51. Model and Program Analysis
with Graph Reachability

Prof. Dr. Uwe ARBmann 1)Model Mapping
Softwaretechnologie 2)EARS for Reachability
Technische Universitat Dresden 3)Regular graph reachability

Version 12-0.6, 17.01.13 1)Graph slicing
4)Context-free graph
reachability
5)More on the Graph-Logic
Isomorphism

6)Implementation in Tools

Softwareentwicklungswerkzeuge (SEW) © Prof. Uwe AlBmann

Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)

3

Literature

Hannes Schwarz, Jurgen Ebert, and Andreas Winter. Graph-based
traceability: a comprehensive approach. Software and System
Modeling, 9 (4):473-492, 2010.
Uwe ABmann. Graph rewrite systems for program optimization. ACM
Transactions on Programming Languages and Systems (TOPLAS),
22(4):583-637, June 2000.

- http://portal.acm.org/citation.cfm?id=363914

Tom Mens. On the Use of Graph Transformations for Model
Refactorings. GTTSE 2005, Springer, LNCS 4143

- http://www.springerlink.com/content/5742246115107431/
Thomas Reps. Program analysis via graph reachability. Information

and Software Technology, 40(11-12):701-726, November 1998.
Special issue on program slicing.

Mark Weiser. Program slicing. IEEE Transactions on Software
Engineering, SE-10(4):352-357, July 1984.

Frank Tip. A survey of program slicing techniques. Journal of
Programming Languages, 3:121-189, 1995.

_

3

Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)

3

Other References

» Uwe ARBmann. OPTIMIX, A Tool for Rewriting and Optimizing
Programs. In Graph Grammar Handbook, Vol. Il. Chapman-Hall,
1999.

> K. Lano. Catalogue of Model Transformations
- http://www.dcs.kcl.ac.uk/staff/kcl/tcat.pdf

Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)

3

(reachability) and impact analysis

Tools in an Integrated Development Environment

> Model mappings relate different artefacts to enable traceability

el el

| Model mappings

J

Model slicing

~ Model composition

Reachability analysis (traceability) | |

Attribute analysis

Requirements
Repository

Test Case
Repository

s — e
Design Implementation
Repository Repository
(PIM, Arch) (PSI, Code)

Metamodel
Repository
(M2)

Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)

3

Literature

» Frédéric Jouault and Ivan Kurtev. On the Architectural Alignment of
ATL and QVT. In: Proceedings of the 2006 ACM Symposium on
Applied Computing (SAC 06). ACM Press, Dijon, France, chapter
Model transformation (MT 2006), pages 1188—1195.

= http://atlanmod.emn.fr/bibliography/SAC06a
» Tutorial Gber ATL “Families2Persones”
> http://www.eclipse.org/m2m/atl/doc/ATLUseCase Families2Persons.
ppt
» ATL Zoo von Beispielen
= http://www.eclipse.org/m2m/atl/atiTransformations
» K. Lano. Catalogue of Model Transformations
= http://www.dcs.kcl.ac.uk/staff/kcl/tcat.pdf
> Implementation in ATL

= http://www.eclipse.org/m2m/atl/atiTransformations/EquivalenceAttributes
Associations/EquivalenceAttributesAssociations.pdf

51.1 Model Mapping
D (Modellverkniupfung)

@ SEW, © Prof. Uwe ABmann 6

Model Mappings and Model Weavings

\4

Platform-Independent Model (CIM)
Design specification

Prof. U. ABmann, Softwareentwicklungswerkzeuge

3

N

>

Model mappings connect models horizontally (on the
same level) or vertically (crossing levels).

Model transformations transform models horizontally or
vertically.

= From a model mapping, a simple transformation can
be infered

Model weavings weave two input models to an output
model, based on a crosscut specification

Model extensions (model merges, model additions)
extend an input model by an extension (often done by
hand)

= Usually, some parts are still hand-written code

Model2Text expansion (code generation by template
expansion)

V

Platform Specific Model (PSM)

Platform-Specific Extension (PSE)

Platform Description Model (PDM)

|
Code addition

Handwritten code

_

Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)

3

Model Mapping (Modell-Verknupfung) with MID
INNOVATOR

>

Innovator can be used for requirements models, design models,
Implementation models, as well as for transformations in between

» How to relate these models systematically?

% UML-Modell ‘TTBib_UML.ino_prak2' - INNOVATOR

Element Bearbeiten Ansicht Modell Engineering “Wechseln Extras Hilfe
& & M EBe OE « 4L @ O@
| P.i: TTBib_UML - Status Mame Typ | Anderungsdatum
Pl E@ systemMadel 1 0 A |E| Auzleihe Sec.. 22112003 00:45:02
@ external object $IHOTMPidocs 20 A Kunde_anmelden Koll... 10112003 01:21:54
B Use Case System K A |E| Rickgabe Sec.. 22112003 00:21:47
@ @ analysis system 4 0 A |E| Tortrager _Einkauf Sec.. 100112003 01:23:59
@ Java design system 5 0 A @ Kunden_neu_anlegen Sec.. 100112003 01:26:19
@ Java implementation system $IHOTMP/src g 0 A @ AnalysisClazsDiagram Klas.. 09.11.2003 152914
_3.9 systembodel management 7o A Q Yerwaltung_a%5 Wias... 09.11.2003 152556
] g 0 A () Tortrdger_aS Wlas.. 0911 2003 15:20:08
9 0 A Q Kunde_&%5 Klgs... 09112003 15:27:32
0 A Q D Hunde_AS Chjr... 0911 2003 13:20:05
@ 0 A Q : Tontréger_A% Ohje.. 0911 2003 132016
.o A KD “werwatungUl_AS Wias... 09.11.2003 15:16:32
.o A KD - erwshtungUl_AS Ohj... 09112003 13:23:08
@ .0 A i Kunde_LIC Chj... 09112003 14:05:54
.0 A i : Biblicthek_I1C Chjr... 09112003 15:44:35
.o A Q D Werwattung_AS Ohj... 09112003 16:14:14

Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)

3

Rpt. from ST-II: Model Mapping, Transformation and
Synchronization in the MDA

The MDA architecture derives from a platform-independent model
(PIM) by hand, by rules, by transformations, by metaprograms
platform-specif ¢ models (PSM)

» Model mapping connects systematically all elements of a source
model to the elements of a target model.

» From the mappings, a translation, transformation, or synchronization
can be automatically infered.

depends Mapping depends

Source Language |_Upon Specif cation upon ,| Target Language
def ned efned def ned
in by in

Mapping
Source Model — Target Model
PIM PSM

Quelle: Kleppe, A., Warmer, J., Bast, W.: MDA Explained - Practice and Promise of the
Model Driven Architecture; Addison Wesley 2003 (Draft 25.10.02)

|| Problem: Analysis and Reachability

1l » We need graph reachability analyzers

= to create trace graphs for reachability and traceability
= to create model mappings, model slicings
= to prepare refactorings, transformers, and optimizers

- For models: For model refactoring, adaptation and specialization,
weaving and composition

- For code: Portability to new processor types and memory hierarchies
- For optimization (time, memory, energy consumption)
» However, reachability analyzers are big beasts

- Current implementation techniques are hard to understand and to a
large extent unsystematic

» ldea: Use graph-logic isomorphism

Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)

3

51.1.1 Query-View-Transformations

] (QVT)

The language of the OMG for model transformations within
MDA

@ SEW, © Prof. Uwe ABmann 11

- QVT Dialects

12

Black Box
Implementation

&
2 un —
= c o ©
o o 5 E L
-— o] = O
© © Qo
i) E.mm C
o (0 &

| -

T

Buiddey
leuonelado

(M3S) abnaziamsbunpoimiuaalemyos ‘uuewyy ‘N “Joid “ v

_

13

Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)

3

Transitive Closure with QVT Relations

> QVT relations uses logic expressions on base and derived relations
(graph-logic isomorphism)

/I Transitive Closure in QVT relations,
/l Modeled with recursiven relation “transitiverelation”
relation transitiverelation {
domain node:Node {
/[matching attributes
name = sameName;

}

domain node2:Node { when {
// node2 must have the // conditions: base relation must exist

/I same name as node paserelation(node,node2) or

name = sameName; // or a transitive relation to a base relation
} (transitiverelation(node,neighbor)
domain node3:Node { and baserelation(neighbor,node2));

// node3 must also)

/I have the same name where { // Aufruf einer Transformation

name = sameName; makeNodeSound(node);
) }

}

- QVT Tools

Magic Draw Operational

14

(M3S) abnazylamsBunpoimIusaeMI0S ‘UuBWSY N "Joid

—O

oA
—OO

_

15

Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)

3

OCL for Model Search, Query, and Mapping

» OCL is a graph-query language, similar to EARS and .QL
» OCL can be called within QVT scripts
= Two different DQL are combined within a single language

// this 1is QVT
rule checkNoDoubleFeatureInSuperClasses(name:String) {
from node: Class (
node->TransitiveClosure()->collect.().exists(s |
s.name() = name);
)
to
System.out.println("Error: super class has doubly
defined feature: "+s.name());

}

51.2 Using EARS for Analysis and
D Mappings of Models and Code

16
= Graph reachability engines are A-tools answering questions

about structure of models and programs

= EARS can be employed for regular graph reachability,
context-free graph reachability, slicing, data-flow analysis

@ Softwareentwicklungswerkzeuge (SEW) © Prof. Uwe AlBmann

_

17

Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)

3

EARS for Model Mapping

» QVT Relational is a language for Edge addition rewrite systems
(EARS)
» EARS can be used for model mapping:
= Transitive closure
= Regular path reachability
= Context-free path reachability

Model Analysis with Graph Reachability

1811 » Use the graph-logic-isomorphism: Represent everything in a program
or a model as directed graphs
- Program code (control flow, statements, procedures, classes)
- Model elements (states, transitions, ...)
- Analysis information (abstract domains, flow info ...)

- Directed graphs with node and edge types, node attributes, one-edge
condition (no multi-graphs)

» Use edge addition rewrite systems (EARS) and other graph
reachabllity specification languages to
- Query the graphs (on values and patterns)
- Analyze the graphs (on reachability of nodes)
- Map the graphs to each other (model mapping)

» Later: Use graph rewrite systems (GRS) to construct and augment
the graphs, transform the graphs

» Use the graph-logic isomorphism to encode
- Facts in graphs
- Logic queries in graph rewrite systems

Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)

3

19

Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)

3

Specification Process

1) Specification of the data model (graph schema)

- Specification of the graph schema with a graph-like DDL (ERD, MOF,
GXL, UML or similar):

 Schema of the program representation: program code as objects and basic
relationships. This data, i.e., the start graph, is provided as result of the parser

 Schema of analysis information (the infered predicates over the program
objects) as objects or relationships

2) Program analysis (preparing the abstract interpretation)
- Querying graphs, enlarging graphs
- Materializing implicit knowledge to explicit knowledge
- Materializing model mappings
3) Abstract Interpretation (program analysis as interpretation)

- Specifying the transfer functions of an abstract interpretation of the
program with graph rewrite rules on the analysis information

4) Model and Program transformation (optimization)
- Transforming the program representation

A Simple Program (Code) Model (Schema) in

=l MOFIUML

Analysis information

Program representation

Proc

Stmt

/\

INSERT _IN
AllExprs

LATEST_IN

ExprsOfStmt

Register

Assign

AssReg

ExpreEqClass

Exprs

Expr

gdReg

IntConst

51.2. Simple Reachability:
D Path Abbreviations in Graph Analysis

21
= With edge addition rewrite systems

@ Softwareentwicklungswerkzeuge (SEW) © Prof. Uwe AlBmann

o Path Abbreviations

22 » Path abbreviations shorten paths in the manipulated graph.

» They may collect nodes into the neighborhood of other nodes.
» EX.: Collection of Expressions for a procedure: edge addition

-- Datalog notation:
AllExprs(Proc, Expr) :-
Blocks(Proc,Block),
Stmts(Block,Stmt),
Exprs(Stmt, Expr).

Blocks

-- if-then rules:
if Blocks(Proc,Block), Stmts
Stmts(Block,Stmt),
Exprs(Stmt, Expr) @
then
AllExprs(Proc, Expr); Exprs

- regular expression notation (TGreQL):

AllEXxprs

AllExprs := Proc Blocks.Stmts.Exprs Expr

Transitive Closure

23 Reachability most often can be reduced to transitive closure

>
» “Does an Stmt S reach a expression E?”
> Left or right recursion in F-Datalog

» Kleene * in TgreQL

>

Thick arrow in Fujaba : \

// TGreQL
reach*(S:Stmt, E:Expr)

. reach -E

// F-Datalog
reach(S:Stmt,E:Expr) :- gen(S:Stmt,E:Expr), not killed(S:Stmt,E:Expr).
reach(S:Stmt,E:Expr) :- pred(S:Stmt,P), reach(P,E:Expr).

not killed

f. U. ABmann, Softwareentwicklungswerkzeuge (SEW)

Relating Nodes into Equivalence Classes

L
24 » Ex.: Computing equivalent nodes

» Context-sensitive problem, because m is not in the context of n
baserule:

eq(m:Proc,n:Proc) :-

m.name != n.name.
If (m:Proc, n:Proc) and m.name != @
n.name) eq
o CnProc >
- TgreQL regular expression: m.name != n.name

m:Proc eq n.Proc if

.hame != n.name

3

Relating Nodes into Equivalence Classes (Here:
|| Value Numbering, Synt. Expression Equivalence)

» Ex.: Computing structurally

25
equivalent expressions -
.@ €q | .@
baserule:

eq(IntConstl, IntConst2) :-
IntConstl ~ IntConst(Value),
IntConst2 ~ IntConst(Value).

recursive_rule:

eq(Plusl,Plus2) :-
Plusl ~ Plus(Type),
Plus2 ~ Plus(Type),
Left(Plusl, Exprl),
Right(Plusl, Expr2),
Left(Plus2,Expr3),
Right (Plus2, Expr4).
eq(Exprl, Expr3),

eq(Expr2,Expr4).

51.3. Data-Flow Analysis as Graph
D Reachability

26
= with edge additions

@ Softwareentwicklungswerkzeuge (SEW) © Prof. Uwe AlBmann

Data-flow Analysis for Reachability and

|| Traceability

27

Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)

3

Data-flow analysis is a specific form of abstract interpretation asking
reachability questions, i.e., computing the flow of data through the
program, from variable assignments to variable uses

- Result: the value-flow graph (data-flow graph)
Examples of reachability problems:
AllSuperClasses: find out for a class transitively all superclasses
AllEnclosingScopes: find out for a scope all enclosing scopes

Reaching Definitions Analysis: Which Definitions (Assigments) of a
variable can reach which statement?

Live Variable Analysis: At which statement is a variable live, i.e., will
further be used?

Busy Expression Analysis: Which expression will be used on all
outgoing paths?
- Central part: 1 recursive system

_

28

Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)

3

Reaching Definition Analysis

» Reaching Definitions Analysis:

= Which Assigments of a variable
can reach which using statement?

= Which variable definitions reach
which expression?

» Graph rewrite rules implement an
abstract interpreter

— On instructions or on blocks of
instructions

- Flow information is expressed
with edges of relations “reach-*”

» Recursive system (via edge reach-

begin)

- B reach-end E == E reaches end

of block B

@St

not killed

reach-end

reach-begin

reach-end(B,E)
reach-end(B,E)
reach-begin(B, E)

:- gen(B,E).
: - reach-begin(B, E),
:-pred(B,P), reach-end(P,E).

not killed(B,E).

_

29

Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)

3

Code Motion Analysis

» Code motion is an essential transformation to speed up the generated code.
However, it is a complex transformation:

— Discovering loop-invariant expressions by data-flow analysis
- Moving loop-invariant expressions out of loops upward
- Code motion needs complex data-flow analysis

» Busy Code Motion (BCM) moves expressions as upward (early) as possible
» Lazy Code Motion (LCM)

Moving expressions out of loops to the front of the loop, upward, but
carefully:

Moving expressions to an optimal place so that register lifetimes are
shorter and not too long (optimally early)
LCM analysis computes this optimal early place of an expression
[Knoop/Steffen]

Analyze an optimally early place for the placement of an expression

About 6 equation systems similar to reaching-definitions

Every equation system is an EARS

_

30

Excerpt from LCM Analysis with Overlaps

» Compute an optimally early block for an expression (out of a loop)

~social_in
NOT earliest_out

@ - - @IOT earliest

Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)

3

social_out soclal_out

comp_soc _in

~
i & = = = = = = N =N =N =N =N N =N N =N =N =N =N =N = BB = = N |
~
e
>
~

s isolated_and_latest in
A
NOT social_in | NOT social | v
CBiockO> — CBiockO
I
latest_In latest_In 4

51.3 Regular Graph Reachability

31

@ Softwareentwicklungswerkzeuge (SEW) © Prof. Uwe AlBmann

- Regular Graph Reachability

3241 » If the query can be expressed as a regular expression, the query is a
regular graph reachability problem

» Kleene star is used as transitive closure operator
» TgreQL and Fujaba are languages offering Kleene *

-- F-Datalog notation:
11Exprs(Proc, Expr) :-
Block*(Proc,Block),
Stmt*(Block, Stmt),
Expr*(Stmt, Expr).
g-- if-then rules:
if Block*(Proc,Block),
Stmt*(Block, Stmt),
Expr*(Stmt, Expr)
then
Al1lExprs(Proc, Expr);

-XPrs

- regular expression notation (TGreQL):
11Exprs := Proc Block*.Stmt*.Expr* EXpr

33

Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)

3

51.3.1 Static Slicing: Single-Source-Multiple-Target
Regular Reachability

> [Weiser] [Tip]
> A static slice is the region of a program or model reached from one
source node by a regular reachability query
» A forward slice is a region in forward direction of the program
= The uses of a variable
= The callees of a call
= The uses of a type
> A backward slice is a region in backward direction of the program
= The assignments which can influence the value of a variable
= The callers of a method
= The type of a variable
» A static slice introduces path abbreviations from one entity to a region

» Slicing can map arbitrary entities in programs and models to other
entities, based on a regular graph expression

_

34

Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)

3

Traceability between Models

» Data-flow analysis (graph reachability, slicing) can be done

intraprocedurally
Interprocedurally (program-wide)
intermodel: then it creates trace relations

interspecification: between requirements models, design models, and
code models

Inter-MDA

» Traceability is intermodel slicing and graph reachability
> A model mapping is an intermodel trace graph

Application of Traceability:

=1 || Model Mappings and Model Weavings

Platform-Independent Model (CIM)
Design specification

\4

~

4

Platform-Specific Extension (PSE)

AJ

Platform Specific Model (PSM)

Platform Description Model (PDM)

Prof. U. ABmann, SoftwareentwicklungswerkzeugeA4SE

Code addition

Handwritten code

@—

51.3.2 Context-Free
D Graph Reachability

36

@ Softwareentwicklungswerkzeuge (SEW) © Prof. Uwe AlBmann

37

Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)

3

F-Datalog and EARS can describe other recursions than regular ones
(linear recursions)

= Context-free recursions
= Cross-recursions

Then, we speak of context-free graph reachability
= A context-free language describes graph reachability

Application: interprocedural, whole-program analysis (see separate
optional chapter)

= Interprocedural IDFS framework (Reps)

51.4 More on the Logic-Graph
D Isomorphism

38

@ Softwareentwicklungswerkzeuge (SEW) © Prof. Uwe AlBmann

Program and Model Analyses Covered by Graph
|| Reachability

3911 » Reachability Analysis is a simple form of abstract interpretation
= Slicing is a Single-Source-Multiple-Target reachability analysis
» Every abstract interpretation where a mapping of the abstract
domains to graphs can be found.
= monotone and distributive data-flow analysis
- control flow analysis
- SSA construction
— Interprocedural IDFS framework (Reps)

Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)

3

40

Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)

3

The Common Core of Logic, Graph Rewriting and
Program Analysis

= Graph rewriting, DATALOG and data-flow analysis have a common core:
EARS

Datalog
SQL

abstract interpreta

o Relation DFA/DATALOG/GRS

41

Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)

3

» Abstract interpretation (Data-flow analysis), DATALOG and graph
rewrite systems have a common kernel: EARS

= As DATALOG, graph rewrite systems can be used to query the graph.
» Contrary to DATALOG graph rewrite systems materialize their
results instantly.

= Graph rewriting is restricted to binary predicates and always yields all
solutions.

» Graph rewriting can do transformation, i.e. is much more powerful

than DATALOG.

= Graph rewriting enables a uniform view of the entire optimization
process

= There is no methodology on how to specify general abstract
interpretations with graph rewrite systems

= |In interprocedural analysis, instead of chaotic iteration special
evaluation strategies must be used [Reps95] [Knoop92].

= Currently strategies have to be modeled in the rewrite specifications
explicitly.

o Relation DFA/DATALOG/GRS

**11 » Uniform Specification of Analysis and Transformation

- If the program analysis (including abstract interpretation) is specified
with GRS

- It can be unified with program transformation

Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)

3

D 51.5 Implementation in Tools

43

@ Softwareentwicklungswerkzeuge (SEW) © Prof. Uwe AlBmann

Efficient Evaluation Algorithms from Logic
|| Programming

44 » Tool OPTIMIX uses the ,Order algorithm“ scheme [AZmann00]

— Variant of nested loop join

- Easy to generate into code of a programming language
- Works effectively on very sparse directed graphs

- Sometimes fixpoint evaluations can be avoided

- Use of index structures possible

- Linear bitvector union operations can be used

» F-DATALOG optimization techniques can be employed
- Bottom-up evaluation is normal, as in F-Datalog
- Top-down evaluation as in Prolog possible, with resolution
- semi-naive evaluation
- index structures
- magic set transformation
- transitive closure optimizations

Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)

3

45

Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)

3

Related Tools

>

>

Fujaba and MOFLON graph rewrite systems

TGG for Model Mapping
QVT Relational is very similar to TGG
See chapter MOFLON and course ST-II

AGG graph rewrite system (From Berlin)
VIATRAZ2 graph rewrite system
Program Analysis Generators

PAG (Alt, Martin)

Sharlit (Tijang)

MetaFrame with modal logic (Knoop, Steffen)
Slicing-Tools (Reps, Field/Tip, Kamkar)

46

Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)

3

The End - Appendix
Comprehension Questions

» Explain program slicing
» Why is regular graph reachability “regular’?

» How do you create a model mapping with regular graph
reachability?

» Explain a typical data-flow analysis

Terminology for Automated Graph Rewriting and
|| Graph Reachability

47 » Graph rewrite rule: rule (left, right hand side) to match left-hand side in the graph and to
transform it to the right-hand side

» Graph rewrite system: set of graph rewrite rules

» Start graph (axiom): input graph to rewriting

» Graph rewrite problem: a graph rewrite system applied to a start graph

» Manipulated graph (host graph): graph which is rewritten in graph rewrite problem

» Redex: (reducible expression) application place of a rule in the manipulated graph

» Derivation: a sequence of rewrite steps on the manipulated graph, starting from the start
graph and ending in the normal form

» Normal form: result graph of rewriting; manipulated graphs without further redex
» Unique normal form: unique result of a rewrite system, applied to one start graph
» Terminating GRS: rewrite system that stops after finite number of rewrites

» Confluent GRS: two derivations always can be commuted, resp. joined together to one
result

» Convergent GRS: rewrite system that always yields unique results (terminating and
confluent)

Prof. U. ABmann, Softwareentwicklungswerkzeuge (SEW)

3

	Program Optimization with Graph Rewrite Systems
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Modellgrenzen am Beispiel INNOVATOR
	MDA-Transformationsprozess
	Problem and Goal
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Idea Optimization = Graph Rewriting
	Method
	A Program Model
	Slide 21
	Collection of Expressions
	Slide 23
	Slide 24
	Value Numbering (Expression Equivalence)
	Slide 26
	Data-flow Analysis
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Covered Optimizations
	Slide 40
	Relation DFA/DATALOG/GRS
	Results
	Slide 43
	Efficient Evaluation Algorithms
	Related Work
	Slide 46
	Terms

