
2002

Software Model Checking
and its Tools

Kapitel 24, „Softwarewerkzeuge“

Courtesy to Willem Visser. Used by
permission.

Prof. U. Aßmann, TU Dresden

Available at:

http://www.visserhome.com/willem/presentati
ons/presentations.html

24 September 2002 © Willem Visser 2002 1

2002

Software Model Checking

Shortened from

Willem Visser, Tutorial at ASE 2002

Research Institute for Advanced Computer Science

NASA Ames Research Center

2002

24 September 2002 © Willem Visser 2002 3

Overview

• Introduction to Model Checking
– Hardware and Software Model Checking

• Program Model Checking
– Major Trends

• Abstraction
• Improved model checking technology

– A Brief History
• SPIN
• Hand-translations
• State-less model checking
• Semi-automated translations
• Fully automated translations

– Current Trends
• Custom-made model checkers for programs
• SLAM
• JPF
• Summary

• NASA Case Studies - Remote Agent, DEOS and Mars Rover
• Future of Software Model Checking

2002

24 September 2002 © Willem Visser 2002 4

Model Checking
The Intuition

• Calculate whether a system satisfies a certain
behavioral property:
– Is the system deadlock free?
– Whenever a packet is sent will it eventually be received?

• So it is like testing? No, major difference:
– Look at all possible behaviors of a system

• Automatic, if the system is finite-state
– Potential for being a push-button technology
– Almost no expert knowledge required

• How do we describe the system?
• How do we express the properties?

2002

24 September 2002 © Willem Visser 2002 5

Kripke Structures are Labeled
State Graphs plus Predicates

K = ({p,~p},{x,y,z,k,h},R,{x},L)

x

y

z

k

~p

~p

~p

p

hh ~p

Each state represents all
variable values and
location counters

The labels represent
predicates in each state
e.g. (x = 5)

Each transition
represents an execution
step in the system

2002

24 September 2002 © Willem Visser 2002 6

Property Specifications
with Temporal Logic

• Linear Time
– Every moment has a unique successor
– Infinite sequences (words)

– Linear Time Temporal Logic (LTL)

• Branching Time
– Every moment has several successors
– Infinite tree

– Computation Tree Logic (CTL)

• Temporal Logic
– Express properties of event orderings in time
– e.g. “Always” when a packet is sent it will “Eventually” be received

2002

24 September 2002 © Willem Visser 2002 7

Safety and Liveness

• Safety properties
– Invariants, deadlocks, reachability, etc.

– Can be checked on finite traces
– “something bad never happens”

• Liveness Properties
– Fairness, response, etc.
– Infinite traces
– “something good will eventually happen”

2002
Direction

• Model checking can be done

• Forward:
• Searching from the initial state to reachable

states, checking the condition

• Backward
• Searching from the states in which a condition

should hold backward to the initial state

• In particular possible for reachability questions

24 September 2002 © Willem Visser 2002

2002
Mutual Exclusion Example

• Two process mutual exclusion with shared semaphore
• Each process has three states

• Non-critical (N)
• Trying (T)
• Critical (C)

• Semaphore can be available (S0) or taken (S1)
•Model checkers construct a global system state space from the
process
• Initially both processes are in the Non-critical state and
 the semaphore is available --- (N1 N2 S0)

2002

24 September 2002 © Willem Visser 2002 10

System State Space
(Backward Reachability Question)

N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

K ╞ AG EF (N1 and N2 and S0)
No matter where you are there is
always a way to get to the initial state

All Globally

Exist Finally

2002

24 September 2002 © Willem Visser 2002 11

Mutual Exclusion Example:
Backward Analysis

N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

Model checkers do reachability of states: here, backward
Search for paths.

K ╞ AG EF (N1 and N2 and S0)

2002

24 September 2002 © Willem Visser 2002 12

Mutual Exclusion Example

N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

K ╞ AG EF (N1 and N2 and S0)

2002

24 September 2002 © Willem Visser 2002 13

Mutual Exclusion Example

N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

K ╞ AG EF (N1 and N2 and S0)

2002

24 September 2002 © Willem Visser 2002 14

Mutual Exclusion Example

N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

K ╞ AG EF (N1 and N2 and S0)

2002

24 September 2002 © Willem Visser 2002 15

Mutual Exclusion Example

N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

Proven.

K ╞ AG EF (N1 and N2 and S0)

2002

24 September 2002 © Willem Visser 2002 16

Model Checking

• Given a Kripke structure M = (S,R,L) that represents a
finite-state concurrent system and a temporal logic
formula f expressing some desired specification, find
the set of states in S that satisfy f:

{ s in S | M,s ╞ f }

• Normally, some states of the concurrent system are
designated as initial states. The system satisfies the
specification provided all the initial states are in the set.
We often write: M ╞ f

2002

24 September 2002 © Willem Visser 2002 17

Explicit vs. Symbolic
Model Checking

• Explicit State
– states are enumerated on-the-fly
– Forwards analysis
– Stores visited states in a hashtable

• Characteristics
– Memory intensive
– Good for finding concurrency errors
– Short execution paths are better, but

long execution paths can also be
handled

– Can handle dynamic creation of
objects/threads

– Mostly used in software

• Symbolic
– Sets of states are manipulated at a

time
– Typically a backwards analysis in the

automaton
– Transition relation encoded by Binary

Decision Diagrams (BDDs) or as a
satisfiability problem

• Characteristics
– Can handle very large state spaces
– Not as good for asynchronous systems
– Cannot deal well with long execution

traces

– Works best with a static transition
relation, hence doesn’t deal well with
dynamic creation of objects/threads

– Mostly used in hardware

2002

24 September 2002 © Willem Visser 2002 18

Overview

• Introduction to Model Checking
– Hardware Model Checking

– Software Model Checking

• Program Model Checking

• Case Studies

• Future of Software Model Checking

2002

24 September 2002 © Willem Visser 2002 19

Hardware Model Checking

• BDD-based model checking was the enabling
technology
– Hardware is typically synchronous and regular, hence the

transition relation can be encoded efficiently
– Execution paths are typically very short

• The Intel Pentium bug
• got model checking on the map in the hardware

industry
• Intel, IBM, Motorola, etc. now employ hundreds

of model checking experts

2002

24 September 2002 © Willem Visser 2002 20

Software Model Checking

• Until 1997 most work was on software designs
– Since catching bugs early is more cost-effective
– Problem is that everybody use a different design

notation, and although bugs were found the field never
really moved beyond some compelling case-studies

– Reality is that people write code first, rather than design

• The field took off when the seemingly harder
problem of analyzing actual source code was first
attempted

2002

24 September 2002 © Willem Visser 2002 21

Program Model Checking

• Why is program analysis with a model
checker so much more interesting?
– Designs are hard to come by, but buggy

programs are everywhere!
– Testing is inadequate for complex software

(concurrency, pointers, objects, etc.)
– Static program analysis was already an

established field, mostly in compiler
optimization, but also in verification.

2002

24 September 2002 © Willem Visser 2002 22

The Trends in
Program Model Checking

• Bringing programs to model checking
– By abstraction (including translation)

• Bringing model checking to programs
– Improve model checking to directly deal with

programs as input

Most model checkers cannot deal with the features of
modern programming languages

2002

24 September 2002 © Willem Visser 2002 23

Overview

• Introduction to Model Checking
• Program Model Checking

– Major Trends
• Abstraction
• Improved model checking technology

– A Brief History
– Current Trends

• Case Studies
• Future of Software Model Checking

2002

24 September 2002 © Willem Visser 2002 24

Program (Software)
Model Checking

Abstraction of the Control-Flow Graph
from Stack Automaton to Finite Automaton

void add(Object o) {
 buffer[head] = o;
 head = (head+1)%size;
}

Object take() {
 …
 tail=(tail+1)%size;
 return buffer[tail];
}

Program Model Checker
Input

Infinite state Finite state

2002

24 September 2002 © Willem Visser 2002 25

Abstraction

• Model checkers don’t take real “programs” as input
• Model checkers typically work on finite state systems
• Abstraction therefore solves two problems

– It allows model checkers to analyze a notation they couldn’t deal
with before, and,

– Cuts the state space size to something manageable

• Abstraction comes in three flavors
– Over-approximations, i.e. more behaviors are added to the

abstracted system than are present in the original
– Under-approximations, i.e. less behaviors are present in the

abstracted system than are present in the original
– Precise abstractions, i.e. the same behaviors are present in the

abstracted and original program

2002

24 September 2002 © Willem Visser 2002 26

Under-Approximation
“Meat-Axe” Abstraction

• Remove parts of the program deemed “irrelevant” to the
property being checked
– Limit input values to 0..10 rather than all integer values
– Queue size 3 instead of unbounded, etc.

• Typically manual, with no guarantee that the right
behaviors are removed

• Precise abstraction, w.r.t. the property being checked, may
be obtained if the behaviors being removed are indeed not
influencing the property
– Program slicing is an example of an automated

under-approximation that will lead to a precise abstraction w.r.t.
the property being checked

– However, can be incorrect

2002

24 September 2002 © Willem Visser 2002 27

Over-Approximations
Abstract Interpretation

• Over-Approximation maps sets of states in the concrete program to
one state in the abstract program (Abstract Interpretation)

– Reduces the number of states, but increases the number of possible
transitions, and hence the number of behaviors

• Type-based abstractions
– Replace int by Signs abstraction {neg,pos,zero}

• Predicate abstraction
– Replace predicates in the program by boolean variables, and replace each

instruction that modifies the predicate with a corresponding instruction
that modifies the boolean.

• Automated (conservative) abstraction: correct
• Eliminating spurious errors is the big problem

– Abstract program has more behaviors, therefore when an error is found in
the abstract program, is that also an error in the original program?

– Most research focuses on this problem, and its counter-part the elimination
of spurious errors, often called abstraction refinement

2002

24 September 2002 © Willem Visser 2002 28

Bringing
Model Checking to Programs

• Allow model checkers to take modern
programming languages as input

• Major hurdle is how to encode the state of
the system efficiently

• Alternatively state-less model checking
– No state encoding or storing

• Almost exclusively explicit-state model checking
• Abstraction can still be used as well

– Source to source abstractions

2002

24 September 2002 © Willem Visser 2002 29

Overview

• Introduction to Model Checking
• Program Model Checking

– Major Trends
– A Brief History

• SPIN
• Hand-translations
• State-less model checking

– Partial-order reductions
– VeriSoft

• Semi-automated translations
• Fully automated translations

– Current Trends
• Case Studies
• Future of Software Model Checking

2002

24 September 2002 © Willem Visser 2002 30

The Early Years

• Hand-translation with ad-hoc abstractions
– 1980 through mid 1990s

• Semi-automated, table-driven translations
– 1998

• Automated translations still with
ad-hoc abstractions
– 1997-1999

• State-less model checking for C
– VeriSoft 1997

2002

24 September 2002 © Willem Visser 2002 31

Overview

• Introduction to Model Checking
• Program Model Checking

– Major Trends
– A Brief History

• SPIN
• Hand-translations
• State-less model checking

– Partial-order reductions
– VeriSoft

• Semi-automated translations
• Fully automated translations

– Current Trends
• Case Studies
• Future of Software Model Checking

2002

24 September 2002 © Willem Visser 2002 32

SPIN Model Checker

• Kripke structures are described as “programs” in the
PROMELA language
– Kripke structure is generated on-the-fly during model checking

• Automata based model checker
– Translates LTL formula to Büchi automaton

• By far the most popular model checker
– SPIN workshop

• Relevant theoretical papers can be found here
– http://netlib.bell-labs.com/netlib/spin/whatispin.html

• Ideal for software model checking due to expressiveness of
the PROMELA language
– Close to a real programming language

• Gerard Holzmann won the ACM software award for SPIN

2002

24 September 2002 © Willem Visser 2002 33

Hand-Translation

abstraction

translation

Verification model

Program

• Hand translation of program to model checker’s input notation

• “Meat-axe” approach to abstraction (under-approximation)

• Labor intensive and error-prone

2002

24 September 2002 © Willem Visser 2002 34

Hand-Translation
 Examples

• Remote Agent – Havelund,Penix,Lowry 1997
– http://ase.arc.nasa.gov/havelund

– Translation from Lisp to Promela (most effort)
– Heavy abstraction
– 3 man months

• DEOS operating system – Penix, Visser, et al.
1998/1999
– http://ase.arc.nasa.gov/visser
– C++ to Promela (most effort in environment generation)
– Limited abstraction - programmers produced sliced system
– 3 man months

2002

24 September 2002 © Willem Visser 2002 35

Overview

• Introduction to Model Checking
• Program Model Checking

– Major Trends
– A Brief History

• SPIN
• Hand-translations
• State-less model checking

– Partial-order reductions
– VeriSoft

• Semi-automated translations
• Fully automated translations

– Current Trends
• Case Studies
• Future of Software Model Checking

2002

24 September 2002 © Willem Visser 2002 36

VeriSoft

• The first model checker that could
handle programs directly
– C programs running on Unix

• Relies on partial-order reductions to
limit the number of times a state is
revisited
– Persistent sets

• Reduce states visited
– Sleep sets

• Reduce transitions executed

• Paths must be replayed from the
initial state to try new branches
– No check-pointing

T1 || T2

T1 T2

T2 T1

T1 || T2

T1

T2

T1 || T2

T1 T2

T2 T1

Persistent
Sets

Sleep
Sets

2002

24 September 2002 © Willem Visser 2002 37

Overview

• Introduction to Model Checking
• Program Model Checking

– Major Trends
– A Brief History

• SPIN
• Hand-translations
• State-less model checking

– Partial-order reductions
– VeriSoft

• Semi-automated translations
• Fully automated translations

– Current Trends
• Case Studies
• Future of Software Model Checking

2002

24 September 2002 © Willem Visser 2002 38

Semi-Automatic Translation

• Table-driven translation and abstraction
– Feaver system by Gerard Holzmann
– User specifies code fragments in C and how to translate

them to Promela (SPIN)
– Translation is then automatic
– Found 75 errors in Lucent’s PathStar system
– http://cm.bell-labs.com/cm/cs/who/gerard/

• Advantages
– Can be reused when program changes
– Works well for programs with long development and

only local changes

2002

24 September 2002 © Willem Visser 2002 39

Fully Automatic Translation

• Advantage
– No human intervention required

• Disadvantage
– Limited by capabilities of target system

• Examples
– Java PathFinder 1- http://ase.arc.nasa.gov/havelund/jpf.html

• Translates from Java to Promela (Spin)

– JCAT - http://www.dai-arc.polito.it/dai-arc/auto/tools/tool6.shtml
• Translates from Java to Promela (or dSpin)

– Bandera - http://www.cis.ksu.edu/santos/bandera/
• Translates from Java bytecode to Promela, SMV or dSpin

2002

24 September 2002 © Willem Visser 2002 40

Overview

• Introduction to Model Checking
• Program Model Checking

– Major Trends
– A Brief History
– Current Trends

• Custom-made model checkers for programs
• Abstraction
• SLAM
• JPF
• Summary
• Examples of other software analyses

• Case Studies
• Future of Software Model Checking

2002

24 September 2002 © Willem Visser 2002 41

Program Model Checking
Current Trends

void add(Object o) {
 buffer[head] = o;
 head = (head+1)%size;
}

Object take() {
 …
 tail=(tail+1)%size;
 return buffer[tail];
}

Program

Custom
Model Checker

Correct

Error-trace

Abstract Program

T1 > T2
T3 > T4
T5 > T6

…

Abstraction
Abstraction refinement

Abstraction

• Custom-made model checkers for programming languages with
automatic abstraction at the source code level

• Automatic abstraction & translation based transformation to new
“abstract” formalism for model checker

• Abstraction refinement mostly automated

2002

24 September 2002 © Willem Visser 2002 42

Custom-made Model Checkers

• Translation based
– dSpin

• Spin extended with dynamic constructs
• Essentially a C model checker
• Source-2-source abstractions can be supported
• http://www.dai-arc.polito.it/dai-arc/auto/tools/tool7.shtml

– SPIN Version 4
• PROMELA language augmented with C code
• Table-driven abstractions

– Bandera
• Translated Bandera Intermediate Language (BIR) to a number of back-

end model checkers, but, a new BIR custom-made model checker is
under development

• Supports source-2-source abstractions as well as property-specific
slicing

• http://www.cis.ksu.edu/santos/bandera/

2002

24 September 2002 © Willem Visser 2002 43

Custom-made Model Checkers

• Abstraction based
– SLAM

• C programs are abstracted via predicate abstraction to boolean
programs for model checking

• http://research.microsoft.com/slam/
– BLAST

• Similar basic idea to SLAM, but using lazy abstraction, i.e.
during abstraction refinement don’t abstract the whole program
only certain parts

• http://www-cad.eecs.berkeley.edu/~tah/blast/
– 3-Valued Model Checker (3VMC) extension of TVLA

for Java programs
• http://www.cs.tau.ac.il/~yahave/3vmc.htm
• http://www.math.tau.ac.il/~rumster/TVLA/

2002

24 September 2002 © Willem Visser 2002 44

Overview

• Introduction to Model Checking
• Program Model Checking

– Major Trends
– A Brief History
– Current Trends

• Custom-made model checkers for programs
• Abstraction
• SLAM

– Abstraction Refinement
• JPF
• Summary
• Examples of other software analyses

• Case Studies
• Future of Software Model Checking

2002

24 September 2002 © Willem Visser 2002 45

SLAM
Simplified View

void add(Object o) {
 buffer[head] = o;
 head = (head+1)%size;
}

Object take() {
 …
 tail=(tail+1)%size;
 return buffer[tail];
}

C Program
annotated with
API usage rules

Custom
Model Checker

BEBOP
Correct

Error-traceSymbolic
Execution
NEWTON

Predicate
Abstraction

C2BP

Predicates

False
Error-trace is Feasible

2002

24 September 2002 © Willem Visser 2002 46

SLAM

• Check API usage rules for sequential C programs
– Mostly applied to device driver code

• C2BP
– Inputs: C program and predicates
– Output: boolean program over the predicates

• BEBOP
– Symbolic interprocedural data flow analysis
– Concrete CFG and BDD encoding of states

• NEWTON
– Symbolic execution of C programs
– Using Simplify theorem prover for checking feasibility

of conditionals

2002

24 September 2002 © Willem Visser 2002 47

Abstraction Refinement Example
Adapted from Ball & Rajamani POPL02

Property: if a lock is held it must be released before reacquiring

do {
 //get the write lock

KeAcquireSpinLock(&devExt->writeListLock);

nPacketsOld = nPackets;
request = devExt->WLHeadVa;

if (request){
KeReleaseSpinLock(&devExt->writeListLock);
...
nPackets++;

}
} while (nPackets != nPacketsOld);
KeReleaseSpinLock(&devExt->writeListLock);

2002

24 September 2002 © Willem Visser 2002 48

Initial Abstraction and
Model Checking

[1] do
 //get the write lock
[2] AcquireLock();
[3] if (*) then
[4] ReleaseLock();

 fi
[5] while (*);
[6] ReleaseLock();

Boolean Program (simpler, abstracted)

Error-trace : 1,2,3,5,1,2

2002

24 September 2002 © Willem Visser 2002 49

Symbolic Execution

[1] do {
[2] KeAcquireSpinLock(&devExt->writeListLock);
 nPacketsOld = nPackets;

 request = devExt->WLHeadVa;
[3] if (request){
[4] KeReleaseSpinLock(&devExt->writeListLock);

 ...
 nPackets++;

 }
[5] } while (nPackets != nPacketsOld);
[6] KeReleaseSpinLock(&devExt->writeListLock);

Symbolic execution of 1,2,3,5,1,2 shows that when 5 is executed
nPackets == nPacketsOld hence the path is infeasible.
The predicate nPackets == nPacketsOld is then added and
used during predicate abstraction

2002

24 September 2002 © Willem Visser 2002 50

Next Abstraction and
Model Checking

[1] do
[2] AcquireLock();
[3] b = true; // nPacketsOld = nPackets
[4] if (*) then
[5] ReleaseLock();
[6] b = b ? false : *; // nPackets++

 fi
[7] while (!b); //(nPacketsOld != nPackets)
[8] ReleaseLock();

New Predicate b : (nPacketsOld == nPackets)

Now property holds

2002

24 September 2002 © Willem Visser 2002 51

Overview

• Introduction to Model Checking
• Program Model Checking

– Major Trends
– A Brief History
– Current Trends

• Custom-made model checkers for programs
• SLAM
• JPF

– Abstractions
– Partial-order and symmetry reductions
– Heuristics
– New Stuff

• Summary
• Examples of other software analyses

• Case Studies
• Future of Software Model Checking

2002

24 September 2002 © Willem Visser 2002 52

Java PathFinder (2)
Direct Approach

• Based on custom-made Java Virtual Machine
– Handle all of Java, since it works with bytecodes
– Written in Java

• Efficient encoding of states
• Modular design for easy extensions
• Supports LTL checking with properties expressed in

Bandera’s BSL notation
• Incorporates a number of search strategies

– DFS, BFS, A*, Best-first, etc.
• Supports source-2-source abstractions
• http://ase.arc.nasa.gov/jpf

2002

24 September 2002 © Willem Visser 2002 53

Java PathFinder (JPF)

void add(Object o) {
 buffer[head] = o;
 head = (head+1)%size;
}

Object take() {
 …
 tail=(tail+1)%size;
 return buffer[tail];
}

Java Code

JAVAC JVM

0: iconst_0
1: istore_2
2: goto #39
5: getstatic
8: aload_0
9: iload_2
10: aaload

Bytecode

Special
JVM

Model
Checker

2002

24 September 2002 © Willem Visser 2002 54

Bandera & JPF
Architecture

BIRC BIR

Simulator

Abstraction
Engine

Slicer

Analyses

Translators

SPIN

dSPIN

SMV

Property Tool

Java
Jimple (BC)

Parser

Error Trace Display JPF
 Decompile ; javac

2002

24 September 2002 © Willem Visser 2002 55

Key Points

• Models can be infinite state
– Unbounded objects, threads,…
– Depth-first state generation (explicit-state)
– Verification requires abstraction

• Handle full Java language
– but only for closed systems
– Cannot handle native code

• no Input/output through GUIs, files, Networks, …
• Must be modeled by java code instead

• Allows Nondeterministic Environments
– JPF traps special nondeterministic methods

• Checks for User-defined assertions, deadlock and LTL properties

2002

24 September 2002 © Willem Visser 2002 56

Scaling Program Model Checking
Error-Detection

Remote Agent
Hand-translation

SPIN DEOS
Systematic

Hand-translation
SPIN

DEOS
Java-translation

JPF

Autopilot
JPF

Mars Rover
JPF

2002

24 September 2002 © Willem Visser 2002 57

Overview

• Introduction to Model Checking
• Program Model Checking

– Major Trends
– A Brief History
– Current Trends

• Custom-made model checkers for programs
• SLAM
• JPF
• Summary
• Examples of other software analyses

• Case Studies
• Future of Software Model Checking

2002

24 September 2002 © Willem Visser 2002 58

Software Model Checking
Executive summary

• Model checking by itself cannot deal with the
complexity of software

• Techniques from static analysis are required
– Abstract interpretation, slicing, alias&shape analysis,

symbolic execution

• Even then, we need to borrow some more!
– Heuristic search, constraint solving, etc.

• Abandon soundness
– Aggressive heuristics
– Runtime analysis and runtime monitoring

2002

24 September 2002 © Willem Visser 2002 59

 More Software Analysis Techniques
A small sample

• Program Verification
– For example, ESC/Java from Compaq

• http://research.compaq.com/SRC/esc/

• Static analysis for runtime errors
– For example, PolySpace for C, Ada and Java

• http://www.polyspace.com/

• Requirements and Design Analysis
– Analysis for SCR, RSML, Statecharts, etc.

• Runtime analysis
– See Runtime Verification Workshops

• http://ase.arc.nasa.gov/rv2002/

• Analysis Toolsets
– IF (Verimag), SAL (SRI), etc.

2002

24 September 2002 © Willem Visser 2002 60

Overview

• Introduction to Model Checking

• Program Model Checking

• Case Studies
– Remote Agent
– DEOS
– Mars Rover

• Future of Software Model Checking

2002

24 September 2002 © Willem Visser 2002 61

Case Studies of JPF

DEOS Remote Agent

Mars Rover

2002

24 September 2002 © Willem Visser 2002 62

Case Study:
DS-1 Remote Agent

• Several person-months to create verification model.
• One person-week to run verification studies.

TasksTasks

Properties Monitor

PropertyProperty
LocksLocks

DataData
basebase

Spacecraft
Commands

Achieve
Property

Change
Event

Lock
Event

Interrupt

Sensors

Subscribe

2002

24 September 2002 © Willem Visser 2002 63

Case Study:
DS-1 Remote Agent

• Five difficult to find concurrency errors detected

• “[Model Checking] has had a substantial impact, helping the RA team
improve the quality of the Executive well beyond what would otherwise
have been produced.” - RA team

• During flight RA deadlocked (in code we didn’t analyze)
– Found this deadlock with JPF

wait

Unexpected timing
of change event

check

DB change?

yes no

Monitor Logic

2002

24 September 2002 © Willem Visser 2002 64

DEOS Operating System

• Integrated Modular Avionics (IMA)
– DEOS Guarantee Space and Time partitioning

• FAA Certification Process
– Requires Structural Testing Coverage (MC/DC)

– Inadequate for finding Time Partitioning Errors
• Timing Error not found by Testing occurred

• Behavioral Analysis of Time Partitioning
– NASA Ames and Honeywell HTC collaboration

– Model Check slice of DEOS containing timing error

2002

24 September 2002 © Willem Visser 2002 65

DEOS Analysis

• Translated C++ 1-to-1 to PROMELA/SPIN (1500 lines of C++ code)
– Found the time-partitioning error without any prior knowledge, what the error

was, where it was or what made it show up.
– Required very limited abstraction

• DEOS Team Reaction
– Surprised that error was found by directly checking code
– They expected NASA team to ask for smaller “slice”
– They now have their own model checking group building on our work

• Then translated DEOS to Java and applied JPF
– Backwards dependency analysis from the time partitioning assertion being

checked revealed candidate variables to abstract
– Applied “range” abstraction {0,1,many} to a specific integer variable
– Too much of an over-approximation that led to many spurious errors
– However with the choose-free heuristic the non-spurious error was found

2002

24 September 2002 © Willem Visser 2002 66

Analysis of the K9 Mars Rover
“The Experiment”

• Rover is 8000 lines of code with 6 threads
– heavy use of synchronization between the threads
– Complex queue manipulation

• Purpose
– Benchmark current state of the art in model checking, static analysis for

runtime error detection and runtime analysis
– Use traditional testing as baseline
– Original code was in C++ that was translated to Java

• About half the code was translated to C for the static analysis that used PolySpace
• Method

– Controlled experiment: 4 groups of 2 people, each group uses one technology
on the Mars rover code to find seeded bugs

– 3 versions created and each group gets 2 days/version
– Some bugs are removed/introduced between versions
– Any new bugs discovered are not fixed, only known ones

2002

24 September 2002 © Willem Visser 2002 67

Analysis of the K9 Mars Rover
How did Model Checking do?

• Methodology for model checking
– Asked never to “run” the code, only model check it

• Keep the results clean from any testing influence
– Code is heavily dependent on time

• Given a gross over-approximation of time, where all time-related decisions became
nondeterministic

• Found all, but one, of the known concurrency errors and some new ones
– Better than any of the other teams
– Only team that could always produce not just the error but how to get to it!
– Also found all the non-concurrency errors

• Interesting observations
– Abandoned the time abstraction within the first hour for one that is closer to

real-time, but might miss errors
• It was too hard for them to determine if errors were spurious not knowing the code

well enough
– Found a number of bugs in the first version, had a slow 2nd version, and then

found all the remaining bugs in the 1st hour of the 3rd version
• Took them some time to get their framework setup, but once done, they were flying

2002

24 September 2002 © Willem Visser 2002 68

Overview

• Introduction to Model Checking

• Program Model Checking

• Case Studies

• Future of Software Model Checking

2002

24 September 2002 © Willem Visser 2002 69

The Future of
Software Model Checking

• Abstraction based approaches
– Combine object abstractions (e.g. shape analysis) with predicate abstraction
– Automation is crucial

• Symbolic Execution
– Solving structural (object) and numerical constraints
– Acceleration techniques (e.g. widening)

• Model checking as a companion to testing
– Test-case generation by model checking
– Runtime monitoring and model checking

• Modular model checking for software
– Exploiting the interface between components
– Interface automata (de Alfaro & Henzinger)

• Environment generation
– How to derive a “test-harness” for a system to be model checked

• Result representation
– Much overlooked, but without this we are nowhere!
– “Analysis is necessary, but not sufficient” – Jon Pincus

