
VICCI
Visual and Interactive Cyber-Physical Systems Control and Integration

Feature-based Software Product Lines

…and their Application

Christoph Seidl

Georg Püschel

Julia Schroeter

Exercise Academic Skills for Software Engineers

 Real world configurable product: Lego Manikin

Configurable Products (1)

Feature-based Software Product Lines 2 20.11.2012

Image courtesy Thomas Thüm, used by permission.

 Software Product Lines

 Something similar for software

 Approach for software reuse in the large

 Build individual software programs by combining reusable blocks

Configurable Products (2)

20.11.2012 3 Feature-based Software Product Lines

Image courtesy Thomas Thüm, used by permission.

 Customers want similar (but not equal!) software products

 Making modifications to individual applications causes problems

 Hard to maintain, update, fix

 Hard to reuse similar functionality

 Solution

 Variability management in the large scale

 Software Product Lines!

Developer/Vendor View

20.11.2012 4 Feature-based Software Product Lines

 Intent

 Define common functionality

 Define variable parts

 Define how variable parts can be combined with common
functionality to create products

 -> All possible products are (theoretically) known in advance (closed
variant space)

 Terms

 Program Family: the set of all possible programs created by the SPL

 Product/Variant: one program out of the program family

 Realization Asset: part directly related to implementing a particular
program, e.g., source code, UML models, documentation etc.

Software Product Lines (1)

20.11.2012 5 Feature-based Software Product Lines

 Challenge: Express variablity and configuration options

 Pragmatic solution: ifdefs in C/C++

 Only in implementation!? (code, design models, documentation
etc.)

 Problem

 Configuration knowledge distributed over implementation

 Hard to see configuration options for non-technicians
(management, customers)

 Solution

 Model variability explicitly and connect it to the
implementation (variability model)

Software Product Lines (2)

20.11.2012 6 Feature-based Software Product Lines

 Use separate model to capture variability

 Intent

 Express configuration options and configuration logic

 Use domain language (non-technical)

 Describe all possible products without iterating them (too many)

 At this point: No regard to implementation of individual products

 Possibilities

 Feature Models

 Decision Models

 Orthogonal Variability Models

 …

Variability Model

20.11.2012 7 Feature-based Software Product Lines

 Feature

 Set of requirements describing user visible functionality of a
software product

 Variable unit of functionality that can be reused in multiple
products

 Use terms of domain (non-technical) language

 Examples: CreditCardPayment, SearchFunction

Feature Models (1)

20.11.2012 8 Feature-based Software Product Lines

 Feature Model

 Capture commonality and variability of SPL

 Use features

 Often represented as tree, cross-tree constraints make it a graph

 Describes variant space

 Variant Configuration

 A subset of features

 Must be consistent regarding feature model constraints

 All variability is bound

 Used to derive a product

Feature Models (2)

Feature-based Software Product Lines 9 20.11.2012

 FODA: Feature-oriented Domain Analysis [KCH+90]

 Optional/Mandatory features

 Alternative/Or groups

 Pros

 Good as graphical representation

 Graphical representation supports (simple) constraints (requires, excludes)

 Cons

 Limitations regarding selections in groups (e.g., 2 out of 3 possible options?)

FODA Notation for Feature Models

20.11.2012 10 Feature-based Software Product Lines

Image courtesy Thomas Thüm, used by permission.

 Distinguish between features and groups

 Use min and max cardinality for features and groups

 Features

 optional: [0..1]

 mandatory: [1..1]

 cloned features [0..n]

 Groups (n child features, m mandatory child features)

 alternative group: [1..1]

 or group: [1..n]

 and group: [m..n]

 arbitrary cardinality: [i..j] (i <= j, i >= m, j <= n)

Cardinality-based Feature Models (1)

20.11.2012 11 Feature-based Software Product Lines

 Pros

 More powerful expressiveness (e.g., 2 out of 3 no problem)

 Easier to evaluate and transform (only numbers not different
structures for optional/mandatory, alternative/or etc.)

 Cons

 Not so intuitive visualization

Cardinality-based Feature Models (2)

20.11.2012 12 Feature-based Software Product Lines

Image courtesy Thomas Thüm, used by permission.

[1..1] Lego Manikin

[3..5]

[0..1] Headpiece [1..1] Head [0..1] Item [1..1] Shirt [1..1] Pants

[0..1] Helmet [0..1] Hat

[1..1]

[0..1] Brush [0..1] Phone

[1..2]

[0..1] Red [0..1] Blue

[1..1]

 Tree structure of feature model is primary dimension of configuration
options

 Additional configuration constraints may exist

 -> Cross-tree constraints

 Graphical/textual notation for constraints

 Feature Expression: logical formula containing references to features
(describing their presence in configuration)

 Example: Helmet => not Phone

Cross-tree Constraints

20.11.2012 13 Feature-based Software Product Lines

Image courtesy Thomas Thüm, used by permission.

 Feature model describes variability but not how products are
implemented

 Challenge: Not all parts of implementation are required for all
configurations

 A feature may require parts of multiple assets (e.g., UML design
and implementing classes)

 A feature may only require parts of an asset (e.g., only a few
methods of a class)

 -> Need to modify assets/resources to include them in a particular
product

 Two basic procedures:

 Positive/Additive Variability

 Negative/Subtractive Variability

Implementation

20.11.2012 14 Feature-based Software Product Lines

 Also known as: Additive Variability

 Create an asset as multiple small parts and combine them

 Pros

 Parts of asset can be modeled in same granularity as features

 Cons

 High maintenance effort because hard to deal with small
fragments

 Standard tools may not be useable (partial artifacts not always
allowed!)

 Requires composition approach

Positive Variability

20.11.2012 15 Feature-based Software Product Lines

 Also known as: Subtractive Variability

 Create one large asset for all features and remove what is not needed
in configuration

 Model based: „150% model“

 Pros

 Standard tools (widely) useable (just a regular model)

 Composition through removal of parts

 Cons

 Conflicting information for single asset hard to express (e.g., in
UML model, one feature multiplicity „*“ other feature has „1“?)

Negative Variability

20.11.2012 16 Feature-based Software Product Lines

 Problem Space [PBL05]
 Conceptual modeling of variability
 Variability model, cross-tree constraints etc.

 Solution Space [PBL05]
 Realization/implementation assets
 Source code, documentation, UML models/diagrams, configuration

files etc.

Problem Space/Solution Space

Feature-based Software Product Lines 17 20.11.2012

 Configure products in problem space

 Create implementation from solution space

 Assemble relevant assets for products

 Needs connection from problem space to solution space

Deriving Products from the Software Product Line

20.11.2012 18 Feature-based Software Product Lines

 Domain Engineering: deals with the development and maintenance
of reusbale core or domain assets, which typically are reusable pieces
of software, but can also be requirements, design, documentation,
etc. [Han10]

 Application Engineering: deals with the development of software
products, or applications, using the core assets for rapid and efficient
composition of software products adjusted to the need of the
customers [Han10]

Creating/Maintaining Software Product Lines

20.11.2012 19 Feature-based Software Product Lines

Process of Domain/Application Engineering

20.11.2012 20 Feature-based Software Product Lines

Image source: [PBL05]

 SPL

 prescribes application logic

 one vendor of products

 explicit variability model

 variant space is closed

 Class Library (e.g., Swing)

 does not prescribe
application logic

 one/multiple vendors of
products

 no variability model

 variant space is not closed

 Framework
(e.g., Salespoint, Spring)

 prescribes application logic

 one vendor of products

 no variability model

 variant space is not closed

 Software Ecosystem
(e.g., Eclipse, Android)

 prescribes application logic

 multiple vendors of
products

 implicit variability model

 variant space is not closed

SPLs vs. other Software Reuse Mechanisms

Feature-based Software Product Lines 21 20.11.2012

 Dynamic Staged Configuration (Julia)
 Domain of multi-tenant aware applications in the cloud
 Multiple stakeholders with different concerns involved in variant configuration
 Ensure that configuration decisions do not contradict each other
 Add stakeholders dynamically and allow for reconfiguration
 -> Use consistent perspectives and configuration workflows

 Testing Dynamically Variable Software Product Lines (Georg)
 Context-adaptive software
 Too many variations (functional, temporal)
 -> Build test models for dynamically variable systems

 Configurability in Software Ecosystems (Christoph)

 Systematically handle variability in open systems such as Eclipse
 Hard to model/manage variability because systems are evolving constantly

and multiple vendors have independent release cycles
 -> Extend variability models to allow extension, evolution, multiple

contributors etc.

Open Challenges

Feature-based Software Product Lines 22 20.11.2012

 [Han10] Hanssen: Opening Up Software Product Line Engineering
(2010)

 [PBL05] Pohl, Böckle, Linden: Software Product Line Engineering -
Foundations, Principles and Techniques (2005)

 [KCH+90] Kang, Cohen, Hess, Nowak, Peterson: Feature-Oriented
Domain Analysis (FODA) Feasibility Study ﻿ (1990)

References

Feature-based Software Product Lines 23 20.11.2012

