
Softwareentwicklungswerkzeuge (SEW) © Prof. Uwe Aßmann

1

32. Data Sharing of Tools by Role-Based
Integration of DDL (Role-Based Metamodel
Composition on M2)
for Tool Interoperability on M1-Models and M0-Repositories

Prof. Dr. Uwe Aßmann

Mirko Seifert, Christian Wende

Technische Universität Dresden

Institut für Software- und
Multimediatechnik

http://st.inf.tu-dresden.de

Version 12-0.3, 07.12.12

1) Motivational Example

Proactive vs. Retroactive Tool
Integration

2) Roles in Metalanguages

3) Role-Based Composition of
Metamodels

4) Grounding

P
ro

f.
U

. A
ß

m
a

n
n,

 S
of

tw
a

re
en

tw
ic

kl
un

g
sw

e
rk

ze
ug

e
 (

S
E

W
)

2

Obligatory Literature

► Mirko Seifert, Christian Wende and Uwe Aßmann. Anticipating
Unanticipated Tool Interoperability using Role Models. In Proceedings
of the 1st Workshop on Model Driven Interoperability (MDI'2010) (co-
located with MODELS 2010), 5th October 2010, Oslo, Norway

► Course “Design Patterns and Frameworks” (chapter about role
modeling)

► http://www.langems.org

► http://www.emftext.org/language/rolecore

P
ro

f.
U

. A
ß

m
a

n
n,

 S
of

tw
a

re
en

tw
ic

kl
un

g
sw

e
rk

ze
ug

e
 (

S
E

W
)

3

Position

► We have learned in chapter “Tool Architecture” that metamodels can
be composed so that metamodel-driven repositories can be
generated

► So far, the integration was based on union of metamodel packages,
i.e., the metaclasses stayed as they are during composition

► In this chapter, we will merge metaclasses during composition
► This achieves a much tighter integration

P
ro

f.
U

. A
ß

m
a

n
n,

 S
of

tw
a

re
en

tw
ic

kl
un

g
sw

e
rk

ze
ug

e
 (

S
E

W
)

4

Graph Analysis Tool

Textual State Machine Editor
2D Shape Renderer

4

34.1 Motivational Example for Data Sharing in Tool
Integration

DDL: state machines
DDL: visualization concepts

DDL: graphs

► Tools may rely on different DDL, which represent similar concepts

P
ro

f.
U

. A
ß

m
a

n
n,

 S
of

tw
a

re
en

tw
ic

kl
un

g
sw

e
rk

ze
ug

e
 (

S
E

W
)

5

Node
Edge

Graph Analysis Tool

Textual State Machine Editor

State
(Initial, Final)

Transition

2D Shape Renderer
Shape

(Circle,
Rectangle, Line)

Colour

5

Example – Language Concepts in Metamodels of the
Involved Tools

DDL: state machines

DDL: visualization concepts

DDL: graphs

► Then, tools rely on different DDL metamodels with overlapping
concepts

P
ro

f.
U

. A
ß

m
a

n
n,

 S
of

tw
a

re
en

tw
ic

kl
un

g
sw

e
rk

ze
ug

e
 (

S
E

W
)

6

Textual State Machine
Editor

Graph Analysis
Tool

Tool Metamodel 3Tool Metamodel 1

from

to

2D Shape
Renderer

Tool Metamodel 2

Node Edgex,y,size : int
Shapesource

target
State Transition

Color

CIRCLE
RECTANGLE

Kind

How Can these Metamodels be Integrated?
P

ro
f.

U
. A

ß
m

a
n

n,
 S

of
tw

a
re

en
tw

ic
kl

un
g

sw
e

rk
ze

ug
e

 (
S

E
W

)

7

7

Transformation
bridge

Textual State
Machine Editor

Graph Analysis
Tool

SM metamodel

State {
 name: String
}

Transition {
 from: State
 to: State
}

GRAPH metamodel

Node {
}

Edge {
 source: Node
 target: Node
}Repository 1

GRS, ATL, QVT,
TGG, …

Repository 2

Retroactive Tool Integration on Repositories by Data
Connection

► Often, tools, their metamodels, and the metamodel-driven
repositories already exist

► Metamodel mapping (language mapping): map the concepts of
one DDL to the other

► Use transformations to convert data from one tool to another (data
exchange via transformation bridge, Datenverbindung)

P
ro

f.
U

. A
ß

m
a

n
n,

 S
of

tw
a

re
en

tw
ic

kl
un

g
sw

e
rk

ze
ug

e
 (

S
E

W
)

8

8

State

name:String

Node Edge

Transition
from

to

State

name:String

Node Edge

Transition

source

target

a) Inheritance b) Delegation

Proactive Tool Integration (Classical)

► Sometimes, tool, metamodels, and repositories are not fixed yet
► Use metamodel extension (integration) to make data from one tool

accessible to another
– Extension by inheritance (“white-box”): Submetaclasses are

formed; language concepts are integrated, but no extension of
supermetaclasses possible

– Extension by delegation (“black-box”): Language concepts stay
separate, but are connected; no real integration

P
ro

f.
U

. A
ß

m
a

n
n,

 S
of

tw
a

re
en

tw
ic

kl
un

g
sw

e
rk

ze
ug

e
 (

S
E

W
)

9

9

Proactive Retroactive

Technique Inheritance Transformation

Delegation

Appropriate
Abstraction

Metamodels need
to be adapted

Metamodels
unaffected

Tool Independence Strong coupling No coupling

Shared Data Sharing among all
integrated tools

Replicated Data,
Synchronization
needed

Tool Interaction Support for anticipated
interaction only

Transformations
hinder interaction

Proactive vs. Retroactive Tool Integration

Softwareentwicklungswerkzeuge (SEW) © Prof. Uwe Aßmann

10

33.2 Roles in Metalanguages
P

ro
f.

U
. A

ß
m

a
n

n,
 S

of
tw

a
re

en
tw

ic
kl

un
g

sw
e

rk
ze

ug
e

 (
S

E
W

)

11

Collaboration-Based Modeling
(Role Modeling) (Rpt.)

Roles are first-class modeling concepts in modern object-oriented languages
► Databases [Bachmann], Object-Role Modeling [Halpin]
► Factorization [Steimann]
► Research in Design Patterns [Reenskaug, Riehle/Gross]

:Person :Person

:Father :Child

<<plays-a>> <<plays-a>>

:Person :Person:Father :Child

P
ro

f.
U

. A
ß

m
a

n
n,

 S
of

tw
a

re
en

tw
ic

kl
un

g
sw

e
rk

ze
ug

e
 (

S
E

W
)

12

What are Roles? (Rpt.)

A role is a dynamic view onto an object
– Roles are played by the objects

(the object is the player of the
role)

– A partial object

Roles are tied to collaborations
– Do not exist standalone, depend

on a partner

:Employee

:Father

:Cyclist

:Customer

:TaxPayer

:Swede

:Person

P
ro

f.
U

. A
ß

m
a

n
n,

 S
of

tw
a

re
en

tw
ic

kl
un

g
sw

e
rk

ze
ug

e
 (

S
E

W
)

13

What are Roles? (Rpt.)

Roles are services of an object in a context
– Roles can be connected to each other
– A role has an interface

Roles form role models, capturing an area of concern [Reenskaug]
– Role models are collaborative aspects

:Employee

:Father

:Cyclist

:Customer

:TaxPayer

:Swede

:Person

:Employer

:Child

:CarDriver

:Person

P
ro

f.
U

. A
ß

m
a

n
n,

 S
of

tw
a

re
en

tw
ic

kl
un

g
sw

e
rk

ze
ug

e
 (

S
E

W
)

14

What are Role Types? (Rpt.)

Role types (abilities) are
– service types
– dynamic types
– collaborative types

Problem:
– The word “role” is also used on

the class level, i.e., for a “role
type”

Employee

Father

Cyclist

Customer

TaxPayer

Swede

Person

P
ro

f.
U

. A
ß

m
a

n
n,

 S
of

tw
a

re
en

tw
ic

kl
un

g
sw

e
rk

ze
ug

e
 (

S
E

W
)

15

Collaboration Schemas (Role-Type Model) (Rpt.)

Collaboration schema (role type model, ability model):
– Set of object collaborations abstracted by a set of role types
– A constraint specification for classes and object collaborations

Ex: A figure can play many roles in different collaboration schemas

Figure
(FigureHierarchy)

Subject
(FigureObserver)

Predecessor
(FigureChain)

Client
(Graphics)

Child
(FigureHierarchy)

Subject
(Int.Fig.Observer)

Server
(Graphics)

Parent
(FigureHierarchy)

Observer
(Int.Fig.Observer)

Client
(FigureHierarchy)

Successor
(FigureChain)

Figure

X3D

Observer
(FigureObserver)

GUI

RootFigure
P

ro
f.

U
. A

ß
m

a
n

n,
 S

of
tw

a
re

en
tw

ic
kl

un
g

sw
e

rk
ze

ug
e

 (
S

E
W

)

16

Role- and Role-Type Models Underly Many Gray-Box
Component Models

Views
– Hyperspace (MDSOC)

Collaborative Aspects
– ObjectTeams www.objectteams.org
– CaesarJ

Template-based languages
– BETA with the metaprogramming environment Mjölner
– Invasive Software Composition

P
ro

f.
U

. A
ß

m
a

n
n,

 S
of

tw
a

re
en

tw
ic

kl
un

g
sw

e
rk

ze
ug

e
 (

S
E

W
)

17

Roles in a Metalanguage (Metametamodel)

► Roles can be introduced as modeling concept.
► Here, an extension of EMOF with roles:

role-EMOF

Role Model Role
roles *

RoleFeature

* roleFeature

Attribute ReferencePrimitiveType

Type

Enum

attributeType

type

Literal
literals *

enums*

P
ro

f.
U

. A
ß

m
a

n
n,

 S
of

tw
a

re
en

tw
ic

kl
un

g
sw

e
rk

ze
ug

e
 (

S
E

W
)

18

A Metamodel for Deep Role Composition

► Deep roles are roles playing roles
► Flat roles do not play roles
► This role composition technique (specified by a role-composition

metamodel) allows for deep roles

role-EMOF

Role Model Role

roles *

role-composition

Composition RoleBinding

RoleFeature

* roleFeature

RoleFeatureBinding

groundings *

* bindings

* featureBindings

models * player role binds

RoleGrounding

role

RoleFeatureGrounding

* featureGroundings

grounds

P
ro

f.
U

. A
ß

m
a

n
n,

 S
of

tw
a

re
en

tw
ic

kl
un

g
sw

e
rk

ze
ug

e
 (

S
E

W
)

19

Domain Core

ColorHierarchy

Shape

Parent Child
0..* ColouredObject

color : RGB

Layout
Position

x,y : int

Example: ShapeRenderer's Metamodel with Roles

► Roles adhere to a context
► A context is a specific concern (here: colors)
► Only one natural type, many roles

P
ro

f.
U

. A
ß

m
a

n
n,

 S
of

tw
a

re
en

tw
ic

kl
un

g
sw

e
rk

ze
ug

e
 (

S
E

W
)

20

Domain Core

ColorHierarchy

Parent Child
0..* ColouredObject

color : RGB

Layout
Position

x,y : int

Example: ShapeRenderer's Metamodel with Deep Roles

► Because other tools' metamodels might provide the natural types, we
first specify all metamodels with deep roles

– Then, they can be played by the naturals of other tools

Shape

P
ro

f.
U

. A
ß

m
a

n
n,

 S
of

tw
a

re
en

tw
ic

kl
un

g
sw

e
rk

ze
ug

e
 (

S
E

W
)

21

Domain Core

ColorHierarchy

Parent Child
0..*

Layout
Position

x,y : int

Example: ShapeRenderer's Metamodel with Deep Roles
and Enums

► Some roles can be represented as enums; then they will become
natural classes in the implementation

Shape

WHITE
BLACK
RED

<<enum>>
Color

Softwareentwicklungswerkzeuge (SEW) © Prof. Uwe Aßmann

22

33.3 Proactive Tool Integration with Deep
Roles

P
ro

f.
U

. A
ß

m
a

n
n,

 S
of

tw
a

re
en

tw
ic

kl
un

g
sw

e
rk

ze
ug

e
 (

S
E

W
)

23

23

Graph Analysis Tool

source

target

Node

invalid : bool

Edge

State Machine Editor

PLAIN
INITIAL
FINAL

TypeState

name : String

Type Notation

Role Enum

Feature Notation

name : type

Attribute

name

Reference

Transition

from to

Tool Integration using Deep-Role-Model Based
Integration of Metamodels on M2

► Specify M2-metamodels also with role types (abilities) not only
classes

► At first sight not much different from object-oriented metamodels
► Difference to classical role modeling: Naturals are selected later;

first specify everything as deep role; some roles become enums

P
ro

f.
U

. A
ß

m
a

n
n,

 S
of

tw
a

re
en

tw
ic

kl
un

g
sw

e
rk

ze
ug

e
 (

S
E

W
)

24

24

Tool Integration using Role Bindings (Role Grounding)

► Role Bindings on the logical level with relationship “plays-a”
– Connect roles and role players, producing deep roles
– Define how to obtain value of attribute or reference
– Allow to create views on other classes

► Grounding on the physical level
– Defines which attributes/classes are represented physically
– Select natural types
– Ground to implementation by design patterns or other role-

implementations (see course Design Patterns and Frameworks)

► The decision (about which data is derived and which is not) is done
at tool integration time!

P
ro

f.
U

. A
ß

m
a

n
n,

 S
of

tw
a

re
en

tw
ic

kl
un

g
sw

e
rk

ze
ug

e
 (

S
E

W
)

25

25

Graph Analysis Tool

source

target

Node
invalid : bool

Edge

2D Shape Renderer

WHITE
BLACK
RED

Color

CIRCLE
RECTANGLE
LINE

KindShape
x,y,size : Integer
label : String

Grounding Notation

Name

Grounded Role

Binding Notation

name : type

Grounded Attribute

name

Grounded Reference

Textual State Machine Editor

from

to

PLAIN
INITIAL
FINAL

StateType
type

State
name : String

Transition
condition : String

Metamodel Composition based on Deep Role Type
Binding

► Composition by deep role binding and role grounding
► We defer the decision “what is a natural”

Softwareentwicklungswerkzeuge (SEW) © Prof. Uwe Aßmann

27

33.4 Grounding: Mapping to
Programming Language

P
ro

f.
U

. A
ß

m
a

n
n,

 S
of

tw
a

re
en

tw
ic

kl
un

g
sw

e
rk

ze
ug

e
 (

S
E

W
)

28

integrate statemachine, 2dShapes, graph {

State plays Shape {

label: name

kind: if (player.type == PLAIN) return RECTANGLE

else return CIRCLE

colour: if (player.type == INITIAL) return WHITE

else return BLACK

}

Transition plays Shape {

label: condition

kind: return LINE

colour: return BLACK

}

State plays Node {}

Transition plays Edge {

source: from

target: to

}

ground State { name, type }

ground Transition { condition, from, to }

}
28

Role Binding
Specification

Grounding
Specification

A DSL for Integration (EMFText RoleCore Language)

► Role binding can be described by a DSL.

http://www.reuseware.org/index.php/EMFText_Concrete_Syntax_Zoo_Rolecore

P
ro

f.
U

. A
ß

m
a

n
n,

 S
of

tw
a

re
en

tw
ic

kl
un

g
sw

e
rk

ze
ug

e
 (

S
E

W
)

29

29

RoleTypeInterface
roleFeature

RoleTypeImpl RolePlayer
role

player

RoleType
roleFeature

getRoleFeature() {
 return player.playerFeature();
}
setRoleFeature(value) {
 player.playerFeature = roleFeature;
}

GenericRoleTypeInterface
hasRole(roleType)
getRole(roleType)

getRoleFeature() {
 return role.getRoleFeature();
}
setRoleFeature(value) {
 role.setRoleFeature(value);
}

RolePlayer
playerFeature

Role Binding Realisation by e.g., Delegation
(Design Pattern Bridge)

„dimension 2
variation“

„dimension 1
variation“

Grounding is straightforward with many design patterns for role
implementations

► The constructs of RoleCore can be easily expanded to design patterns (code
generation), e.g., MultiBridge or Role-Object Pattern

compiling to a
design pattern

P
ro

f.
U

. A
ß

m
a

n
n,

 S
of

tw
a

re
en

tw
ic

kl
un

g
sw

e
rk

ze
ug

e
 (

S
E

W
)

30

Role Binding Implementation with Role Object Pattern
(ROP)

RolePlayer plays Role {
 roleFeature: playerFeature}

roleFeature: Type

RolePlayer
playerFeature: Type

GenericRoleTypeInterface

hasRoleType()getRoleByType()

RoleTypeImpl
role

getRoleFeature() {
 return player.getPlayerFeature();}
setRoleFeature(value) {
 player.setPlayerFeature(value); }

player

ground Role { roleFeature }

Role
roleFeature: Type

Role Binding Implementation

Grounding Implementation

RolePlayer

getRoleFeature()
setRoleFeature()

RoleTypeImpl
roleFeature: Type
getRoleFeature()
setRoleFeature()

getPlayerFeature()
setPlayerFeature()

RoleTypeInterface

getRoleFeature()
setRoleFeature()

P
ro

f.
U

. A
ß

m
a

n
n,

 S
of

tw
a

re
en

tw
ic

kl
un

g
sw

e
rk

ze
ug

e
 (

S
E

W
)

31

Final Architecture of the Composed Repository

► When using ROP for binding, the role-access layer architecture for
repositories results naturally:

w1:Werkzeug w2:Werkzeug

Material

Leseschicht

Schreibschicht

Verteilungsschicht

Authentifikationsschicht

w3:Werkzeug

Verteilungsrolle

Authentifikationsrolle

Schreibrolle

Material-
Kern

Material-
Rolle

Leserolle

*

s:Schreibrolle

l:Leserolle

au:Authentifikationsrolle

Kern:MaterialKern

ver:Verteilungsrolle

l:Queryrolle

P
ro

f.
U

. A
ß

m
a

n
n,

 S
of

tw
a

re
en

tw
ic

kl
un

g
sw

e
rk

ze
ug

e
 (

S
E

W
)

32

What Did We Learn?

► Deep Role Modelling allows for unanticipated tool integration, but
needs to be applied at tool design time

► Clean separation of required interface (to access tool-specific data)
and realization of this interface (to obtain data)

► Physical representation define at integration time by design patterns
for role implementation

► If ROP is used, a role-based access layering of the repository results
naturally.

► Open Issues
– Data migration (if grounding evolves)
– Practical validation required

► Looking for students!

