4 Vvicc

—(

Exercise Academic Skills for Software Engineers

Feature-based Software Product Lines

Christoph Seidl|
Georg Puschel

Europa férdert Sachsen. w TECHN'SCHE
ESF. — @ UNIVERSITAT
| = DRESDEN

uuuuuuuuuuuuuuuuuuuuuuu

Julia Schroeter

Configurable Products (1)

= Real world configurable product: Lego Manikin

4 &
&
¥
i

I K< ko Epe

i 4 &
i 4
4 2 &
i 4 &

Image courtesy Thomas Thiim, used by permission.

20.11.2012 Feature-based Software Product Lines 2

Configurable Products (2)

F®

i @

o B

E B

Y
Ef- Eke Ebo e =R«
mbe Ep- Bk ER* e
B e mee dp i
g kB ke Epo FR¢

= Software Product Lines
Something similar for software
Approach for software reuse in the large
Build individual software programs by combining reusable blocks

Image courtesy Thomas Thiim, used by permission.

20.11.2012 Feature-based Software Product Lines 3

> Developer/Vendor View N/
@

= Customers want similar (but not equal!) software products

= Making modifications to individual applications causes problems
= Hard to maintain, update, fix
= Hard to reuse similar functionality

= Solution

= Variability management in the large scale
= Software Product Lines!

20.11.2012 Feature-based Software Product Lines 4

> Software Product Lines (1)

= |ntent
= Define common functionality
= Define variable parts

= Define how variable parts can be combined with common
functionality to create products

= > All possible products are (theoretically) known in advance (closed
variant space)

= Terms
= Program Family: the set of all possible programs created by the SPL
= Product/Variant: one program out of the program family

= Realization Asset: part directly related to implementing a particular
program, e.g., source code, UML models, documentation etc.

20.11.2012 Feature-based Software Product Lines 5

> Software Product Lines (2)

= Challenge: Express variablity and configuration options

= Pragmatic solution: ifdefs in C/C++

= Onlyinimplementation!? (code, design models, documentation
etc.)

= Problem
Configuration knowledge distributed over implementation

Hard to see configuration options for non-technicians
(management, customers)

= Solution

Model variability explicitly and connect it to the
implementation (variability model)

20.11.2012 Feature-based Software Product Lines 6

> Variability Model N/
>

= Use separate model to capture variability

= |ntent
= Express configuration options and configuration logic
= Use domain language (non-technical)
= Describe all possible products without iterating them (too many)
= At this point: No regard to implementation of individual products

= Possibilities
* Feature Models
= Decision Models
= Orthogonal Variability Models

20.11.2012 Feature-based Software Product Lines 7

> Feature Models (1)

= Feature

20.11.2012

Set of requirements describing user visible functionality of a
software product

Variable unit of functionality that can be reused in multiple
products

Use terms of domain (non-technical) language
Examples: CreditCardPayment, SearchFunction

Feature-based Software Product Lines

> Feature Models (2) ”’
V=

= Feature Model

= Capture commonality and variability of SPL

= Use features

= Often represented as tree, cross-tree constraints make it a graph
= Describes variant space

= Variant Configuration
= Asubset of features
= Must be consistent regarding feature model constraints
= All variability is bound
= Used to derive a product

20.11.2012 Feature-based Software Product Lines 9

FODA Notation for Feature Models

= FODA: Feature-oriented Domain Analysis [KCH+90]
Optional/Mandatory features
Alternative/Or groups

Lego Manikin Legend:
14 @ Mandatory
‘ i * “ o] Optional
. Headpiece i Pants A Or
| ' /N Alternative
: L4 /&\ /‘\ /a\ [Abstract
“ - L “ Helmet = Hat Brush | Phone | | Red | | Blue | [Concrete

= Pros

Good as graphical representation

Graphical representation supports (simple) constraints (requires, excludes)
= Cons

Limitations regarding selections in groups (e.g., 2 out of 3 possible options?)

Image courtesy Thomas Thiim, used by permission.

20.11.2012 Feature-based Software Product Lines 10

> Cardinality-based Feature Models (1) N/
@

= Distinguish between features and groups

= Use min and max cardinality for features and groups

= Features
optional: [0..1]
mandatory: [1..1]

—cloredtesturesO—rd

= Groups (n child features, m mandatory child features)
alternative group: [1..1]
or group: [1..n]
and group: [m..n]
arbitrary cardinality: [i..j] (i<=j, i>=m, j <=n)

20.11.2012 Feature-based Software Product Lines 11

> Cardinality-based Feature Models (2) N/
@

[1..1] Lego Manikin

[0..1] Headpiece [1..1] Head [0..1] Item [1..1] Shirt [1..1] Pants

[0..1] Helmet [0..1] Hat [0..1] Brush [0..1] Phone [0..1] Red [0..1] Blue

" Pros

" More powerful expressiveness (e.g., 2 out of 3 no problem)

= Easier to evaluate and transform (only numbers not different
structures for optional/mandatory, alternative/or etc.)

"= Cons
= Not so intuitive visualization

Image courtesy Thomas Thiim, used by permission.

20.11.2012 Feature-based Software Product Lines 12

Cross-tree Constraints ’

“_

= Tree structure of feature model is primary dimension of configuration
options

= Additional configuration constraints may exist
= ->Cross-tree constraints
= Graphical/textual notation for constraints

= Feature Expression: logical formula containing references to features
(describing their presence in configuration)

= Example: Helmet => not Phone

Lego Manikin Legend:

(1 Mandatory
O 5 of Optional
Headpiece ltem Shirt = Pants A or

/N, Alternative
[Abstract

[1 Concrete

Helmet | | Hat Brush Phone | Red | | Blue

Helmet = - Phone
Image courtesy Thomas Thiim, used by permission.

20.11.2012 Feature-based Software Product Lines 13

> Implementation N
@

= Feature model describes variability but not how products are
implemented

= Challenge: Not all parts of implementation are required for all
configurations

= A feature may require parts of multiple assets (e.g., UML design
and implementing classes)

= A feature may only require parts of an asset (e.g., only a few
methods of a class)

= -> Need to modify assets/resources to include them in a particular
product

= Two basic procedures:
= Positive/Additive Variability
= Negative/Subtractive Variability

20.11.2012 Feature-based Software Product Lines 14

> Positive Variability

= Also known as: Additive Variability
= (Create an asset as multiple small parts and combine them

= Pros
= Parts of asset can be modeled in same granularity as features
= Cons

= High maintenance effort because hard to deal with small
fragments

= Standard tools may not be useable (partial artifacts not always
allowed!)

= Requires composition approach

20.11.2012 Feature-based Software Product Lines 15

> Negative Variability ”’
DX
<

= Also known as: Subtractive Variability

= (Create one large asset for all features and remove what is not needed
in configuration

= Model based: ,,150% model”

= Pros
= Standard tools (widely) useable (just a regular model)
= Composition through removal of parts

= Cons

= Conflicting information for single asset hard to express (e.g., in
UML model, one feature multiplicity ,*“ other feature has ,1“?)

20.11.2012 Feature-based Software Product Lines 16

> Problem Space/Solution Space

= Problem Space [PBLO5]

20.11.2012

Conceptual modeling of variability

Variability model, cross-tree constraints etc.
= Solution Space [PBLO5]

Realization/implementation assets
Source code, documentation, UML models/diagrams, configuration

files etc.

Feature Model

Problem Space

Class1 Class2

UML Model

public class Class1 {
public int calculate() ...
public void execute() ...

Java Source Code

|

<book>

<title>User Manual</title>
<l >

</book>

DocBook Documentation

Solution Space

Feature-based Software Product Lines

\/
@

17

> Deriving Products from the Software Product Line

= Configure products in problem space

= (Create implementation from solution space

= Assemble relevant assets for products

= Needs connection from problem space to solution space

Class1 Class2

UML Model

public class Class1 {
|_—» public int calculate() ...

/ public void execute() ...

Java Source Code

|

<book>
<title>User Manual</title>
S EE——

</book>

DocBook Documentation

Mapping Solution Space

20.11.2012 Feature-based Software Product Lines

18

> Creating/Maintaining Software Product Lines N/
@

= Domain Engineering: deals with the development and maintenance
of reusbale core or domain assets, which typically are reusable pieces
of software, but can also be requirements, design, documentation,
etc. [Han10]

= Application Engineering: deals with the development of software
products, or applications, using the core assets for rapid and efficient
composition of software products adjusted to the need of the
customers [Han10]

20.11.2012 Feature-based Software Product Lines 19

> Process of Domain/Application Engineering

20.11.2012

Product
Management

i .
£ quam Domain Domain Domain
& Requirements

3 . . Design Realisation Testing
E Engineering

[

=

= y)) 1
=

s

g

=

=]

{ 2) &
— = { e RGRHXH IR
faSaly = 'I!I_I" L] _.E" — =="I-=-I-=I-._-I- — O

Application
Requirements
Engineering

4 4 4 4

Application Application Application
Design Realisation Testing

Image source: [PBLO5]

Feature-based Software Product Lines

20

> SPLs vs. other Software Reuse Mechanisms "’
VR

prescribes application logic
one vendor of products
explicit variability model
variant space is closed

= (Class Library (e.g., Swing)

20.11.2012

does not prescribe
application logic

one/multiple vendors of
products

no variability model
variant space is not closed

Framework
(e.g., Salespoint, Spring)

= prescribes application logic
= one vendor of products

= no variability model

= variant space is not closed

Software Ecosystem
(e.g., Eclipse, Android)

= prescribes application logic

= multiple vendors of
products

= implicit variability model
= variant space is not closed

Feature-based Software Product Lines 21

> Open Challenges N/
>

= Dynamic Staged Configuration (Julia)
= Domain of multi-tenant aware applications in the cloud
= Multiple stakeholders with different concerns involved in variant configuration
= Ensure that configuration decisions do not contradict each other
= Add stakeholders dynamically and allow for reconfiguration
= ->Use consistent perspectives and configuration workflows

= Testing Dynamically Variable Software Product Lines (Georg)
= Context-adaptive software
= Too many variations (functional, temporal)
= ->Build test models for dynamically variable systems

= Configurability in Software Ecosystems (Christoph)
= Systematically handle variability in open systems such as Eclipse

= Hard to model/manage variability because systems are evolving constantly
and multiple vendors have independent release cycles

= -> Extend variability models to allow extension, evolution, multiple
contributors etc.

20.11.2012 Feature-based Software Product Lines 22

> References N/
>

= [Han10] Hanssen: Opening Up Software Product Line Engineering
(2010)

= [PBLO5] Pohl, Bockle, Linden: Software Product Line Engineering -
Foundations, Principles and Techniques (2005)

= [KCH+90] Kang, Cohen, Hess, Nowak, Peterson: Feature-Oriented
Domain Analysis (FODA) Feasibility Study (1990)

20.11.2012 Feature-based Software Product Lines 23

