
2002

Software Model Checking
and its Tools

Kapitel 24, „Softwarewerkzeuge“

Courtesy to Willem Visser. Used by
permission.

Prof. U. Aßmann, TU Dresden

Available at:

http://www.visserhome.com/willem/presentati
ons/presentations.html

24 September 2002 © Willem Visser 2002 1

2002

Software Model Checking

Shortened from

Willem Visser, Tutorial at ASE 2002

Research Institute for Advanced Computer Science

NASA Ames Research Center

2002

24 September 2002 © Willem Visser 2002 3

Overview

• Introduction to Model Checking
– Hardware and Software Model Checking

• Program Model Checking
– Major Trends

• Abstraction
• Improved model checking technology

– A Brief History
• SPIN
• Hand-translations
• State-less model checking
• Semi-automated translations
• Fully automated translations

– Current Trends
• Custom-made model checkers for programs
• SLAM
• JPF
• Summary

• NASA Case Studies - Remote Agent, DEOS and Mars Rover
• Future of Software Model Checking

2002

24 September 2002 © Willem Visser 2002 4

Model Checking
The Intuition

• Calculate whether a system satisfies a certain
behavioral property:
– Is the system deadlock free?
– Whenever a packet is sent will it eventually be received?

• So it is like testing? No, major difference:
– Look at all possible behaviors of a system

• Automatic, if the system is finite-state
– Potential for being a push-button technology
– Almost no expert knowledge required

• How do we describe the system?
• How do we express the properties?

2002

24 September 2002 © Willem Visser 2002 5

Kripke Structures are Labeled
State Graphs plus Predicates

K = ({p,~p},{x,y,z,k,h},R,{x},L)

x

y

z

k

~p

~p

~p

p

hh ~p

Each state represents all
variable values and
location counters

The labels represent
predicates in each state
e.g. (x = 5)

Each transition
represents an execution
step in the system

2002

24 September 2002 © Willem Visser 2002 6

Property Specifications
with Temporal Logic

• Linear Time
– Every moment has a unique successor
– Infinite sequences (words)

– Linear Time Temporal Logic (LTL)

• Branching Time
– Every moment has several successors
– Infinite tree

– Computation Tree Logic (CTL)

• Temporal Logic
– Express properties of event orderings in time
– e.g. “Always” when a packet is sent it will “Eventually” be received

2002

24 September 2002 © Willem Visser 2002 7

Safety and Liveness

• Safety properties
– Invariants, deadlocks, reachability, etc.

– Can be checked on finite traces
– “something bad never happens”

• Liveness Properties
– Fairness, response, etc.
– Infinite traces
– “something good will eventually happen”

2002
Direction

• Model checking can be done

• Forward:
• Searching from the initial state to reachable

states, checking the condition

• Backward
• Searching from the states in which a condition

should hold backward to the initial state

• In particular possible for reachability questions

24 September 2002 © Willem Visser 2002

2002
Mutual Exclusion Example

• Two process mutual exclusion with shared semaphore
• Each process has three states

• Non-critical (N)
• Trying (T)
• Critical (C)

• Semaphore can be available (S0) or taken (S1)
•Model checkers construct a global system state space from the
process
• Initially both processes are in the Non-critical state and
 the semaphore is available --- (N1 N2 S0)

2002

24 September 2002 © Willem Visser 2002 10

System State Space
(Backward Reachability Question)

N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

K ╞ AG EF (N1 and N2 and S0)
No matter where you are there is
always a way to get to the initial state

All Globally

Exist Finally

2002

24 September 2002 © Willem Visser 2002 11

Mutual Exclusion Example:
Backward Analysis

N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

Model checkers do reachability of states: here, backward
Search for paths.

K ╞ AG EF (N1 and N2 and S0)

2002

24 September 2002 © Willem Visser 2002 12

Mutual Exclusion Example

N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

K ╞ AG EF (N1 and N2 and S0)

2002

24 September 2002 © Willem Visser 2002 13

Mutual Exclusion Example

N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

K ╞ AG EF (N1 and N2 and S0)

2002

24 September 2002 © Willem Visser 2002 14

Mutual Exclusion Example

N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

K ╞ AG EF (N1 and N2 and S0)

2002

24 September 2002 © Willem Visser 2002 15

Mutual Exclusion Example

N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

Proven.

K ╞ AG EF (N1 and N2 and S0)

2002

24 September 2002 © Willem Visser 2002 16

Model Checking

• Given a Kripke structure M = (S,R,L) that represents a
finite-state concurrent system and a temporal logic
formula f expressing some desired specification, find
the set of states in S that satisfy f:

{ s in S | M,s ╞ f }

• Normally, some states of the concurrent system are
designated as initial states. The system satisfies the
specification provided all the initial states are in the set.
We often write: M ╞ f

2002

24 September 2002 © Willem Visser 2002 17

Explicit vs. Symbolic
Model Checking

• Explicit State
– states are enumerated on-the-fly
– Forwards analysis
– Stores visited states in a hashtable

• Characteristics
– Memory intensive
– Good for finding concurrency errors
– Short execution paths are better, but

long execution paths can also be
handled

– Can handle dynamic creation of
objects/threads

– Mostly used in software

• Symbolic
– Sets of states are manipulated at a

time
– Typically a backwards analysis in the

automaton
– Transition relation encoded by Binary

Decision Diagrams (BDDs) or as a
satisfiability problem

• Characteristics
– Can handle very large state spaces
– Not as good for asynchronous systems
– Cannot deal well with long execution

traces

– Works best with a static transition
relation, hence doesn’t deal well with
dynamic creation of objects/threads

– Mostly used in hardware

2002

24 September 2002 © Willem Visser 2002 18

Overview

• Introduction to Model Checking
– Hardware Model Checking

– Software Model Checking

• Program Model Checking

• Case Studies

• Future of Software Model Checking

2002

24 September 2002 © Willem Visser 2002 19

Hardware Model Checking

• BDD-based model checking was the enabling
technology
– Hardware is typically synchronous and regular, hence the

transition relation can be encoded efficiently
– Execution paths are typically very short

• The Intel Pentium bug
• got model checking on the map in the hardware

industry
• Intel, IBM, Motorola, etc. now employ hundreds

of model checking experts

2002

24 September 2002 © Willem Visser 2002 20

Software Model Checking

• Until 1997 most work was on software designs
– Since catching bugs early is more cost-effective
– Problem is that everybody use a different design

notation, and although bugs were found the field never
really moved beyond some compelling case-studies

– Reality is that people write code first, rather than design

• The field took off when the seemingly harder
problem of analyzing actual source code was first
attempted

2002

24 September 2002 © Willem Visser 2002 21

Program Model Checking

• Why is program analysis with a model
checker so much more interesting?
– Designs are hard to come by, but buggy

programs are everywhere!
– Testing is inadequate for complex software

(concurrency, pointers, objects, etc.)
– Static program analysis was already an

established field, mostly in compiler
optimization, but also in verification.

2002

24 September 2002 © Willem Visser 2002 22

The Trends in
Program Model Checking

• Bringing programs to model checking
– By abstraction (including translation)

• Bringing model checking to programs
– Improve model checking to directly deal with

programs as input

Most model checkers cannot deal with the features of
modern programming languages

2002

24 September 2002 © Willem Visser 2002 23

Overview

• Introduction to Model Checking
• Program Model Checking

– Major Trends
• Abstraction
• Improved model checking technology

– A Brief History
– Current Trends

• Case Studies
• Future of Software Model Checking

2002

24 September 2002 © Willem Visser 2002 24

Program (Software)
Model Checking

Abstraction of the Control-Flow Graph
from Stack Automaton to Finite Automaton

void add(Object o) {
 buffer[head] = o;
 head = (head+1)%size;
}

Object take() {
 …
 tail=(tail+1)%size;
 return buffer[tail];
}

Program Model Checker
Input

Infinite state Finite state

2002

24 September 2002 © Willem Visser 2002 25

Abstraction

• Model checkers don’t take real “programs” as input
• Model checkers typically work on finite state systems
• Abstraction therefore solves two problems

– It allows model checkers to analyze a notation they couldn’t deal
with before, and,

– Cuts the state space size to something manageable

• Abstraction comes in three flavors
– Over-approximations, i.e. more behaviors are added to the

abstracted system than are present in the original
– Under-approximations, i.e. less behaviors are present in the

abstracted system than are present in the original
– Precise abstractions, i.e. the same behaviors are present in the

abstracted and original program

2002

24 September 2002 © Willem Visser 2002 26

Under-Approximation
“Meat-Axe” Abstraction

• Remove parts of the program deemed “irrelevant” to the
property being checked
– Limit input values to 0..10 rather than all integer values
– Queue size 3 instead of unbounded, etc.

• Typically manual, with no guarantee that the right
behaviors are removed

• Precise abstraction, w.r.t. the property being checked, may
be obtained if the behaviors being removed are indeed not
influencing the property
– Program slicing is an example of an automated

under-approximation that will lead to a precise abstraction w.r.t.
the property being checked

– However, can be incorrect

2002

24 September 2002 © Willem Visser 2002 27

Over-Approximations
Abstract Interpretation

• Over-Approximation maps sets of states in the concrete program to
one state in the abstract program (Abstract Interpretation)

– Reduces the number of states, but increases the number of possible
transitions, and hence the number of behaviors

• Type-based abstractions
– Replace int by Signs abstraction {neg,pos,zero}

• Predicate abstraction
– Replace predicates in the program by boolean variables, and replace each

instruction that modifies the predicate with a corresponding instruction
that modifies the boolean.

• Automated (conservative) abstraction: correct
• Eliminating spurious errors is the big problem

– Abstract program has more behaviors, therefore when an error is found in
the abstract program, is that also an error in the original program?

– Most research focuses on this problem, and its counter-part the elimination
of spurious errors, often called abstraction refinement

2002

24 September 2002 © Willem Visser 2002 28

Bringing
Model Checking to Programs

• Allow model checkers to take modern
programming languages as input

• Major hurdle is how to encode the state of
the system efficiently

• Alternatively state-less model checking
– No state encoding or storing

• Almost exclusively explicit-state model checking
• Abstraction can still be used as well

– Source to source abstractions

2002

24 September 2002 © Willem Visser 2002 29

Overview

• Introduction to Model Checking
• Program Model Checking

– Major Trends
– A Brief History

• SPIN
• Hand-translations
• State-less model checking

– Partial-order reductions
– VeriSoft

• Semi-automated translations
• Fully automated translations

– Current Trends
• Case Studies
• Future of Software Model Checking

2002

24 September 2002 © Willem Visser 2002 30

The Early Years

• Hand-translation with ad-hoc abstractions
– 1980 through mid 1990s

• Semi-automated, table-driven translations
– 1998

• Automated translations still with
ad-hoc abstractions
– 1997-1999

• State-less model checking for C
– VeriSoft 1997

2002

24 September 2002 © Willem Visser 2002 31

Overview

• Introduction to Model Checking
• Program Model Checking

– Major Trends
– A Brief History

• SPIN
• Hand-translations
• State-less model checking

– Partial-order reductions
– VeriSoft

• Semi-automated translations
• Fully automated translations

– Current Trends
• Case Studies
• Future of Software Model Checking

2002

24 September 2002 © Willem Visser 2002 32

SPIN Model Checker

• Kripke structures are described as “programs” in the
PROMELA language
– Kripke structure is generated on-the-fly during model checking

• Automata based model checker
– Translates LTL formula to Büchi automaton

• By far the most popular model checker
– SPIN workshop

• Relevant theoretical papers can be found here
– http://netlib.bell-labs.com/netlib/spin/whatispin.html

• Ideal for software model checking due to expressiveness of
the PROMELA language
– Close to a real programming language

• Gerard Holzmann won the ACM software award for SPIN

http://netlib.bell-labs.com/netlib/spin/whatispin.html

2002

24 September 2002 © Willem Visser 2002 33

Hand-Translation

abstraction

translation

Verification model

Program

• Hand translation of program to model checker’s input notation

• “Meat-axe” approach to abstraction (under-approximation)

• Labor intensive and error-prone

2002

24 September 2002 © Willem Visser 2002 34

Hand-Translation
 Examples

• Remote Agent – Havelund,Penix,Lowry 1997
– http://ase.arc.nasa.gov/havelund

– Translation from Lisp to Promela (most effort)
– Heavy abstraction
– 3 man months

• DEOS operating system – Penix, Visser, et al.
1998/1999
– http://ase.arc.nasa.gov/visser
– C++ to Promela (most effort in environment generation)
– Limited abstraction - programmers produced sliced system
– 3 man months

http://ase.arc.nasa.gov/havelund
http://ase.arc.nasa.gov/visser

2002

24 September 2002 © Willem Visser 2002 35

Overview

• Introduction to Model Checking
• Program Model Checking

– Major Trends
– A Brief History

• SPIN
• Hand-translations
• State-less model checking

– Partial-order reductions
– VeriSoft

• Semi-automated translations
• Fully automated translations

– Current Trends
• Case Studies
• Future of Software Model Checking

2002

24 September 2002 © Willem Visser 2002 36

VeriSoft

• The first model checker that could
handle programs directly
– C programs running on Unix

• Relies on partial-order reductions to
limit the number of times a state is
revisited
– Persistent sets

• Reduce states visited
– Sleep sets

• Reduce transitions executed

• Paths must be replayed from the
initial state to try new branches
– No check-pointing

T1 || T2

T1 T2

T2 T1

T1 || T2

T1

T2

T1 || T2

T1 T2

T2 T1

Persistent
Sets

Sleep
Sets

2002

24 September 2002 © Willem Visser 2002 37

Overview

• Introduction to Model Checking
• Program Model Checking

– Major Trends
– A Brief History

• SPIN
• Hand-translations
• State-less model checking

– Partial-order reductions
– VeriSoft

• Semi-automated translations
• Fully automated translations

– Current Trends
• Case Studies
• Future of Software Model Checking

2002

24 September 2002 © Willem Visser 2002 38

Semi-Automatic Translation

• Table-driven translation and abstraction
– Feaver system by Gerard Holzmann
– User specifies code fragments in C and how to translate

them to Promela (SPIN)
– Translation is then automatic
– Found 75 errors in Lucent’s PathStar system
– http://cm.bell-labs.com/cm/cs/who/gerard/

• Advantages
– Can be reused when program changes
– Works well for programs with long development and

only local changes

http://cm.bell-labs.com/cm/cs/who/gerard/

2002

24 September 2002 © Willem Visser 2002 39

Fully Automatic Translation

• Advantage
– No human intervention required

• Disadvantage
– Limited by capabilities of target system

• Examples
– Java PathFinder 1- http://ase.arc.nasa.gov/havelund/jpf.html

• Translates from Java to Promela (Spin)

– JCAT - http://www.dai-arc.polito.it/dai-arc/auto/tools/tool6.shtml
• Translates from Java to Promela (or dSpin)

– Bandera - http://www.cis.ksu.edu/santos/bandera/
• Translates from Java bytecode to Promela, SMV or dSpin

http://ase.arc.nasa.gov/havelund/jpf.html
http://www.dai-arc.polito.it/dai-arc/auto/tools/tool6.shtml
http://www.cis.ksu.edu/santos/bandera/

2002

24 September 2002 © Willem Visser 2002 40

Overview

• Introduction to Model Checking
• Program Model Checking

– Major Trends
– A Brief History
– Current Trends

• Custom-made model checkers for programs
• Abstraction
• SLAM
• JPF
• Summary
• Examples of other software analyses

• Case Studies
• Future of Software Model Checking

2002

24 September 2002 © Willem Visser 2002 41

Program Model Checking
Current Trends

void add(Object o) {
 buffer[head] = o;
 head = (head+1)%size;
}

Object take() {
 …
 tail=(tail+1)%size;
 return buffer[tail];
}

Program

Custom
Model Checker

Correct

Error-trace

Abstract Program

T1 > T2
T3 > T4
T5 > T6

…

Abstraction
Abstraction refinement

Abstraction

• Custom-made model checkers for programming languages with
automatic abstraction at the source code level

• Automatic abstraction & translation based transformation to new
“abstract” formalism for model checker

• Abstraction refinement mostly automated

2002

24 September 2002 © Willem Visser 2002 42

Custom-made Model Checkers

• Translation based
– dSpin

• Spin extended with dynamic constructs
• Essentially a C model checker
• Source-2-source abstractions can be supported
• http://www.dai-arc.polito.it/dai-arc/auto/tools/tool7.shtml

– SPIN Version 4
• PROMELA language augmented with C code
• Table-driven abstractions

– Bandera
• Translated Bandera Intermediate Language (BIR) to a number of back-

end model checkers, but, a new BIR custom-made model checker is
under development

• Supports source-2-source abstractions as well as property-specific
slicing

• http://www.cis.ksu.edu/santos/bandera/

http://www.dai-arc.polito.it/dai-arc/auto/tools/tool7.shtml
http://www.cis.ksu.edu/santos/bandera/

2002

24 September 2002 © Willem Visser 2002 43

Custom-made Model Checkers

• Abstraction based
– SLAM

• C programs are abstracted via predicate abstraction to boolean
programs for model checking

• http://research.microsoft.com/slam/
– BLAST

• Similar basic idea to SLAM, but using lazy abstraction, i.e.
during abstraction refinement don’t abstract the whole program
only certain parts

• http://www-cad.eecs.berkeley.edu/~tah/blast/
– 3-Valued Model Checker (3VMC) extension of TVLA

for Java programs
• http://www.cs.tau.ac.il/~yahave/3vmc.htm
• http://www.math.tau.ac.il/~rumster/TVLA/

http://research.microsoft.com/slam/
http://www-cad.eecs.berkeley.edu/~tah/blast/
http://www.cs.tau.ac.il/~yahave/3vmc.htm
http://www.math.tau.ac.il/~rumster/TVLA/

2002

24 September 2002 © Willem Visser 2002 44

Overview

• Introduction to Model Checking
• Program Model Checking

– Major Trends
– A Brief History
– Current Trends

• Custom-made model checkers for programs
• Abstraction
• SLAM

– Abstraction Refinement
• JPF
• Summary
• Examples of other software analyses

• Case Studies
• Future of Software Model Checking

2002

24 September 2002 © Willem Visser 2002 45

SLAM
Simplified View

void add(Object o) {
 buffer[head] = o;
 head = (head+1)%size;
}

Object take() {
 …
 tail=(tail+1)%size;
 return buffer[tail];
}

C Program
annotated with
API usage rules

Custom
Model Checker

BEBOP
Correct

Error-traceSymbolic
Execution
NEWTON

Predicate
Abstraction

C2BP

Predicates

False
Error-trace is Feasible

2002

24 September 2002 © Willem Visser 2002 46

SLAM

• Check API usage rules for sequential C programs
– Mostly applied to device driver code

• C2BP
– Inputs: C program and predicates
– Output: boolean program over the predicates

• BEBOP
– Symbolic interprocedural data flow analysis
– Concrete CFG and BDD encoding of states

• NEWTON
– Symbolic execution of C programs
– Using Simplify theorem prover for checking feasibility

of conditionals

2002

24 September 2002 © Willem Visser 2002 47

Abstraction Refinement Example
Adapted from Ball & Rajamani POPL02

Property: if a lock is held it must be released before reacquiring

do {
 //get the write lock

KeAcquireSpinLock(&devExt->writeListLock);

nPacketsOld = nPackets;
request = devExt->WLHeadVa;

if (request){
KeReleaseSpinLock(&devExt->writeListLock);
...
nPackets++;

}
} while (nPackets != nPacketsOld);
KeReleaseSpinLock(&devExt->writeListLock);

2002

24 September 2002 © Willem Visser 2002 48

Initial Abstraction and
Model Checking

[1] do
 //get the write lock
[2] AcquireLock();
[3] if (*) then
[4] ReleaseLock();

 fi
[5] while (*);
[6] ReleaseLock();

Boolean Program (simpler, abstracted)

Error-trace : 1,2,3,5,1,2

2002

24 September 2002 © Willem Visser 2002 49

Symbolic Execution

[1] do {
[2] KeAcquireSpinLock(&devExt->writeListLock);
 nPacketsOld = nPackets;

 request = devExt->WLHeadVa;
[3] if (request){
[4] KeReleaseSpinLock(&devExt->writeListLock);

 ...
 nPackets++;

 }
[5] } while (nPackets != nPacketsOld);
[6] KeReleaseSpinLock(&devExt->writeListLock);

Symbolic execution of 1,2,3,5,1,2 shows that when 5 is executed
nPackets == nPacketsOld hence the path is infeasible.
The predicate nPackets == nPacketsOld is then added and
used during predicate abstraction

2002

24 September 2002 © Willem Visser 2002 50

Next Abstraction and
Model Checking

[1] do
[2] AcquireLock();
[3] b = true; // nPacketsOld = nPackets
[4] if (*) then
[5] ReleaseLock();
[6] b = b ? false : *; // nPackets++

 fi
[7] while (!b); //(nPacketsOld != nPackets)
[8] ReleaseLock();

New Predicate b : (nPacketsOld == nPackets)

Now property holds

2002

24 September 2002 © Willem Visser 2002 51

Overview

• Introduction to Model Checking
• Program Model Checking

– Major Trends
– A Brief History
– Current Trends

• Custom-made model checkers for programs
• SLAM
• JPF

– Abstractions
– Partial-order and symmetry reductions
– Heuristics
– New Stuff

• Summary
• Examples of other software analyses

• Case Studies
• Future of Software Model Checking

2002

24 September 2002 © Willem Visser 2002 52

Java PathFinder (2)
Direct Approach

• Based on custom-made Java Virtual Machine
– Handle all of Java, since it works with bytecodes
– Written in Java

• Efficient encoding of states
• Modular design for easy extensions
• Supports LTL checking with properties expressed in

Bandera’s BSL notation
• Incorporates a number of search strategies

– DFS, BFS, A*, Best-first, etc.
• Supports source-2-source abstractions
• http://ase.arc.nasa.gov/jpf

http://ase.arc.nasa.gov/jpf

2002

24 September 2002 © Willem Visser 2002 53

Java PathFinder (JPF)

void add(Object o) {
 buffer[head] = o;
 head = (head+1)%size;
}

Object take() {
 …
 tail=(tail+1)%size;
 return buffer[tail];
}

Java Code

JAVAC JVM

0: iconst_0
1: istore_2
2: goto #39
5: getstatic
8: aload_0
9: iload_2
10: aaload

Bytecode

Special
JVM

Model
Checker

2002

24 September 2002 © Willem Visser 2002 54

Bandera & JPF
Architecture

BIRC BIR

Simulator

Abstraction
Engine

Slicer

Analyses

Translators

SPIN

dSPIN

SMV

Property Tool

Java
Jimple (BC)

Parser

Error Trace Display JPF
 Decompile ; javac

2002

24 September 2002 © Willem Visser 2002 55

Key Points

• Models can be infinite state
– Unbounded objects, threads,…
– Depth-first state generation (explicit-state)
– Verification requires abstraction

• Handle full Java language
– but only for closed systems
– Cannot handle native code

• no Input/output through GUIs, files, Networks, …
• Must be modeled by java code instead

• Allows Nondeterministic Environments
– JPF traps special nondeterministic methods

• Checks for User-defined assertions, deadlock and LTL properties

2002

24 September 2002 © Willem Visser 2002 56

Scaling Program Model Checking
Error-Detection

Remote Agent
Hand-translation

SPIN DEOS
Systematic

Hand-translation
SPIN

DEOS
Java-translation

JPF

Autopilot
JPF

Mars Rover
JPF

2002

24 September 2002 © Willem Visser 2002 57

Overview

• Introduction to Model Checking
• Program Model Checking

– Major Trends
– A Brief History
– Current Trends

• Custom-made model checkers for programs
• SLAM
• JPF
• Summary
• Examples of other software analyses

• Case Studies
• Future of Software Model Checking

2002

24 September 2002 © Willem Visser 2002 58

Software Model Checking
Executive summary

• Model checking by itself cannot deal with the
complexity of software

• Techniques from static analysis are required
– Abstract interpretation, slicing, alias&shape analysis,

symbolic execution

• Even then, we need to borrow some more!
– Heuristic search, constraint solving, etc.

• Abandon soundness
– Aggressive heuristics
– Runtime analysis and runtime monitoring

2002

24 September 2002 © Willem Visser 2002 59

 More Software Analysis Techniques
A small sample

• Program Verification
– For example, ESC/Java from Compaq

• http://research.compaq.com/SRC/esc/

• Static analysis for runtime errors
– For example, PolySpace for C, Ada and Java

• http://www.polyspace.com/

• Requirements and Design Analysis
– Analysis for SCR, RSML, Statecharts, etc.

• Runtime analysis
– See Runtime Verification Workshops

• http://ase.arc.nasa.gov/rv2002/

• Analysis Toolsets
– IF (Verimag), SAL (SRI), etc.

http://research.compaq.com/SRC/esc/
http://www.polyspace.com/
http://ase.arc.nasa.gov/rv2002/

2002

24 September 2002 © Willem Visser 2002 60

Overview

• Introduction to Model Checking

• Program Model Checking

• Case Studies
– Remote Agent
– DEOS
– Mars Rover

• Future of Software Model Checking

2002

24 September 2002 © Willem Visser 2002 61

Case Studies of JPF

DEOS Remote Agent

Mars Rover

2002

24 September 2002 © Willem Visser 2002 62

Case Study:
DS-1 Remote Agent

• Several person-months to create verification model.
• One person-week to run verification studies.

TasksTasks

Properties Monitor

PropertyProperty
LocksLocks

DataData
basebase

Spacecraft
Commands

Achieve
Property

Change
Event

Lock
Event

Interrupt

Sensors

Subscribe

2002

24 September 2002 © Willem Visser 2002 63

Case Study:
DS-1 Remote Agent

• Five difficult to find concurrency errors detected

• “[Model Checking] has had a substantial impact, helping the RA team
improve the quality of the Executive well beyond what would otherwise
have been produced.” - RA team

• During flight RA deadlocked (in code we didn’t analyze)
– Found this deadlock with JPF

wait

Unexpected timing
of change event

check

DB change?

yes no

Monitor Logic

2002

24 September 2002 © Willem Visser 2002 64

DEOS Operating System

• Integrated Modular Avionics (IMA)
– DEOS Guarantee Space and Time partitioning

• FAA Certification Process
– Requires Structural Testing Coverage (MC/DC)

– Inadequate for finding Time Partitioning Errors
• Timing Error not found by Testing occurred

• Behavioral Analysis of Time Partitioning
– NASA Ames and Honeywell HTC collaboration

– Model Check slice of DEOS containing timing error

2002

24 September 2002 © Willem Visser 2002 65

DEOS Analysis

• Translated C++ 1-to-1 to PROMELA/SPIN (1500 lines of C++ code)
– Found the time-partitioning error without any prior knowledge, what the error

was, where it was or what made it show up.
– Required very limited abstraction

• DEOS Team Reaction
– Surprised that error was found by directly checking code
– They expected NASA team to ask for smaller “slice”
– They now have their own model checking group building on our work

• Then translated DEOS to Java and applied JPF
– Backwards dependency analysis from the time partitioning assertion being

checked revealed candidate variables to abstract
– Applied “range” abstraction {0,1,many} to a specific integer variable
– Too much of an over-approximation that led to many spurious errors
– However with the choose-free heuristic the non-spurious error was found

2002

24 September 2002 © Willem Visser 2002 66

Analysis of the K9 Mars Rover
“The Experiment”

• Rover is 8000 lines of code with 6 threads
– heavy use of synchronization between the threads
– Complex queue manipulation

• Purpose
– Benchmark current state of the art in model checking, static analysis for

runtime error detection and runtime analysis
– Use traditional testing as baseline
– Original code was in C++ that was translated to Java

• About half the code was translated to C for the static analysis that used PolySpace
• Method

– Controlled experiment: 4 groups of 2 people, each group uses one technology
on the Mars rover code to find seeded bugs

– 3 versions created and each group gets 2 days/version
– Some bugs are removed/introduced between versions
– Any new bugs discovered are not fixed, only known ones

2002

24 September 2002 © Willem Visser 2002 67

Analysis of the K9 Mars Rover
How did Model Checking do?

• Methodology for model checking
– Asked never to “run” the code, only model check it

• Keep the results clean from any testing influence
– Code is heavily dependent on time

• Given a gross over-approximation of time, where all time-related decisions became
nondeterministic

• Found all, but one, of the known concurrency errors and some new ones
– Better than any of the other teams
– Only team that could always produce not just the error but how to get to it!
– Also found all the non-concurrency errors

• Interesting observations
– Abandoned the time abstraction within the first hour for one that is closer to

real-time, but might miss errors
• It was too hard for them to determine if errors were spurious not knowing the code

well enough
– Found a number of bugs in the first version, had a slow 2nd version, and then

found all the remaining bugs in the 1st hour of the 3rd version
• Took them some time to get their framework setup, but once done, they were flying

2002

24 September 2002 © Willem Visser 2002 68

Overview

• Introduction to Model Checking

• Program Model Checking

• Case Studies

• Future of Software Model Checking

2002

24 September 2002 © Willem Visser 2002 69

The Future of
Software Model Checking

• Abstraction based approaches
– Combine object abstractions (e.g. shape analysis) with predicate abstraction
– Automation is crucial

• Symbolic Execution
– Solving structural (object) and numerical constraints
– Acceleration techniques (e.g. widening)

• Model checking as a companion to testing
– Test-case generation by model checking
– Runtime monitoring and model checking

• Modular model checking for software
– Exploiting the interface between components
– Interface automata (de Alfaro & Henzinger)

• Environment generation
– How to derive a “test-harness” for a system to be model checked

• Result representation
– Much overlooked, but without this we are nowhere!
– “Analysis is necessary, but not sufficient” – Jon Pincus

http://www.soe.ucsc.edu/~luca/
http://www-cad.eecs.berkeley.edu/~tah

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Direction
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69

