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Configurable Products (1)

= Real world configurable product: Lego Manikin
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Image courtesy Thomas Thiim, used by permission.
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Configurable Products (2)
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= Software Product Lines
Something similar for software
Approach for software reuse in the large
Build individual software programs by combining reusable blocks

Image courtesy Thomas Thiim, used by permission.
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> Developer/Vendor View N/
@

= Customers want similar (but not equal!) software products

= Making modifications to individual applications causes problems
= Hard to maintain, update, fix
= Hard to reuse similar functionality

= Solution

= Variability management in the large scale
= Software Product Lines!
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> Software Product Lines (1)

= |ntent
= Define common functionality
= Define variable parts

= Define how variable parts can be combined with common
functionality to create products

= > All possible products are (theoretically) known in advance (closed
variant space)

=  Terms
= Program Family: the set of all possible programs created by the SPL
= Product/Variant: one program out of the program family

= Realization Asset: part directly related to implementing a particular
program, e.g., source code, UML models, documentation etc.
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> Software Product Lines (2)

= Challenge: Express variablity and configuration options

=  Pragmatic solution: ifdefs in C/C++

= Onlyinimplementation!? (code, design models, documentation
etc.)

=  Problem
Configuration knowledge distributed over implementation

Hard to see configuration options for non-technicians
(management, customers)

= Solution

Model variability explicitly and connect it to the
implementation (variability model)
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> Variability Model N/
>

= Use separate model to capture variability

= |ntent
= Express configuration options and configuration logic
= Use domain language (non-technical)
= Describe all possible products without iterating them (too many)
= At this point: No regard to implementation of individual products

= Possibilities
* Feature Models
= Decision Models
= Orthogonal Variability Models
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> Feature Models (1)

= Feature

20.11.2012

Set of requirements describing user visible functionality of a
software product

Variable unit of functionality that can be reused in multiple
products

Use terms of domain (non-technical) language
Examples: CreditCardPayment, SearchFunction
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> Feature Models (2) ”’
V=

=  Feature Model

= Capture commonality and variability of SPL

= Use features

= Often represented as tree, cross-tree constraints make it a graph
= Describes variant space

= Variant Configuration
= Asubset of features
= Must be consistent regarding feature model constraints
= All variability is bound
= Used to derive a product
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FODA Notation for Feature Models

=  FODA: Feature-oriented Domain Analysis [KCH+90]
Optional/Mandatory features
Alternative/Or groups

Lego Manikin Legend:
14 @ Mandatory
‘ i * “ o] Optional
. Headpiece i Pants A Or
| ' /N Alternative
: L4 /&\ /‘\ /a\ [ Abstract
“ - L “ Helmet = Hat Brush | Phone | | Red | | Blue | [ Concrete

=  Pros

Good as graphical representation

Graphical representation supports (simple) constraints (requires, excludes)
= Cons

Limitations regarding selections in groups (e.g., 2 out of 3 possible options?)

Image courtesy Thomas Thiim, used by permission.
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> Cardinality-based Feature Models (1) N/
@

= Distinguish between features and groups

= Use min and max cardinality for features and groups

= Features
optional: [0..1]
mandatory: [1..1]

—cloredtesturesO—rd

= Groups (n child features, m mandatory child features)
alternative group: [1..1]
or group: [1..n]
and group: [m..n]
arbitrary cardinality: [i..j] (i<=j, i>=m, j <=n)
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> Cardinality-based Feature Models (2) N/
@

[1..1] Lego Manikin

[0..1] Headpiece [1..1] Head [0..1] Item [1..1] Shirt [1..1] Pants

[0..1] Helmet [0..1] Hat [0..1] Brush [0..1] Phone [0..1] Red [0..1] Blue

"  Pros

" More powerful expressiveness (e.g., 2 out of 3 no problem)

= Easier to evaluate and transform (only numbers not different
structures for optional/mandatory, alternative/or etc.)

"= Cons
= Not so intuitive visualization

Image courtesy Thomas Thiim, used by permission.
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Cross-tree Constraints ’

“_

= Tree structure of feature model is primary dimension of configuration
options

= Additional configuration constraints may exist
= ->Cross-tree constraints
= Graphical/textual notation for constraints

= Feature Expression: logical formula containing references to features
(describing their presence in configuration)

=  Example: Helmet => not Phone

Lego Manikin Legend:

(1 Mandatory
O 5 of Optional
Headpiece ltem  Shirt = Pants A or

/N, Alternative
[ Abstract

[ 1 Concrete

Helmet | | Hat Brush Phone | Red | | Blue

Helmet = - Phone
Image courtesy Thomas Thiim, used by permission.
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> Implementation N
@

= Feature model describes variability but not how products are
implemented

= Challenge: Not all parts of implementation are required for all
configurations

= A feature may require parts of multiple assets (e.g., UML design
and implementing classes)

= A feature may only require parts of an asset (e.g., only a few
methods of a class)

= -> Need to modify assets/resources to include them in a particular
product

= Two basic procedures:
= Positive/Additive Variability
= Negative/Subtractive Variability
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> Positive Variability

= Also known as: Additive Variability
= (Create an asset as multiple small parts and combine them

=  Pros
= Parts of asset can be modeled in same granularity as features
= Cons

= High maintenance effort because hard to deal with small
fragments

= Standard tools may not be useable (partial artifacts not always
allowed!)

= Requires composition approach
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> Negative Variability ”’
DX
<

= Also known as: Subtractive Variability

= (Create one large asset for all features and remove what is not needed
in configuration

= Model based: ,,150% model”

=  Pros
= Standard tools (widely) useable (just a regular model)
= Composition through removal of parts

= Cons

= Conflicting information for single asset hard to express (e.g., in
UML model, one feature multiplicity ,*“ other feature has ,1“?)
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> Problem Space/Solution Space

=  Problem Space [PBLO5]

20.11.2012

Conceptual modeling of variability

Variability model, cross-tree constraints etc.
= Solution Space [PBLO5]

Realization/implementation assets
Source code, documentation, UML models/diagrams, configuration

files etc.

Feature Model

Problem Space

Class1 Class2

UML Model

public class Class1 {
public int calculate() ...
public void execute() ...

Java Source Code

|

<book>

<title>User Manual</title>
<l >

</book>

DocBook Documentation

Solution Space
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> Deriving Products from the Software Product Line

= Configure products in problem space

= (Create implementation from solution space

=  Assemble relevant assets for products

= Needs connection from problem space to solution space

Class1 Class2

UML Model

public class Class1 {
|_—» public int calculate() ...

/ public void execute() ...

Java Source Code

|

<book>
<title>User Manual</title>
S EE——

</book>

DocBook Documentation

Mapping Solution Space
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> Creating/Maintaining Software Product Lines N/
@

= Domain Engineering: deals with the development and maintenance
of reusbale core or domain assets, which typically are reusable pieces
of software, but can also be requirements, design, documentation,
etc. [Han10]

= Application Engineering: deals with the development of software
products, or applications, using the core assets for rapid and efficient
composition of software products adjusted to the need of the
customers [Han10]
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> Process of Domain/Application Engineering

20.11.2012
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Image source: [PBLO5]
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> SPLs vs. other Software Reuse Mechanisms "’
VR

prescribes application logic
one vendor of products
explicit variability model
variant space is closed

= (Class Library (e.g., Swing)

20.11.2012

does not prescribe
application logic

one/multiple vendors of
products

no variability model
variant space is not closed

Framework
(e.g., Salespoint, Spring)

= prescribes application logic
= one vendor of products

= no variability model

= variant space is not closed

Software Ecosystem
(e.g., Eclipse, Android)

= prescribes application logic

= multiple vendors of
products

= implicit variability model
= variant space is not closed
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> Open Challenges N/
>

= Dynamic Staged Configuration (Julia)
= Domain of multi-tenant aware applications in the cloud
= Multiple stakeholders with different concerns involved in variant configuration
= Ensure that configuration decisions do not contradict each other
=  Add stakeholders dynamically and allow for reconfiguration
= ->Use consistent perspectives and configuration workflows

=  Testing Dynamically Variable Software Product Lines (Georg)
= Context-adaptive software
= Too many variations (functional, temporal)
= ->Build test models for dynamically variable systems

= Configurability in Software Ecosystems (Christoph)
= Systematically handle variability in open systems such as Eclipse

= Hard to model/manage variability because systems are evolving constantly
and multiple vendors have independent release cycles

= -> Extend variability models to allow extension, evolution, multiple
contributors etc.
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