51. Model and Program Analysis
with Graph Reachability

O

Prof. Dr. Uwe ARBmann
Softwaretechnologie
Technische Universitat Dresden
Version 12-0.6, 17.01.13

1)Model Mapping

2)EARS for Reachability

3)Regular graph reachability
1)Graph slicing

4)Context-free graph
reachability

5)More on the Graph-Logic
Isomorphism

6)Implementation in Tools

Softwareentwicklungswerkzeuge (SEW) © Prof. Uwe ABmann

Other References

Literature

Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)

G,

Hannes Schwarz, Jirgen Ebert, and Andreas Winter. Graph-based
traceability: a comprehensive approach. Software and System
Modeling, 9 (4):473-492, 2010.
Uwe ABmann. Graph rewrite systems for program optimization. ACM
Transactions on Programming Languages and Systems (TOPLAS),
22(4):583-637, June 2000.

- http://portal.acm.org/citation.cfm?id=363914
Tom Mens. On the Use of Graph Transformations for Model
Refactorings. GTTSE 2005, Springer, LNCS 4143

- http://www.springerlink.com/content/5742246115107431/
Thomas Reps. Program analysis via graph reachability. Information
and Software Technology, 40(11-12):701-726, November 1998.
Special issue on program slicing.
Mark Weiser. Program slicing. IEEE Transactions on Software
Engineering, SE-10(4):352-357, July 1984.
Frank Tip. A survey of program slicing techniques. Journal of
Programming Languages, 3:121-189, 1995.

Tools in an Integrated Development Environment
(IDE)

Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)

e

» Uwe ABmann. OPTIMIX, A Tool for Rewriting and Optimizing
Programs. In Graph Grammar Handbook, Vol. Il. Chapman-Hall,
1999.

» K. Lano. Catalogue of Model Transformations

- http://www.dcs.kcl.ac.uk/staff/kcl/tcat.pdf

Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)

3

» Model mappings relate different artefacts to enable traceability

(reachability) and impact analysis

R

Tool

Model mappings][Model slicing] [Model composition]

Reachability analysis (traceability)] [

Attribute analysis }

Metamodel
Repository
(M2)

Test Case
Repository

Requirements
Repository

—
Design
Repository
(PIM, Arch)

Implementation
Repository
(PSI, Code)

Literature

Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)

e

L

» Frédéric Jouault and Ivan Kurtev. On the Architectural Alignment of
ATL and QVT. In: Proceedings of the 2006 ACM Symposium on
Applied Computing (SAC 06). ACM Press, Dijon, France, chapter
Model transformation (MT 2006), pages 1188—1195.

= http://atlanmod.emn.fr/bibliography/SAC06a
» Tutorial Uber ATL “Families2Persones”
» http://www.eclipse.org/m2m/atl/doc/ATLUseCase_Families2Persons.
ppt
» ATL Zoo von Beispielen
= http://www.eclipse.org/m2m/atl/atITransformations
» K. Lano. Catalogue of Model Transformations
= http://www.dcs.kcl.ac.uk/staff/kcl/tcat.pdf
» Implementation in ATL

= http://www.eclipse.org/m2m/atl/atITransformations/EquivalenceAttributes
Associations/EquivalenceAttributesAssociations.pdf

Model Mappings and Model Weavings

51.1 Model Mapping

(Modellverkniipfung)

SEW, © Prof. Uwe ABmann 6

Model Mapping (Modell-Verkniipfung) with MID
INNOVATOR

» Model mappings connect models horizontally (on the
same level) or vertically (crossing levels).

> Model transformations transform models horizontally or

vertically.
= From a model mapping, a simple transformation can
be infered

» Model weavings weave two input models to an output

v

I =2

Platform-Independent Model (CIM)
Design specification

Prof. U. ABmann, Softwareentwicklungswerkzeug

&

Platform Specific Model (PSM)

model, based on a crosscut specification

Model extensions (model merges, model additions)
extend an input model by an extension (often done by
hand)

= Usually, some parts are still hand-written code

Model2Text expansion (code generation by template
expansion)

Platform-Specific Extension (PSE)

Platform Description Model (PDM)

|
Code addition

Handwritten code

Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)

3

» Innovator can be used for requirements models, design models,
implementation models, as well as for transformations in between

» How to relate these models systematically?

% UML-Modell "TTBib_UML.ino_prak2 - INNOVATOR

Element Bearbeiten Ansicht Modell Engineering Wechseln Extras Hilfe

Slro@s|EEREG X =-ArPe DN «-LadG¢ 0

| ﬁ TTBib UML =l ‘Status ‘ Mame ‘ Typ ‘ Anderungsdatum &
o] =t P 10 A [Ausleihe Sec... 2211.2003 00:4502
ol ‘-5t external object SINOTMPAdoCS 20 4 Kunde_srmelden Woll.. 101,203 01:21:54
— 5} Use Case System 30 B IE‘ Rickuabe Sec.. 22112003 00:21:47
@ "@ana\ysis system 4 0 B IE‘ Tortréger_Einkauf Sec.. 100112003 01:2359
=) [} Java design system s 0 & [T7 Kunden_neu_anlegen Sec... 10.11.2003 01:26:19
[Java implementation system $INOTMPisrc 65 0 & [©] AnalysisClassiagram Miat... 09.11.200315:23:14
= B systemMoctsl mansgement 7o & () Verwatung_AS Miat... 09.11 2003 15:25:56
=) 80 & () Tontriger_AS Wl 09112003 15:20:08
an A Q Kunde_AZ Klas.. 08.11.2003 152732
== o A Q - Hunde_AS Ohji.. 08.11.2003 13:20:05
@ 1] B Q : Tortréger AS Okj... 09.11.2003 132016
1] B KD verwatungll_as Kla:.. 09.11.2003 15:16:32
p— 1] B KD : verwattungUl_AS Okj... 09.11.2003 132308
@ . A i : Kunce_UIC Ohbj... 09.11.2003 14:05:54
. A i : Biblicthek_LIC Obj... 09.11.2003 15:44:35
.0 A Q s Werywaltung_AS Chi.. 09.11.2003 16:14:14

Rpt. from ST-lI: Model Mapping, Transformation and
Synchronization in the MDA

Problem: Analysis and Reachability

Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)

e

The MDA architecture derives from a platform-independent model
(PIM) by hand, by rules, by transformations, by metaprograms
platform-specif c models (PSM)

Model mapping connects systematically all elements of a source
model to the elements of a target model.

From the mappings, a translation, transformation, or synchronization
can be automatically infered.

depends Mapping gggﬁnds

Source Language [__upon Target Language

Specif cation
def ned ef ned def ned
in y in
Mapping
Source Model } Target Model
PIM PSM

Quelle: Kleppe, A., Warmer, J., Bast, W.: MDA Explained - Practice and Promise of the
Model Driven Architecture; Addison Wesley 2003 (Draft 25.10.02)

51.1.1 Query-View-Transformations

(QVT)

The language of the OMG for model transformations within
MDA

SEW, © Prof. Uwe ABmann " M

10

Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)

G,

» We need graph reachability analyzers
= to create trace graphs for reachability and traceability
= to create model mappings, model slicings
= to prepare refactorings, transformers, and optimizers

For models: For model refactoring, adaptation and specialization,
weaving and composition

- For code: Portability to new processor types and memory hierarchies
- For optimization (time, memory, energy consumption)
» However, reachability analyzers are big beasts

- Current implementation techniques are hard to understand and to a
large extent unsystematic

» |dea: Use graph-logic isomorphism

QVT Dialects

12

Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)

3

- Relations |

Relations
to Core
Transfarmation

Operational
Mapping

uonejuswajduw|
Xod ¥oe|d

| Core —

- Transitive Closure with QVT Relations - QVT Tools
1311 » QVT relations uses logic expressions on base and derived relations 14
(graph-logic isomorphism)
/I Transitive Closure in QVT relations, Tool
/I Modeled with recursiven relation “transitiverelation”
relation transitiverelation { Eclipse Operational

Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)

e

domain node:Node {
/I matching attributes
name = sameName;

domain node2:Node {
/I node2 must have the
/I same name as node
name = sameName;

when {
/I conditions: base relation must exist
baserelation(node,node2) or
/I or a transitive relation to a base relation
(transitiverelation(node,neighbor)

domain node3:Node { and baserelation(neighbor,node2));

/I node3 must also
/I have the same name
name = sameName;
} }
}

where {// Aufruf einer Transformation
makeNodeSound(node);

Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)

G,

OCL for Model Search, Query, and Mapping

15

Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)

e

» OCL is a graph-query language, similar to EARS and .QL
» OCL can be called within QVT scripts

M2M Project http://www.eclipse.org/m2m/

Magic Draw Operational

MediniQVT Relational http://projects.ikv.de/qvt/wiki

51.2 Using EARS for Analysis and
Mappings of Models and Code

= Two different DQL are combined within a single language

16

// this is QVT
rule checkNoDoubleFeatureInSuperClasses(name:String) {
from node: Class (
node->TransitiveClosure()->collect.().exists(s |
s.name() = name);
)
to

System.out.println("Error: super class has doubly
defined feature: "+s.name());

ks

= Graph reachability engines are A-tools answering questions
about structure of models and programs

= EARS can be employed for regular graph reachability,
context-free graph reachability, slicing, data-flow analysis

Softwareentwicklungswerkzeuge (SEW) © Prof. Uwe ABmann

EARS for Model Mapping

Model Analysis with Graph Reachability

17

Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)

e

» QVT Relational is a language for Edge addition rewrite systems
(EARS)
» EARS can be used for model mapping:
= Transitive closure
= Regular path reachability
= Context-free path reachability

N | S

Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)

G,

Use the graph-logic-isomorphism: Represent everything in a program
or a model as directed graphs

- Program code (control flow, statements, procedures, classes)

- Model elements (states, transitions, ...)

- Analysis information (abstract domains, flow info ...)

- Directed graphs with node and edge types, node attributes, one-edge
condition (no multi-graphs)

Use edge addition rewrite systems (EARS) and other graph
reachability specification languages to

- Query the graphs (on values and patterns)

- Analyze the graphs (on reachability of nodes)

- Map the graphs to each other (model mapping)
Later: Use graph rewrite systems (GRS) to construct and augment
the graphs, transform the graphs
Use the graph-logic isomorphism to encode

- Facts in graphs

- Logic queries in graph rewrite systems

A Simple Program (Code) Model (Schema) in
|| Specification Process = || MOF/UML
Y11 1) Specification of the data model (graph schema) _ Analysis information
- Specification of the graph schema with a graph-like DDL (ERD, MOF, Program representation
GXL, UML or similar): AllE INSERT_IN ExprEqClass
Schema of the program representation: program code as objects and basic Proc A
relationships. This data, i.e., the start graph, is provided as result of the parser

Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)

e

Schema of analysis information (the infered predicates over the program
objects) as objects or relationships

2) Program analysis (preparing the abstract interpretation)
- Querying graphs, enlarging graphs
- Materializing implicit knowledge to explicit knowledge
- Materializing model mappings
3) Abstract Interpretation (program analysis as interpretation)

- Specifying the transfer functions of an abstract interpretation of the
program with graph rewrite rules on the analysis information

4) Model and Program transformation (optimization)
- Transforming the program representation

InRegister

Exprs
Block LATEST_IN
Expr
ExprsOfStmt
Stmt A

/\

. UsedR
Register v

Assign

gdReg

AssReg Plus IntConst UseReg

o Path Abbreviations

51.2. Simple Reachability:
Path Abbrevia‘tions in Graph AnalySiS 22 » Path abbreviations shorten paths in the manipulated graph.
» They may collect nodes into the neighborhood of other nodes.
» EXx.: Collection of Expressions for a procedure: edge addition
21
= With edge addition rewrite systems -- Datalog notation:
AllExprs(Proc, Expr) :-
Blocks(Proc,Block), Blocks
Stmts(Block,Stmt),
Exprs(Stmt, Expr).
-- if-then rules: AIIExprs
if Blocks(Proc,Block), Stmts
Stmts(Block, Stmt), h 4
Exprs(Stmt, Expr) Stmt
then
AllExprs(Proc, Expr); Exprs
- regular expression notation (TGreQL): ‘(///
AllExprs := Proc Blocks.Stmts.Exprs Expr @
@ Softwareentwicklungswerkzeuge (SEW) © Prof. Uwe ABmann
o Transitive Closure = Relating Nodes into Equivalence Classes
2311 » Reachability most often can be reduced to transitive closure 21l » Ex.: Computing equivalent nodes
> “Does an Stmt S reach a expression E?” » Context-sensitive problem, because m is not in the context of n
» Left or right recursion in F-Datalog
» Kleene *in TgreQL
» Thick arrow in Fujaba S-Stmt baserule:
’ gen eq(m:Proc,n:Proc) :-
m.name != n.name.

/ TGreQL not killed
reach*(S:Stmt, E:Expr)

,E: :- gen(S:Stmt,E:Expr), not killed(S:Stmt,E:Expr).
reach(S:Stmt,E:Expr) :- pred(S:Stmt,P), reach(P,E:Expr).

If (m:Proc, n:Proc) and m.name !=
n.name)

eq(m,n)

=]

TgreQL regular expression:
:Proc eq n.Proc if

.name != n.name

Cm:Proc>

eq

CniProc >

m.name !=

n.name

Relating Nodes into Equivalence Classes (Here:
"J{| value Numbering, Synt. Expression Equivalence)
%1l » Ex. Computing structurally
equivalent expressions
CIntConst>———+CIniCons2>
baserule:

eq(IntConstl, IntConst2) :-
IntConstl ~ IntConst(Value),
IntConst2 ~ IntConst(Value).

recursive_rule:

eq(Plusl,Plus2) :-

Plusl ~ Plus(Type),

Plus2 ~ Plus(Type),

Left(Plusi, Exprl),

Right(Plusi1,Expr2),

Left(Plus2,Expr3),

Right(Plus2,Expr4).

eq(Expri, Expr3),

eq(Expr2,Expr4).

51.3. Data-Flow Analysis as Graph
Reachability

26

= with edge additions

Softwareentwicklungswerkzeuge (SEW) © Prof. Uwe ABmann

Data-flow Analysis for Reachability and _ o _
a|| Traceability - Reaching Definition Analysis
2711 » Data-flow analysis is a specific form of abstract interpretation asking 22 ||> Reaching Definitions Analysis:
reachability questions, i.e., computing the flow of data through the Which Assigments of a variable _
program, from variable assignments to variable uses can reach_which us.in.g. statement? M
- Result: the value-flow graph (data-flow graph) VWV}:I;:: ;/)z(a:raetglseio?‘e;ﬁmtlons reach gen
> Examples of reachability problems: _ » Graph rewrite rules implement an
ﬁ » AllSuperClasses: find out for a class transitively all superclasses é abstract interpreter :
% » AllEnclosingScopes: find out for a scope all enclosing scopes f‘, - Oninstructions or on blocks of @
g » Reaching Definitions Analysis: Which Definitions (Assigments) ofa ¢ instructions not killed
H variable can reach which statement? H - Flowinformation is expressed |
% » Live Variable Analysis: At which statement is a variable live, i.e., will 5 Wl.th edges of rglauons reach-
g ¢ » Recursive system (via edge reach-
g further be used? g begin)
¢ > Busy Expression Analysis: Which expression will be used on all ¢ — Breach-end E == E reaches end
% outgoing paths? é of block B
3 - Central part: 1 recursive system 3
g & [reach-end(B,E) :- gen(B,E).

e

3

reach-end(B, E)
reach-begin(B, E)

:- reach-begin(B,E), not killed(B,E).
:-pred(B,P), reach-end(P,E).

Code Motion Analysis

Excerpt from LCM Analysis with Overlaps

29

Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)

e

» Code motion is an essential transformation to speed up the generated code.
However, it is a complex transformation:

- Discovering loop-invariant expressions by data-flow analysis

- Moving loop-invariant expressions out of loops upward

- Code motion needs complex data-flow analysis
» Busy Code Motion (BCM) moves expressions as upward (early) as possible
» Lazy Code Motion (LCM)

= Moving expressions out of loops to the front of the loop, upward, but
carefully:

= Moving expressions to an optimal place so that register lifetimes are
shorter and not too long (optimally early)

= LCM analysis computes this optimal early place of an expression
[Knoop/Steffen]
Analyze an optimally early place for the placement of an expression
About 6 equation systems similar to reaching-definitions

= Every equation system is an EARS

51.3 Regular Graph Reachability

ol

31

Softwareentwicklungswerkzeuge (SEW) © Prof. Uwe ABmann

30

» Compute an optimally early block for an expression (out of a loop)

somal in
NOT earliest_out

.—».—»

social_out e

e

social_out
%

comp_SOcC_| in

—>

7
--------—-----------------I

Ve
e

Ve
Ve

Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)

s isolated_and_latest_in
I3
NOT social_in | NOT social | v
1 A 1 A
latest_in Talest_in

G,

Regular Graph Reachability

2|l .

regular graph reachability problem
» Kleene star is used as transitive closure operator
» TgreQL and Fujaba are languages offering Kleene *

-- F-Datalog notation:
11Exprs(Proc,Expr) :-
Block*(Proc,Block),
Stmt*(Block, Stmt),
Expr*(Stmt, Expr).
g-- if-then rules:
if Block*(Proc,Block),
Stmt*(Block, Stmt),
Expr*(Stmt, Expr)
then
AllExprs(Proc, Expr);
- regular expression notation
11Exprs

(TGreQL):
:= Proc Block*.Stmt*.Expr* Expr

If the query can be expressed as a regular expression, the query is a

EXPrs

51.3.1 Static Slicing: Single-Source-Multiple-Target
Regular Reachability

Traceability between Models

33

Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)

&

L

>

>

[Weiser] [Tip]
A static slice is the region of a program or model reached from one
source node by a regular reachability query
A forward slice is a region in forward direction of the program
= The uses of a variable
= The callees of a call
= The uses of a type
A backward slice is a region in backward direction of the program
= The assignments which can influence the value of a variable
= The callers of a method
= The type of a variable

A static slice introduces path abbreviations from one entity to a region

Slicing can map arbitrary entities in programs and models to other
entities, based on a regular graph expression

Application of Traceability:
Model Mappings and Model Weavings

iI

?Agmw
v

Platform-Independent Model (CIM)
Design specification

Prof. U. ABmann, Softwareentwicklungswerkzeu

&

y |
@ Platform-Specific Extension (PSE)
¥

Platform Description Model (PDM)
Platform Specn‘" c Model (PSM)

Code addition Handwritten code

34

Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)

» Data-flow analysis (graph reachability, slicing) can be done
= intraprocedurally
= Interprocedurally (program-wide)
= intermodel: then it creates trace relations

= interspecification: between requirements models, design models, and
code models

= Inter-MDA
» Traceability is intermodel slicing and graph reachability
» A model mapping is an intermodel trace graph

51.3.2 Context-Free
Graph Reachability

)

36

Softwareentwicklungswerkzeuge (SEW) © Prof. Uwe ABmann

37

Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)

&

» F-Datalog and EARS can describe other recursions than regular ones
(linear recursions)

= Context-free recursions
= Cross-recursions

» Then, we speak of context-free graph reachability
= A context-free language describes graph reachability

» Application: interprocedural, whole-program analysis (see separate
optional chapter)

= Interprocedural IDFS framework (Reps)

Program and Model Analyses Covered by Graph
Reachability

51.4 More on the Logic-Graph
Isomorphism

38

@ Softwareentwicklungswerkzeuge (SEW) © Prof. Uwe ABmann

The Common Core of Logic, Graph Rewriting and
|| Program Analysis

39

Prof. U. ARmann, Softwareentwicklungswerkzeuge (SEW)

&

» Reachability Analysis is a simple form of abstract interpretation
= Slicing is a Single-Source-Multiple-Target reachability analysis
» Every abstract interpretation where a mapping of the abstract
domains to graphs can be found.
= monotone and distributive data-flow analysis
- control flow analysis
- SSA construction
- Interprocedural IDFS framework (Reps)

40 = Graph rewriting, DATALOG and data-flow analysis have a common core:
EARS

Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)

abstr.

act interpreta

3

Oy Relation DFA/IDATALOGIGRS oy Relation DFA/IDATALOGI/IGRS

“a » Abstract interpretation (Data-flow analysis), DATALOG and graph 42 » Uniform Specification of Analysis and Transformation
rewrite systems have a common kernel: EARS - If the program analysis (including abstract interpretation) is specified
= As DATALOG, graph rewrite systems can be used to query the graph. with GRS
» Contrary to DATALOG graph rewrite systems materialize their - Itcan be unified with program transformation

results instantly.

= Graph rewriting is restricted to binary predicates and always yields all
solutions.

» Graph rewriting can do transformation, i.e. is much more powerful
than DATALOG.

Graph rewriting enables a uniform view of the entire optimization
process

= There is no methodology on how to specify general abstract
interpretations with graph rewrite systems

= Ininterprocedural analysis, instead of chaotic iteration special
evaluation strategies must be used [Reps95] [Knoop92].

= Currently strategies have to be modeled in the rewrite specifications
explicitly.

Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)
n
Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)

e
G,

Efficient Evaluation Algorithms from Logic
S|l Programming

51.5 Implementation in Tools “11 » Tool OPTIMIX uses the ,Order algorithm* scheme [ARmann00]
- Variant of nested loop join
- Easy to generate into code of a programming language
43 - Works effectively on very sparse directed graphs
- Sometimes fixpoint evaluations can be avoided
- Use of index structures possible
- Linear bitvector union operations can be used
» F-DATALOG optimization techniques can be employed
- Bottom-up evaluation is normal, as in F-Datalog
- Top-down evaluation as in Prolog possible, with resolution
- semi-naive evaluation
- index structures
- magic set transformation
- transitive closure optimizations

Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)

@ Softwareentwicklungswerkzeuge (SEW) © Prof. Uwe ABmann

3

Related Tools

The End - Appendix
Comprehension Questions

45

Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)

e

» Fujaba and MOFLON graph rewrite systems
= TGG for Model Mapping
= QVT Relational is very similar to TGG
= See chapter MOFLON and course ST-II
» AGG graph rewrite system (From Berlin)
» VIATRAZ2 graph rewrite system
» Program Analysis Generators
- PAG (Alt, Martin)
- Sharlit (Tijang)
- MetaFrame with modal logic (Knoop, Steffen)
- Slicing-Tools (Reps, Field/Tip, Kamkar)

Terminology for Automated Graph Rewriting and
Graph Reachability

a7

Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)

e

> Graph rewrite rule: rule (left, right hand side) to match left-hand side in the graph and to
transform it to the right-hand side

> Graph rewrite system: set of graph rewrite rules

» Start graph (axiom): input graph to rewriting

> Graph rewrite problem: a graph rewrite system applied to a start graph

> Manipulated graph (host graph): graph which is rewritten in graph rewrite problem
» Redex: (reducible expression) application place of a rule in the manipulated graph

» Derivation: a sequence of rewrite steps on the manipulated graph, starting from the start
graph and ending in the normal form

> Normal form: result graph of rewriting; manipulated graphs without further redex
> Unique normal form: unique result of a rewrite system, applied to one start graph
» Terminating GRS: rewrite system that stops after finite number of rewrites

» Confluent GRS: two derivations always can be commuted, resp. joined together to one
result

> Convergent GRS: rewrite system that always yields unique results (terminating and
confluent)

46

Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)

G,

v

Explain program slicing
» Why is regular graph reachability “regular’?

How do you create a model mapping with regular graph
reachability?

Explain a typical data-flow analysis

v

v

