

15

33.3 Software Operators Unify
Refactorings and Composition Operators

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

16

Refactorings
Transformations

Operations on Different Levels

► Refactoring works directly on the AST/ASG
► Attaching/removing/replacing fragments

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

17

Composition
with implicit
hooks

Refactorings
Transformations

Operations on Different Levels

► Class composition, model composition, aspect weaving, view composition,
GenVoca parameterization works on implicit hooks (join points), role model
merge

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

18

Refactorings
Transformations

Operations on Different Levels

► Templates in generic programming, connectors work on declared hooks

Composition
with declared
hooks

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

19

Composition
with declared
hooks

Composition
with implicit
hooks

Refactorings
Transformations

Systematization Towards Graybox
Component Models

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

20

ComposerComposer

Invasive Composition Builds On
Transformation on Declared Hooks

Invasively transformed codeInvasively transformed code

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

21

ComposerComposer

Invasive Composition Builds On
Transformation Of Implicit Hooks

Invasively transformed codeInvasively transformed code

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

22

RefactoringRefactoring

Refactoring Builds On Transformation Of
Abstract Syntax

Design
Pattern

Anti-
Pattern

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

23

Unification of Approaches

► Invasive composition, based on refactoring operations, can realize most of
the current composition operations
 inheritance
 views, aspects, role-model merging
 connectors

► But the component models differ slightly

Design Patterns and Frameworks, © Prof. Uwe Aßmann

24

33.4 Unifying Composition and Evolution

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

25

Refactorings and Enhancements
Time

The Dimension of Refactoring

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

26

Product
Build

Compo-
sitions

The Dimension of Build

OP

OP

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

27

Refactorings and Enhancements
Time

Product
Build

Compo-
sitions

A Uniform Operator-Based View on Two
Dimensions of Software Engineering

OP

OP

OP
OP

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

28

Algebraic Features of Refactoring
Operators
► Identity (Semantics preserving)

 Refactorings are identity operations concerning the semantics
 Connector exchange is semantics preserving

► Identity (Syntactic)
 Refactorings should be syntax-preserving
 Y2K problem

 Only syntax-preserving transformations were accepted by the developers and
companies

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

29

Regression Test

Time

Regression Tests as Composition Operations
on Subsequent Versions

► Regression tests are operators that check semantic identity

Regression Test Enhancement Test

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

30

Other Useful Algebraic Features

► Idempotence +; + == +
● Syntactically, refactorings must be idempotent

● RECODER is syntactically idempotent

► Commutativity a+b = b+a
● If two operations are commutative, they can be interchanged to implement the

more important requirement
● Connections on different parts are commutative
 Order of build becomes unimportant

► Associativity (a+b)+c = a+(b+c)
 Order of build becomes unimportant

► Monotonicity: Refactorings that merely add stuff
 Glueing operations (Adapters, Bridges): Do not modify, but produce glue
 Enrichments (extensions)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

31

Semantically Invariant Composers are
Symmetries

► Symmetries [Coplien]
 Symmetric operations have an invariant which they preserve

 Rotation preserves shape, but reorients a symmetric artifact

 Symmetric operations form symmetry groups

► Examples:
 Refactorings are symmetries

 Because they preserve the semantics of the code, but only change the structure

 Conformant inheritance is a symmetry
 Conformance maintains the contracts of arguments of methods

 Connectors are symmetries
 Because they preserve communication semantics

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

32

Central Idea of Refactoring-Based Software
Development

► Harmless
 Semantics preserving (refactoring)
 Contract preserving
 Syntax preserving

► Additive (enhancements, but preserving)
 Symmetries (invariant preserving)

► Dangerous
 Non-preserving enhancements
 Modifications

Split up development steps into applications of harmless,
additive, and dangerous software operators

Split up development steps into applications of harmless,
additive, and dangerous software operators

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

33

Refactorings and Enhancements
Time

Inheritance
Symmetries

Build:
Compo-
sitions

Use Harmless Steps in
Two Dimensions

Connectors
SemanticPreserving

Compositions
Enhancements

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

34

Beyond Refactoring

► What started as refactorings, is now ending up in a concept of harmless
software evolution operators
 Refactoring is strong, due to its harmlessness
 We will split development into harmless, monotonous and difficult operations

► Software build and evolution get a common background
 Both are based on transformation operators from an algebra
 Design patterns are no isolated concept, but are related to component-based

software engineering (graybox component systems)
 Both forms of operators can be realized as static metaprograms with graybox

component models
 Can be supported by common tools (RECODER and COMPOST as examples,

http://sf.recoder.net http://www.the-compost-system.org)

http://sf.recoder.net/
http://www.the-compost-system.org/

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

35

Software Engineering
Beyond Refactoring
► Use harmless operations as long as possible

 Semantics-preserving (refactorings)
 Symmetries (conformant inheritance)
 Syntax-preserving
 Idempotents

► Validate algebraic features
 Program analysis
 Contract checker
 Regression test
 diff

► Compositions are software operators, too

► Software Engineering needs more harmless operations!!

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

36

Vision

► Replace old tools by refactoring operators and composition languages...
 Build tools

 Linker

 Modelling
 Inheritance
 Architecture systems

 Evolution
 Refactorings

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

37

Vision: Automated Design, Build, And
Evolution

Rk

Dk

Ik

Rk+1

Dk+1

Ik+1

Requirements

Design

Automated
Code

Design Patterns and Frameworks, © Prof. Uwe Aßmann

38

Appendix

www.the-compost-system.org

recoder.sourceforge.net

Book “Invasive Software Composition”

Springer, Feb 2003

http://www.the-compost-system.org/
http://recoder.sourceforge.net/

Design Patterns and Frameworks, © Prof. Uwe Aßmann

39

33.A Invasive Software Composition
Operators

... preview onto the summer

(CBSE course)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

40

Composition Systems

Component Model
structured elements

Composition Technique
(composition operators)

Composition Language

► A composition system is a two-level composition algebra, whose elements
(called components) have a composition interface (hooks, ports)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

41

Invasive Software Composition

Component Model
Graybox

Composition Technique
Hook Transformation

Composition Language
Standard Languages

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

42

Composer

Invasively transformed codeInvasively transformed code

Invasive Composition as Hook
Transformations

• Invasive Composition
• adapts and extends

•components
•at hooks

•by transformation
•(2-level composition

algebra)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

43

The Component Model of Invasive
Composition

► The basic element is a fragment component (fragment box), a set of
program elements

► May be
 a class
 a package
 a method
 an aspect
 a meta description
 a composition program

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

44

 Boxes have Hooks

Hooks are arbitrary fragments or spots
in a fragment component

which are subject to change

► beginning/end of lists
► method entries/exits
► generic parameters

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

45

Implicit Hooks (aka Static Join Points)

► Given by the programming language, the DTD or Xschema
 Example Method Entry/Exit

m (){

 abc..
 cde..

}

Method.entry

Method.exit

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

46

Declared Hooks (Generic Parameters)

Declarations

 Declared Hooks are declared by the box writer as
variables in the hook’s tags.

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

47

X
SuperClass

<superclasshook> X </superclasshook>

class Set extends genericXSuperClass { }

class Set /* @superClass */ {
 // …
}

Declaration of Hooks

► by special keywords
► by markup tags
► Language Extensions (keywords..)
► Standardized Names
► Comment Tags

class Set
 /* @superClass */ {
 // …
}

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

48

The Composition Technique of Invasive
Composition

A composer is a code transformer
from unbound to bound hooks

composer: box with hooks --> box with tags

 Invasive Composition
 adapts and extends

components
at hooks

by transformation

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

49

MethodEntry MethodEntry

MethodExitMethodExit

m (){

 abc..
 cde..

}

m (){
 print(“enter m”);
 abc..
 cde..
 print(“exit m”);
}

box.findHook(„.MethodEntry“).extend(“print(\”enter m\”);”);

box.findHook(„MethodExit“).extend(“print(\”exit m\”);”);

Composition on Implicit Hooks

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

50

Element

List(<hook>Element</hook>) le;

....
le.add(new <hook>Element</hook>());

...

box.findHook(„Element“).bind(“Apple”);

Element

List(Apple) le;

....
le.add(new Apple());

...

Composition on Declared Hooks

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

51

Composer

Invasively transformed tags

Invasive Composition as Hook
Transformations

► Invasive Composition works
uniformly on
 declared hooks
 implicit hooks

► Allows for unification of
 Inheritance
 Views
 Aspect weaving
 Parameterization
 Role model merging

Invasively transformed codeInvasively transformed code

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

52

The Composition Language of Invasive
Composition

► As a composition language, arbitrary languages can be used
 Standard languages (Java)
 XML
 Rule languages

► Meta-composition possible
■ composition classes, methods

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

53

Atomic and Compound Composition
Operators

► bind hook (parameterize)
■ generalized generic program

elements

► rename component, rename hook
► copy component
► extend

 extend in different semantic
versions

Compound composition operators:
► inheritance
► views

 Class merge
 Role model merge
 Package merge
 Intrusive data functors

► connect
► distribute

■ aspect weaving

Design Patterns and Frameworks, © Prof. Uwe Aßmann

54

33.4.2 What Can You Do With
Invasive Composition?

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

55

Composers Generalize Connectors

boxes + composers + declared hooks

operators

boxes + connectors + ports

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

56

Composers Generalize Inheritance
Operators

boxes + composers + declared hooks

boxes + mixin + feature lists

operators

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

57

Composers Generalize Role Model
Merge

boxes + composers + implicit hooks

class + role merging + feature list

operators

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

58

ASG + refactorings

Refactorings are Operators on the ASG

operators

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

59

Refactoring Can Be Regarded As
Primitive Composition

Component Model
Abstract Syntax Graphs

Composition Technique
Static Metaprogramming

Transformation

Composition Language

	Multi-level Software Composition (with COMPOST)
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	InvasiveCompositionLevels
	Slide 17
	Slide 18
	Slide 19
	InvasiveComposerLinkingTwoComponents
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	FigRefactoringsAndBuild
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Software Composition
	Slide 41
	Slide 42
	2.1 Component Model of Invasive Composition
	Boxes have Hooks
	2.1.1. Implicit Hooks
	2.1.2. Declared Hooks
	Declaration of hooks
	2.3 Composition Technique
	Slide 49
	Slide 50
	Slide 51
	2.3 The Composition Language
	Slide 53
	Slide 54
	Composers Generalize Connectors
	Slide 56
	Slide 57
	Slide 58
	Slide 59

