32. Data Sharing of Tools by Role-Based
Integration of DDL (Role-Based Metamodel

Composition on M2)
for Tool Interoperability on M1-Models and M0-Repositories

Prof. Dr. Uwe ABmann 1) Motivational Example
Mirko Seifert, Christian Wende Proactive vs. Retroactive Tool
Technische Universitat Dresden Integration
Institut fir Software- und 2) Roles in Metalanguages
Multimediatechnik 3) Role-Based Composition of
http://st.inf.tu-dresden.de Metamodels
Version 12-0.3, 07.12.12 4) Grounding

.80 DFG @ L B,

Softwareentwicklungswerkzeuge (SEW) © Prof. Uwe ABmann

Position

Obligatory Literature

21| » Mirko Seifert, Christian Wende and Uwe ABmann. Anticipating
Unanticipated Tool Interoperability using Role Models. In Proceedings
of the 1st Workshop on Model Driven Interoperability (MDI'2010) (co-
located with MODELS 2010), 5th October 2010, Oslo, Norway

» Course “Design Patterns and Frameworks” (chapter about role
modeling)

> http://www.langems.org

http://lwww.emftext.org/language/rolecore

emftext

Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)
v

G,

34.1 Motivational Example for Data Sharing in Tool
= || Integration

Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)

e

» We have learned in chapter “Tool Architecture” that metamodels can
be composed so that metamodel-driven repositories can be
generated

» So far, the integration was based on union of metamodel packages,
i.e., the metaclasses stayed as they are during composition

» In this chapter, we will merge metaclasses during composition
» This achieves a much tighter integration

41} » Tools may rely on different DDL, which represent similar concepts
. DDL.: visualization concepts
DDL.: state machines
< 2D Shape Renderer
%) ﬁextual State Machine Editch
H g s Y
é: 12 tran: i:,ums { . . <
Ul 15 i " N
é 6} I
NG J N
<
>
g

3

DDL: graphs Graph Analysis Tool

Example - Language Concepts in Metamodels of the
Involved Tools

How Can these Metamodels be Integrated?

Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)

e

» Then, tools rely on different DDL metamodels with overlapping

n
concepts DDL.: visualization concepts

DDL: state machines

ﬂextual State Machine Editor\

State

2D Shape Renderer
Shape
(Circle,
Rectangle, Line)

(Initial, Final) Colour
Transition </1
N
Node
\ / Edge
Graph Analysis Tool
DDL: graphs >

Retroactive Tool Integration on Repositories by Data

Textual State Machine 2D Shape Graph Analysis
Editor Renderer Tool
source — Shape Kind from
State Transition x,y,size : int [] CIRCLE Node Edge
target v RECTANGLE to
Color
Tool Metamodel 1 Tool Metamodel 2 Tool Metamodel 3

Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)

G,

Proactive Tool Integration (Classical)

=1]] Connection o
71| » Often, tools, their metamodels, and the metamodel-driven 81| » Sometimes, tool, metamodels, and repositories are not fixed yet
repositories already exist » Use metamodel extension (integration) to make data from one tool
» Metamodel mapping (language mapping): map the concepts of accessible to another
one DDL to the other - Extension by inheritance (“white-box”): Submetaclasses are
_» Use transformations to convert data from one tool to another (data ~ formed; language concepts are integrated, but no extension of
g exchange via transformation bridge, Datenverbindung) 3 supermetaclasses possible
g - 3 - Extension by delegation (“black-box”): Language concepts stay
§ Textual State Graph Analysis 8 separate, but are connected:; no real integration
g Machine Editor Tool :
= > £ a) Inheritance b) Delegation
SM metamodel GRAPH metamodel g
............................. 2 £
St:::;f String 'I;Ode { State rom Transition State Transition
} name:String - name:String
......... - - - -@Edge { A A
Transitio® {{ -~ ~ |~ ~ 1 - source: Node
. ransformation .
i::c:amét:t:te - — - ﬁ\bride e) target: Node , I source
} \ ! 7 Node Edge Node < Edge
\\\ 47
| GRS, ATL, QVT, . target
D) D)

- Proactive vs. Retroactive Tool Integration

9

Proactive Retroactive
Technique Inheritance Transformation
Delegation

Appropriate Metamodels need ° Metamodels
Abstraction to be adapted unaffected

Tool Independence = Strong coupling ° No coupling

Shared Data Sharing among all

integrated tools

Tool Interaction

L

interaction only

Collaboration-Based Modeling
(Role Modeling) (Rpt.)

Support for anticipate

Replicated Data,
Synchronization

needed

Transformations

hinder interaction

33.2 Roles in Metalanguages

@
@

@

i

10

Softwareentwicklungswerkzeuge (SEW) © Prof. Uwe ABmann

What are Roles? (Rpt.)

11

» Databases [Bachmann], Object-Role Modeling [Halpin]

» Factorization [Steimann]

» Research in Design Patterns [Reenskaug, Riehle/Gross]

:Father

:Person <<plays-a>>

Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)

e

:Child

\ {
<<plays-a>>

:Person

:Child |:Person

12

Roles are first-class modeling concepts in modern object-oriented languag

Prof. U. ARmann, Softwareentwicklungswerkzeuge (SEW)

3

A role is a dynamic view onto an object
- Roles are played by the objects

the object is the player of the
ﬁole)) play :Person
- Apartial object
Roles are tied to collaborations () ()
- Do not exist standalone, deper, -Employee :Customer
on a partner /\:l;/ /:I;)
:Father :TaxPayer
:Cyclist :Swede

What are Roles? (Rpt.)

What are Role Types? (Rpt.)

13

Roles are services of an object in a context
- Roles can be connected to each other
- Avole has an interface

Roles form role models, capturing an area of concern [Reenskaug]
- Role models are collaborative aspects

:Person :Person

Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)

e

14

Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)

G,

Role types (abilities) are
- service types
- dynamic types
- collaborative types
Problem:

- The word “role” is also used
the class level, i.e., for a “rol Father
type”
Cyclist

Person

Customer

Employee

Collaboration Schemas (Role-Type Model) (Rpt.) Role- and Role-Type Models Underly Many Gray-Box
[= Component Models
15) . 16 i
Collaboration schema (role type model, ability model): Views
- Set of object collaborations abstracted by a set of role types - Hyperspace (MDSOC)
- Aconstraint specification for classes and object collaborations Collaborative Aspects
Ex: Afigure can play many roles in different collaboration schemas - ObjectTeams www.objectteams.org
s - CaesarJ
2» FaiETe Template-based languages
% - BETA with the metaprogramming environment MjdIner
g - Figure - Invasive Software Composition
E \‘@ure Child Narent }
(FigureHierarchy) (FigureHierarchy) (FigureHierarchy) X3D

i

Predecessor

=/

3

) Subject
| (FigureChain) (Int.Fig.Observer) | .
[Successor - I I
(FigureChain) | Observer

(Int.Fig.Observer)

Observer Subject Client Server
(FigureObserver) (FigureObserver) (Graphics) (Graphics)

Prof. U. ARmann, Softwareentwicklungswerkzeuge (SEW)

Roles in a Metalanguage (Metametamodel)

A Metamodel for Deep Role Composition

17

Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)

e

» Roles can be introduced as modeling concept.
» Here, an extension of EMOF with roles:

role-EMOF

.
literals *

I]\ enums*

| Role Model W

Role |—>| RoleFeature |

* roleFeature

PrimitiveType H Attribute | | Reference

attributeType

Example: ShapeRenderer's Metamodel with Roles

18

Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)

G,

> Deep roles are roles playing roles
> Flat roles do not play roles

» This role composition technique (specified by a role-composition
metamodel) allows for deep roles

role-composition
groundings *

_i RoleGrounding | RoleFeatureGrounding I—
* featureGroundings

* bindings

|Composition : | RoleBinding E| RoleFeatureBinding |
* featureBindings
role-EMOF

models|* [role Player binds

ole
| Role Model |B| Role 5| RoleFeature | |

*
roles *roleFeature ~ drounds

Example: ShapeRenderer's Metamodel with Deep Roles

19

Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)

e

» Roles adhere to a context
» A context is a specific concern (here: colors)
» Only one natural type, many roles

Domain Core —— Layout
Position
Shape X,y :int
e/

0.* (ColouredOb'ect\
Parent Child !

_ color: RGB)

Hierarchy

Color

20

Prof. U. ARmann, Softwareentwicklungswerkzeuge (SEW)

3

» Because other tools' metamodels might provide the natural types, we
first specify all metamodels with deep roles

- Then, they can be played by the naturals of other tools

Domain Core —— Layout
Position
.~/

0.7 (ol oct)
Child ColouredObject

_ color : RGB)

Hierarchy Color

Example: ShapeRenderer's Metamodel with Deep Roles

and Enums

21

Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)

e

» Some roles can be represented as enums; then they will become
natural classes in the implementation

Domain Core —— Layout
Position
—
0 * <<enum>>
oo . Color
BLACK
A RED
Hierarchy Color

33.3 Proactive Tool Integration with Deep
Roles

®

22

Softwareentwicklungswerkzeuge (SEW) © Prof. Uwe ABmann

Tool Integration using Deep-Role-Model Based : i - i
>9 9 P Tool Integration using Role Bindings (Role Grounding)
|| Integration of Metamodels on M2 0
2 || » Specify M2-metamodels also with role types (abilities) not only 211 » Role Bindings on the logical level with relationship “plays-a”
classes - Connect roles and role players, producing deep roles
» Difference to classical role modeling: Naturals are selected later; - Allow to create views on other classes >
first specify everything as deep role; some roles become enums
g
e » Grounding on the physical level
State Machine Editor Graph Analysis Tool Type Notation - Defines which attributes/classes are represented physically

-

name

: String —> PLAIN

.

Role Enum
INITIAL
“ | FINAL (" Node Y& °(Edge)
invalid : bool J&——t———
from to o
- J

Feature Notation

Transition
I]

name
name : type s
-—

Prof]

&

23

Attribute Reference

Prof. U. ARmann, Softwareentwicklungswerkzeuge (SEW)

3

- Select natural types

- Ground to implementation by design patterns or other role-
implementations (see course Design Patterns and Frameworks)

» The decision (about which data is derived and which is not) is done
at tool integration time!

24

Metamodel Composition based on Deep Role Type

Binding

33.4 Grounding: Mapping to
Programming Language

Grounding Notation

(Tame

Grounded Role

27

name : type

Grounded Attribute

name

—_—
Grounded Reference

25 -, - i
» Composition by deep role binding and role grounding
» We defer the decision “what is a natural”
2D Shape Renderer Graph Analysis Tool
(Shape D Kind
X,y,size : Integer | | CIRCLE
label : Stri —_—
abe! ring EIE[\ﬁ;rANGLE Node sgurcerTge]
invalid : bool | «—t——
target
z v
g jlextual State Machine %@:\
£
‘2— State from (Transition)
é name : String | N condition : String
& C) .- O
; StateType
3 type PLAIN
= INITIAL
FINAL

e

Binding Notation

4,5{)

A DSL for Integration (EMFText RoleCore Language)

i

Softwareentwicklungswerkzeuge (SEW) © Prof. Uwe ABmann

Role Binding Realisation by e.g., Delegation
(Design Pattern Bridge)

2811 » Role binding can be described by a DSL.

integrate statemachine, 2dShapes, graph {
State plays Shape {
label:
kind:

name

if (player.type == PLAIN) return RECTANGLE
else return CIRCLE

if (player.type == INITIAL) return WHITE
else return BLACK

colour:

}
Transition plays Shape {
label:
kind:

condition
return LINE
colour: return BLACK
}
State plays Node {}
Transition plays Edge {
source: from
target: to

}

Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)

ground State { name, type }
ground Transition { condition, from, to }

}
@ http://www.reuseware.org/index.php/EMFText_Concrete_Syntax_Zoo_Rolecore

Role Binding
Specification

Grounding
Specification

29 >

RoleType

roleFeature

RolePlayer
playerFeature

compiling to a
design pattern

m—)

The constructs of RoleCore can be easily expanded to design patterns (code
generation), e.g., MultiBridge or Role-Object Pattern

GenericRoleTypelnterface
hasRole(roleType)
getRole(roleType)

Prof. U. ABmann, SoftwareentwckungswerkijW)

RoleTypelnterface
roleFeature
—_—
role
RoleTypelmpl | — RolePlayer
>
; Y player > \
,, £\ / \
\\
getRoleFeature() { \ getRoleFeature() { \
return player.playerFeature() ; ﬂhnenﬁon?\ return role.getRoleFeature () sdimension 1
} variation® \| } variation®
setRoleFeature (value) { setRoleFeature (value) { \
player.playerFeature = roleFeature; role.setRoleFeature (value) ;
}
Grounding is straightforward with many design patterns for role
29

implementations

Role Binding Implementation with Role Object Pattern)))
all (rROP) o Final Architecture of the Composed Repository
30 31
R e i o M » When using ROP for binding, the role-access layer architecture for
RolePlayer plays Role poenericRoleTypelnterfacs repositories results naturally:
roleFeature: playerFeature}
hasRoleType()getRoleByTlype()
w1:Werkzeug w2:Werkzeug w3:Werkzeug

s roleFeature: Type s
@ y getRoleFeature() o ——
g At I:> setRoleFeature| Schreibschicht ‘ s:Schreibrolle ‘ Schreibrolle
| | x v : = 7
: —RolePlaver RoleTypelmpl RolePl i - -
2 playerFeature: Type MLr " | RolePlayer | Leseschicht ‘ l:Leserolle F—{ I:Queryrolle ‘ Leserolle
% — getRoleFeature() getPlayerFeature() = o] ? - 7
g [setRoleFeature() playersetPlayerFeature() Authentifikationsschicht ‘ au:Authentifikationsralle ‘ | Authentiﬁkationsry(e |
% gethoIeFeIature() (tP| Font . @ ‘¥ j a
£ e R Verteilungsschicht ‘ ver:Verteilungsrolle ‘ / Verteilungsrolle
‘I/:’_ player.setPlayerFeature(value); } = t %
E g ‘ 4 l ;. * :
< < Material- Material-
3 Grounding Implementation ?_ Kern:MaterialKern Rolle Kern
o o
T ground Role { roleFeature } RoleTvoelmol T ‘/><\

| Rale I::> roleFeature: Type o

|raleEeature: Type getRoleFeature() R aterial

e

setRoleFeature()

What Did We Learn?

32

Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)

e

» Deep Role Modelling allows for unanticipated tool integration, but
needs to be applied at tool design time

» Clean separation of required interface (to access tool-specific data)
and realization of this interface (to obtain data)

» Physical representation define at integration time by design patterns
for role implementation

» |If ROP is used, a role-based access layering of the repository results
naturally.

» Open Issues
- Data migration (if grounding evolves)
- Practical validation required

» Looking for students!

G,

