
VICCI
Visual and Interactive Cyber-Physical Systems Control and Integration

Feature-based Software Product Lines

…and their Application

Christoph Seidl

Georg Püschel

Julia Schroeter

Exercise Academic Skills for Software Engineers

 Real world configurable product: Lego Manikin

Configurable Products (1)

Feature-based Software Product Lines 2 20.11.2012

Image courtesy Thomas Thüm, used by permission.

 Software Product Lines

 Something similar for software

 Approach for software reuse in the large

 Build individual software programs by combining reusable blocks

Configurable Products (2)

20.11.2012 3 Feature-based Software Product Lines

Image courtesy Thomas Thüm, used by permission.

 Customers want similar (but not equal!) software products

 Making modifications to individual applications causes problems

 Hard to maintain, update, fix

 Hard to reuse similar functionality

 Solution

 Variability management in the large scale

 Software Product Lines!

Developer/Vendor View

20.11.2012 4 Feature-based Software Product Lines

 Intent

 Define common functionality

 Define variable parts

 Define how variable parts can be combined with common
functionality to create products

 -> All possible products are (theoretically) known in advance (closed
variant space)

 Terms

 Program Family: the set of all possible programs created by the SPL

 Product/Variant: one program out of the program family

 Realization Asset: part directly related to implementing a particular
program, e.g., source code, UML models, documentation etc.

Software Product Lines (1)

20.11.2012 5 Feature-based Software Product Lines

 Challenge: Express variablity and configuration options

 Pragmatic solution: ifdefs in C/C++

 Only in implementation!? (code, design models, documentation
etc.)

 Problem

 Configuration knowledge distributed over implementation

 Hard to see configuration options for non-technicians
(management, customers)

 Solution

 Model variability explicitly and connect it to the
implementation (variability model)

Software Product Lines (2)

20.11.2012 6 Feature-based Software Product Lines

 Use separate model to capture variability

 Intent

 Express configuration options and configuration logic

 Use domain language (non-technical)

 Describe all possible products without iterating them (too many)

 At this point: No regard to implementation of individual products

 Possibilities

 Feature Models

 Decision Models

 Orthogonal Variability Models

 …

Variability Model

20.11.2012 7 Feature-based Software Product Lines

 Feature

 Set of requirements describing user visible functionality of a
software product

 Variable unit of functionality that can be reused in multiple
products

 Use terms of domain (non-technical) language

 Examples: CreditCardPayment, SearchFunction

Feature Models (1)

20.11.2012 8 Feature-based Software Product Lines

 Feature Model

 Capture commonality and variability of SPL

 Use features

 Often represented as tree, cross-tree constraints make it a graph

 Describes variant space

 Variant Configuration

 A subset of features

 Must be consistent regarding feature model constraints

 All variability is bound

 Used to derive a product

Feature Models (2)

Feature-based Software Product Lines 9 20.11.2012

 FODA: Feature-oriented Domain Analysis [KCH+90]

 Optional/Mandatory features

 Alternative/Or groups

 Pros

 Good as graphical representation

 Graphical representation supports (simple) constraints (requires, excludes)

 Cons

 Limitations regarding selections in groups (e.g., 2 out of 3 possible options?)

FODA Notation for Feature Models

20.11.2012 10 Feature-based Software Product Lines

Image courtesy Thomas Thüm, used by permission.

 Distinguish between features and groups

 Use min and max cardinality for features and groups

 Features

 optional: [0..1]

 mandatory: [1..1]

 cloned features [0..n]

 Groups (n child features, m mandatory child features)

 alternative group: [1..1]

 or group: [1..n]

 and group: [m..n]

 arbitrary cardinality: [i..j] (i <= j, i >= m, j <= n)

Cardinality-based Feature Models (1)

20.11.2012 11 Feature-based Software Product Lines

 Pros

 More powerful expressiveness (e.g., 2 out of 3 no problem)

 Easier to evaluate and transform (only numbers not different
structures for optional/mandatory, alternative/or etc.)

 Cons

 Not so intuitive visualization

Cardinality-based Feature Models (2)

20.11.2012 12 Feature-based Software Product Lines

Image courtesy Thomas Thüm, used by permission.

[1..1] Lego Manikin

[3..5]

[0..1] Headpiece [1..1] Head [0..1] Item [1..1] Shirt [1..1] Pants

[0..1] Helmet [0..1] Hat

[1..1]

[0..1] Brush [0..1] Phone

[1..2]

[0..1] Red [0..1] Blue

[1..1]

 Tree structure of feature model is primary dimension of configuration
options

 Additional configuration constraints may exist

 -> Cross-tree constraints

 Graphical/textual notation for constraints

 Feature Expression: logical formula containing references to features
(describing their presence in configuration)

 Example: Helmet => not Phone

Cross-tree Constraints

20.11.2012 13 Feature-based Software Product Lines

Image courtesy Thomas Thüm, used by permission.

 Feature model describes variability but not how products are
implemented

 Challenge: Not all parts of implementation are required for all
configurations

 A feature may require parts of multiple assets (e.g., UML design
and implementing classes)

 A feature may only require parts of an asset (e.g., only a few
methods of a class)

 -> Need to modify assets/resources to include them in a particular
product

 Two basic procedures:

 Positive/Additive Variability

 Negative/Subtractive Variability

Implementation

20.11.2012 14 Feature-based Software Product Lines

 Also known as: Additive Variability

 Create an asset as multiple small parts and combine them

 Pros

 Parts of asset can be modeled in same granularity as features

 Cons

 High maintenance effort because hard to deal with small
fragments

 Standard tools may not be useable (partial artifacts not always
allowed!)

 Requires composition approach

Positive Variability

20.11.2012 15 Feature-based Software Product Lines

 Also known as: Subtractive Variability

 Create one large asset for all features and remove what is not needed
in configuration

 Model based: „150% model“

 Pros

 Standard tools (widely) useable (just a regular model)

 Composition through removal of parts

 Cons

 Conflicting information for single asset hard to express (e.g., in
UML model, one feature multiplicity „*“ other feature has „1“?)

Negative Variability

20.11.2012 16 Feature-based Software Product Lines

 Problem Space [PBL05]
 Conceptual modeling of variability
 Variability model, cross-tree constraints etc.

 Solution Space [PBL05]
 Realization/implementation assets
 Source code, documentation, UML models/diagrams, configuration

files etc.

Problem Space/Solution Space

Feature-based Software Product Lines 17 20.11.2012

 Configure products in problem space

 Create implementation from solution space

 Assemble relevant assets for products

 Needs connection from problem space to solution space

Deriving Products from the Software Product Line

20.11.2012 18 Feature-based Software Product Lines

 Domain Engineering: deals with the development and maintenance
of reusbale core or domain assets, which typically are reusable pieces
of software, but can also be requirements, design, documentation,
etc. [Han10]

 Application Engineering: deals with the development of software
products, or applications, using the core assets for rapid and efficient
composition of software products adjusted to the need of the
customers [Han10]

Creating/Maintaining Software Product Lines

20.11.2012 19 Feature-based Software Product Lines

Process of Domain/Application Engineering

20.11.2012 20 Feature-based Software Product Lines

Image source: [PBL05]

 SPL

 prescribes application logic

 one vendor of products

 explicit variability model

 variant space is closed

 Class Library (e.g., Swing)

 does not prescribe
application logic

 one/multiple vendors of
products

 no variability model

 variant space is not closed

 Framework
(e.g., Salespoint, Spring)

 prescribes application logic

 one vendor of products

 no variability model

 variant space is not closed

 Software Ecosystem
(e.g., Eclipse, Android)

 prescribes application logic

 multiple vendors of
products

 implicit variability model

 variant space is not closed

SPLs vs. other Software Reuse Mechanisms

Feature-based Software Product Lines 21 20.11.2012

 Dynamic Staged Configuration (Julia)
 Domain of multi-tenant aware applications in the cloud
 Multiple stakeholders with different concerns involved in variant configuration
 Ensure that configuration decisions do not contradict each other
 Add stakeholders dynamically and allow for reconfiguration
 -> Use consistent perspectives and configuration workflows

 Testing Dynamically Variable Software Product Lines (Georg)
 Context-adaptive software
 Too many variations (functional, temporal)
 -> Build test models for dynamically variable systems

 Configurability in Software Ecosystems (Christoph)

 Systematically handle variability in open systems such as Eclipse
 Hard to model/manage variability because systems are evolving constantly

and multiple vendors have independent release cycles
 -> Extend variability models to allow extension, evolution, multiple

contributors etc.

Open Challenges

Feature-based Software Product Lines 22 20.11.2012

 [Han10] Hanssen: Opening Up Software Product Line Engineering
(2010)

 [PBL05] Pohl, Böckle, Linden: Software Product Line Engineering -
Foundations, Principles and Techniques (2005)

 [KCH+90] Kang, Cohen, Hess, Nowak, Peterson: Feature-Oriented
Domain Analysis (FODA) Feasibility Study (1990)

References

Feature-based Software Product Lines 23 20.11.2012

