
Fakultät Informatik, Institut für Software- und Multimediatechnik, Lehrstuhl für Softwaretechnologie

Lecture 2 – Software Development as
Engineering Activity:

Software Engineering Scenarios
A run through the engineering life cycle
Engineers and Entrepreneurs

Softwaretechnologie II

Prof. Dr. U. Aßmann

Technische Universität Dresden

Institut für Software- und Multimediatechnik

Lehrstuhl Softwaretechnologie

http://st.inf.tu-dresden.de

WS 13-0.3, 23.10.2013

Obligatory Reading

• Balzert Introduction

• Maciaszek/Liong Chap. 1

• Ghezzi Chap 5+7 or

• Pfleeger Chap 2+4

• Wolfgang Hesse, Heinrich C. Mayr. Modellierung in der
Softwaretechnik: eine Bestandsaufnahme. Informatik Spektrum
31(5), Springer-Verlag 2008

• Ed Seidewitz. What models mean. IEEE Software, 20:26-32,
September 2003.

STII - Engineering - Prof. Dr. Uwe Aßmann

Wie man sich
selbständig die

Literatur erarbeitet

2

References

• M. Pidd. Tools for Thinking. Modeling in Management Science. Wiley. Gives
a good overview on modeling in general (soft and hard models)

• www.omg.org/mda Model driven architecture® is a process that structures
refinement-based development, using UML

• Favre’s papers on egyptology:
– Jean-Marie Favre. Foundations of model (driven) (reverse) engineering: Models -

episode I: Stories of the fidus papyrus and of the solarus. In Jean Bezivin and Reiko
Heckel, editors, Language Engineering for Model-Driven Software Development,
number 04101 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 2005.
Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss
Dagstuhl, Germany.

– Jean-Marie Favre. Foundations of meta-pyramids: Languages vs. metamodels-
episode II: Story of thotus the baboon1. In Jean Bezivin and Reiko Heckel, editors,
Language Engineering for Model-Driven Software Development, number 04101 in
Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 2005. Internationales
Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl,
Germany.

• JR Abrial, Stephan Hallerstede. Refinement, decomposition, and
instantiation of discrete models: Application to Event-B. Fundamenta
Informaticae, 2007

STII - Engineering - Prof. Dr. Uwe Aßmann

3

Successful Engineers and Entrepreneurs

• Konrad Zuse. Mein Lebenswerk. Springer. A MUST for every student.
• Michael Lewis. The New New Thing. A book about how Jim Clark, Netscape

founder, founded Healtheon. Coronet Books, Hodder & Stoughton
• R. Würth. Skript on Entrepreneurship. Interfakultatives Institut für

Entrepreneurship. TU Karlsruhe. http://www.iep.uni-karlsruhe.de/260.php
• Klaus Kemper. Heinz Nixdorf. Verlag Moderne Industrie.

– The Nixdorf foundation donated given 2 chairs to the department (multimedia,
computational engineering)

• The Google story.
• Steve Jobs. about Apple. (There are several books available)
• Bill Gates. The Way Ahead. (dtsch. Der Weg nach vorn. Die Zukunft der

Informationsgesellschaft) Autobiography. Hoffmann&Campe.
• D. Brandes. Konsequent einfach. Die Aldi Erfolgsstory. Heyne-Verlag.
• David Thielen. Die 12 simplen Erfolgsgeheimnisse von Microsoft. Econ-

Verlag
• W. Wiedeking. Anders ist besser. Ein Versuch über neue Wege in Wirtschaft

und Politik. Piper-Verlag, München 2006.
• D. Tapscott. Wikonomics. 2007

STII - Engineering - Prof. Dr. Uwe Aßmann

4

Scenario of Running Example

• You are a project manager in Hamann/Becker
Car Radios, Inc, Karlsruhe, Germany and Your
boss comes into your office and says:

• “Our competitor Smith Car Radios has a new
satellite radio. Their sales are growing, and our
customers demand it, too. How quickly can
you deliver me a satellite radio?”

STII - Engineering - Prof. Dr. Uwe Aßmann

5

First Ideas

• How many people?

– do we have the right ones?

• Which milestones (deadlines)?

• How many resources?

• What should the radio be able to do?

• Why will it better than the competitors? (competitive
business edge)

• How can we go the way in a structured way
towards the product?

• How can we engineer it?

STII - Engineering - Prof. Dr. Uwe Aßmann

Softwaremanagement

ST-II

6

What is Software Engineering?

• It teaches the production of software with engineering techniques
(the engineer's toolkit)

• Model and Specify

• Analysis and Prediction

• Construction

• Reuse

• Validation

• Improvement

• Sell

STII - Engineering - Prof. Dr. Uwe Aßmann

Specification,
Models, Code

Software engineers model, specify, analyse,
predict, build, validate, improve, and sell

7

The (Software) Engineer's Toolkit (1)

• Model a reality (a domain or a system in the world):
Descriptive modeling
– Describe or specify
– World and problem modeling vs. system modeling

• Specify a system: Prescriptive modeling
– Specifying features and requirements of a system

• Analyze (measure) a reality (a model or a system)
– Identifying the problem (problem analysis, goal analysis, risk

analysis)
– Measure a system (Software metrics)
– Searching and finding
– Controlling

• Predict features of a product from the model (form
hypotheses, prove)
– Forming hypotheses about the system

STII - Engineering - Prof. Dr. Uwe Aßmann

8

The (Software) Engineer's Toolkit (2)

• Construct a product (realize, develop, invent, build):
apply systematic engineering steps to get a high-
quality, evolvable software system
– Elaboration (adding more details to the model to arrive at

an implementation)
– Compose a system from components
– Describing the infinite and the unknown with finite

descriptions
– Structure a model (making the model more clear)

• Refinement (making the model more precise and detailed)
• Abstraction (leaving out detail, focusing on the essential)
• Domain Transformation (changing representation of model)

– Reuse parts of products
• Engineer a product line (product family)

STII - Engineering - Prof. Dr. Uwe Aßmann

9

The (Software) Engineer's Toolkit

• Validate hypotheses on the product
– Experimentation (empirical software engineering)
– Checking (consistency, integrity, wellformedness, completeness, soundness)
– Testing
– Proving (formal software engineering, formal methods)
– Statistics (not covered here)

• Improve the product
– Reverse engineer
– Restructure
– Optimize with regard to a value model

• Sell the product(s)
– The software engineer solves problems to earn money for his company and

himself
– How to come to products?
– How to talk to customers?
– How to see the problem of the customer?
– How to reach a market with a product?
– How to found a startup?

STII - Engineering - Prof. Dr. Uwe Aßmann

10

2.1. Scenarios of Software Engineering

• Forward Engineering, Backward Engineering,
Improvement, Round-Trip Engineering

STII - Engineering - Prof. Dr. Uwe Aßmann

11

Rk

Dk

Ik

Rk+1

Dk+1

Ik+1

Changed
Requirements

Changed
Design

Changed
Code

Evolution

Forward Engineering

With CASE tools, implementations can be generated
from implementation models

Forward Engineering and Evolution

STII - Engineering - Prof. Dr. Uwe Aßmann

12

Rnew

Software Evolution

• Changed requirements require unforeseen refactoring and extensions

• Software must be structured flexibly so that it can be evolved

• Sometimes, more product variants are created and a product line emerges

STII - Engineering - Prof. Dr. Uwe Aßmann

13

Rk

Dk

Ik

Rk+1

Dk+1

Ik+1

Changed
Requirements

Changed
Design

Changed
Code

Rnew

Software Reengineering

• Reverse Engineering attempts to recover design from code

• Reengineering uses the gained design for further forward engineering

STII - Engineering - Prof. Dr. Uwe Aßmann

14

Rk

Dk

Ik

Rk+1

Dk+1

Ik+1

Changed
Requirements

Changed
Design

Changed
Code

Lost Design and
Requirements

The Dream: Automated Programming

• Automated programming (generative programming) generates code from
requirements automatically.

– It will need planning and expert system support

STII - Engineering - Prof. Dr. Uwe Aßmann

15

Rk

Dk

Ik

Rk+1

Dk+1

Ik+1

Changed
Requirements

Changed
Design

Changed
Code

Rnew

Round-Trip Engineering (Forward and Backward)

• Round-trip engineering combines forward and reverse engineering

– It allows for editing on all levels, keeping all artefacts consistent

STII - Engineering - Prof. Dr. Uwe Aßmann

16

Rk

Dk

Ik

Rk+1

Dk+1

Ik+1

Changed
Requirements

Changed
Design

Changed
Code

Rnew

2.2 A Run Through an Engineering Cycle 17

STII - Engineering - Prof. Dr. Uwe Aßmann

Engineering Cycle: Steps

1. Analysis

2. Prediction

3. Construction

4. Validation

5. Improvement

6. Selling Software

STII - Engineering - Prof. Dr. Uwe Aßmann

18

Analysis

• From requirements to product

1. Analyze problems to understand what to do

2. Specify a solution and realize (construct) it

3. For 1. and 2. Model the world to master it

• Steps

– Put requirements in a requirement specification
(requirements models)

– Step by step through different design models
• ... until we arrive at the implementation (system) model

STII - Engineering - Prof. Dr. Uwe Aßmann

19

Satellite radio domain analysis

(milestone 1)

Satellite radio requirement
specification

(using analysis model 1, milestone 2)

Design

(model 3, milestone 3)

Prototype

(model 4, milestone 4)

Prototype 2

(model 5, milestone 5)

System

(model 6, milestone 6)

But... What Is A Model?

• Pidd suggests a hierarchy of definitions:
– A model is a representation of reality
– A model is a representation of reality intended for some definite

purpose
– A model is a representation of reality intended to be of use to

someone charged with understanding, changing, managing, and
controlling that reality

– A model is a representation of a part of reality as seen by the people
who wish to use it

• To understand that reality (descriptive model, map)
• To change, manage, and control that reality (prescriptive model,

blueprint)
• More simply:

– A model is a representation of a part of a domain, or of a function of a
system, its structure, or behavior

– A model is an abstraction of a system
– A model is partial, i.e., abstract, and neglects some parts of the reality

STII - Engineering - Prof. Dr. Uwe Aßmann

20

Other definition

• “A model is an abstraction of something for
the purpose of understanding before building
it” (J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-Oriented Modeling and

Design. Prentice Hall, Englewood Cliffs, New Jersey, USA, 1991)

STII - Engineering - Prof. Dr. Uwe Aßmann

21

To Produce Software, We Model

STII - Engineering - Prof. Dr. Uwe Aßmann

Prescriptive

models

(specifications)

Descriptive

(analytic)

models

22

Software Systems

System Domain

System Design

What is the solution?

System model
(Design model)

Models the system reality
Manage that reality

The World

Problem Domain

Problem Analysis

What is the problem?

Problem model

(Analysis model)

Models the problem reality

Understand a problem

The Satellite Radio as Example

STII - Engineering - Prof. Dr. Uwe Aßmann

23

Software Systems

System Domain

System Design

Satellite Radio

Software-controlled
embedded system

The World

Problem Domain

Problem Analysis

No FM in USA

Digital radio quality

required everywhere

Descriptive Models: Glossaries, Classifications and Taxonomies

• A glossary is a set of explained terms

• A classification is a grouping of the concepts of a domain into classes

• A taxonomy (Begriffshierarchie) superimposes a hierarchical or
acyclic is-a relationship

– Analyse similarity (commonality-variability analysis)

• A ontology = taxonomy + associations, class and relation
expressions, and well-formedness constraints

STII - Engineering - Prof. Dr. Uwe Aßmann

24

Ontologies as Standardized Domain Models

• A (domain) ontology is a shared, standardized model for a domain,
consisting of a taxonomy and integrity constraints (consistency constraints)
constraining the hierarchy
– Rules to produce derived parts of the hierarchy. The derived parts are

intentionally specified

• Ontologies are standardized domain models
– In general, a domain model need not necessarily be standardized
– For many domains, domain modeling will start from these ontologies
– Domain engineers produce domain ontologies

• Example:
– Dublin Core ontology with concepts such as Date, Author, Comment
– Medical ontologies, such as gopubmed.org
– Upper ontologies (conceptual ontologies), such as SUO suo.ieee.org
– Biochemical ontologies (Gene ontology www.geneontology.org)

• Ontologies in the Semantic Web
– In 2003, the W3C has standardized the first ontology language for the web: OWL

(web ontology language)

STII - Engineering - Prof. Dr. Uwe Aßmann

25

Protege Editor

STII - Engineering - Prof. Dr. Uwe Aßmann

26

well-formedness

Ontology in OWL „Manchester Syntax“

STII - Engineering - Prof. Dr. Uwe Aßmann

27

What is a Specification?

• A specification is a prescriptive model (blue print) of the
system, i.e., a precise description what a system
– should deliver (service, delivery, postconditions, guarantees)
– requires for the delivery (requirements, preconditions,

assumptions)
– “the truth lies in the model” (J.M. Favre)

• A specification must be realized (implemented). An
implementation can be verified with regard to a specification
– showing that the implementation derives the delivery from the

requirements

• A specification contains one or several models of the system
– Models are abstract, partial representations of partial knowledge

STII - Engineering - Prof. Dr. Uwe Aßmann

28

Different Kinds of Specifications and Models (1)

• Descriptive (Analysis) models
• Domain model:

– Domain analysis is the process of
identifying and organizing knowledge
about the application domain

• “Real”-Problem model:
– Usually, the requirement specification

includes a problem model –
to support description and solution
of these problems

• Goal models
– What do we want to achieve with the system?

STII - Engineering - Prof. Dr. Uwe Aßmann

29

Different Kinds of Specifications and Models (2)

• Prescriptive models (system models, specifications)
– From the analysis models, we derive the system models.

• Requirements specification (SRS)
– the specification what the system should deliver.
– Functional requirement model: system functions
– Non-functional requirement model: system qualities

• Design models
– abstract representation of a system on the level of a design

language

• Architecture models
– Describing the software architecture

• Implementation models
– partial representation of the system on the level of an

implementation language

STII - Engineering - Prof. Dr. Uwe Aßmann

30

Specifications and Models in Software Engineering

• Developping from declarative to behavioral models

• Earlier models should be abstractions of later ones, later models
should be concretizations or refinements of earlier ones

STII - Engineering - Prof. Dr. Uwe Aßmann

Domain model, may be an ontology

Implementation model (partial code)

System requirements specification with
requirements models (SRS)

more details added

Code

System design specification with design models (SDS)
starts to be behavioral

Concrete

Abstract

31

Structural vs. Behavioral Models

• A structural model captures the structure of a reality
– Integrity constraints for well-formedness

• A behavioral model captures its behavior
– A behavioral model uses a structural model and adds a model how a

reality reacts
• operations (functions, procedures, methods, …)
• event-condition-action rules,
• a state space

• Objects have a state space, often represented by
– Petri-nets (see later) and their specializations:

• a finite state machine
• a hierarchical state machine (state chart)
• data-flow diagrams

– Process algebra

STII - Engineering - Prof. Dr. Uwe Aßmann

32

Engineering Cycle: Steps

1. Analysis

2. Prediction

3. Construction

4. Validation

5. Improvement

6. Selling Software

STII - Engineering - Prof. Dr. Uwe Aßmann

33

Prediction

• Behavioral models allow for prediction
– Graph-based models can be consistency-checked with logic reasoners

• Integrity constraints constrain the object sets (object extents) of the classes
• Structural constraints (reducibility, layering)

– Petri nets can be verified with matrix theory
• Resource consumption (memory consumption)
• Liveness of the processes
• Fairness of the processes
• Deadlocking processes

– Statecharts can be checked with model checkers
– Real-time statecharts can be time-checked with real-time model checkers

• This area is called formal methods of software engineering
• Prediction is important for critical software:

– Real-time software in embedded systems
– Safety
– Security and privacy
– Energy efficiency

STII - Engineering - Prof. Dr. Uwe Aßmann

34

Engineering Cycle: Steps

1. Analysis

2. Prediction

3. Construction

4. Validation

5. Improvement

6. Selling Software

STII - Engineering - Prof. Dr. Uwe Aßmann

35

Construction with Refinement-Based Development

• Refinement
– From Domain Model  Requirement Specification 

Design Specification  Implementation Model  Code
• Develop the next specification, starting from the previous ones

• Construction steps
– Start with some simple form.
– Then, apply construction steps:

• Elaboration
– Elaborate more details – enrich the model with more semantics

» Concretization: add concrete details
» Refinement: Refine an existing specification/model, by detailing an

abstract concept

• Check consistency of models
• Measure quality and quantity of models
• Compose from components

STII - Engineering - Prof. Dr. Uwe Aßmann

36

Questions for the Methods of Development (1)

• Elaboration (concretizations): Elaborate more details
– Which Elaboration steps exist?
– How do I know in which direction to elaborate?

• Refinements
– Syntactic refinement

• Replace a part of the model by something more fine-grained

– Semantic refinement
• Prove for a syntactic refinement that it is correct, i.e., either preserves

semantics, or enrichtes semantics

– Pointwise Refinements
• Detailing an abstract concept by a net of more concrete ones

– Regional Refinements
• Detailing a region of the model by a net

– Crosscutting Refinements
• Detail a slice of the model

STII - Engineering - Prof. Dr. Uwe Aßmann

37

Questions for the Methods of Development (2)

• Rotations (Symmetry operations): Apply a semantics-
preserving change
– Rotate

• Symmetry operations
• Semantics-preserving operations

– Restructure (refactor)
• Rearrange structure, but keep requirements and delivery, i.e.,

semantics
• Which restructuring? (when is a specification too complex?)

– Semantic refinement
• Prove for a syntactic refinement that it is correct, i.e., either

preserves semantics, or enriches semantics

– Transform Domains
• Change representation, but keep semantics
• Which representation change? (which representations are appropriate for

which purpose?)

STII - Engineering - Prof. Dr. Uwe Aßmann

38

Reuse of Models and Code in Construction

• Reuse by composition: Engineers try to reuse
well-established solutions

– Components (CBSE)

– Design patterns

– Models (model-driven architecture)

– Best practices

• Reuse: to simplify system construction

– To save costs

– To reduce testing effort

STII - Engineering - Prof. Dr. Uwe Aßmann

39

Engineering Cycle: Steps

1. Analysis

2. Prediction

3. Construction

4. Validation

5. Improvement

6. Selling Software

STII - Engineering - Prof. Dr. Uwe Aßmann

40

Validation in a Software Development Process (V-Process Model)

• All specifications and models have to be validated or formally verified.

– Detailed models against more abstract models

– Implementations against specifications

• Result: A V-like software development process

STII - Engineering - Prof. Dr. Uwe Aßmann

Domain Model

Requirements
Specification

System Design

Code

Maintenance

Acceptance Test

Functional Test

validation

validation

validation

41

Domain Model
(car, speed, traffic,

GPS, Wireless)

Requirements Specification
(user desires, business models)

System Design
(control, sensors, connection

to car bus, satellite connection)

Code

Maintenance
(Error feedback, customer

feedback)

Acceptance Test
Field test with user

groups and car company

Functional Test
(inhouse at Becker)

validation

validation

validation

Validation of the Satellite Radio in the V-Model

STII - Engineering - Prof. Dr. Uwe Aßmann

42

Engineering Cycle: Steps

1. Analysis

2. Prediction

3. Construction

4. Validation

5. Improvement

6. Selling Software

STII - Engineering - Prof. Dr. Uwe Aßmann

43

Improvement

• Done via iteration, and ad-hoc

– Not in the focus of the course.

• Section “Product Lines” will treat some
aspects of software evolution, namely when
new products should be derived from an
existing product or product family.

• Optimization means: Improve on the qualities
of the system

– Speed, reliability, resource consumption

STII - Engineering - Prof. Dr. Uwe Aßmann

44

Engineering Cycle: Steps

1. Analysis

2. Prediction

3. Construction

4. Validation

5. Improvement

6. Selling Software

STII - Engineering - Prof. Dr. Uwe Aßmann

45

The Best Seller Is...

• .. the one who solves a problem best

• .. the one who pretends to solve a problem
best

• .. the one who solves a problem just good
enough

• .. the one who solves a problem reliably

STII - Engineering - Prof. Dr. Uwe Aßmann

??

46

2.3 Solving Problems – A Task for Engineers and Entrepreneurs

STII - Engineering - Prof. Dr. Uwe Aßmann

47

Why do we need to care about money?

• Calculating the cost and the price of a product
is essential for an engineer

• While usually other people distribute the
products on the markets („Vertrieb“),
engineers must give a price for a product!

STII - Engineering - Prof. Dr. Uwe Aßmann

Was sich nicht verkaufen lässt, will ich nicht erfinden.

Thomas Alva Edison http://www.gratis-spruch.de/

48

It is difficult to Earn Money with Software

• “The winner takes it all”

• OSS is cheap

• Product lines is the only way out

– They encapsulate enough knowledge of a domain
which forms a “sellable core”

– They help to follow market changes quickly

STII - Engineering - Prof. Dr. Uwe Aßmann

49

Entrepreneurship

• The difference of entrepreneurship and capitalism is
– A capitalist wants to earn money

– An entrepreneur solves problems

• Central question: Which problems can I solve for other people?
– Get rid of a negative life: What do people need? Where is their pain?

– Enabler for a positive life: What do people care about? Where is a value for
the customer?

STII - Engineering - Prof. Dr. Uwe Aßmann

An entrepreneur solves problems of people.

“Make things that remove people’s pain”

An entrepreneur creates a value in the life of the customer.

“Make things that people need”

Pain

removers

Happiness

enablers

50

The Entrepreneurial Type

• Hard work: do you want to spent 5 years in
business until your company has survived?

• An entrepreneur must long for freedom and
independence
– Uncertainty vs longing for freedom: People appear

in two classes:
• Security type: tends to avoid risks. Likes to be told what

to do

• Independence type: loves freedom, independence.

• Self discipline

• Aims realistic?

STII - Engineering - Prof. Dr. Uwe Aßmann

52

Problem Solving – A Task for the Engineer and also the Salesman

• Successful engineers and salesmen also solve problems for
their customers.
– A successful engineer or salesman can always return to a

customer because he has created satisfaction in the customer
(Kundenzufriedenheit)

• The engineer solves problem with an engineering technology
• The salesman solves problem by mediating the customer’s

financial situation and the engineer’s solution
• In small companies, software engineers have to play the role

of a salesman, too [Konrad Zuse, Mein Lebenswerk] [Klaus
Kemper. Heinz Nixdorf]

• Some of the greatest entrepreneurs of the 20th century have
been engineers: Werner von Siemens, Konrad Zuse, Heinz
Nixdorf

STII - Engineering - Prof. Dr. Uwe Aßmann

53

2.3.2 Strategies of Solving Problems and Selling

STII - Engineering - Prof. Dr. Uwe Aßmann

54

Chances

• „When you find inefficiency, you find opportunity“ [Barrack]

• „Make things people need“

• „Remove pain to earn money“

STII - Engineering - Prof. Dr. Uwe Aßmann

55

Problem
solving for

people

Eternal
human

problems

Eternal
change

Eternal
differences

Eternal New
new things

Eternal
inefficiencies

Eternal
satisfaction

Provide Problem Solving

• “Knowing a good problem is half the business”
• “Problems are my best friends” (Robert Fritz)
• “Selling drilling machines is not as important as selling

holes, but these are completely different businesses”
(H. Kagermann, SAP)

• Problem analysis of customers: Find out about
problems, and you will earn money
– Apply ZOPP to the Problem Area

• Stakeholder analysis is important
• Find out about the problems of a stakeholder group
• Find out about their goals
• From there, derive the product

• Try to find pain problems, because they create
pressure on the customer

STII - Engineering - Prof. Dr. Uwe Aßmann

56

Exploit the Eternal Human Problems and Needs

• Hunger, Food, Restaurants, ...
• Love, Relationship
• Hobby
• Beauty
• Exhibiting oneself
• Housing
• Save money
• Holidays
• Overcoming the Space problem: Car, Flights,...
• Simplifying complex things

– Overcoming bureaucracy

• Communication
• Being different from others (individualism)
• Lazyness
• Searching knowledge (expert portals)
• Relaxing

– Tourism, Travel,..

• Events
– Party, meeting people

STII - Engineering - Prof. Dr. Uwe Aßmann

Which of these problems is a
pain problem?

Which of these problems is a
need, if satisfied, makes the
customer happy (happiness
problem)?

57

Bedürfnisse nach Maslow

STII - Engineering - Prof. Dr. Uwe Aßmann

59

Exploit the Eternal Change

• The markets, the customers, the competitors change.
– Find out about change, and you will earn money
– Old players do not recognize change, but often are too immutable

• The stock market principle: “sell when high, buy when low”
– Investments in a crisis create value

• Embrace change
– Use it for your purposes, or change will roll you over.
– Some markets die after some time. Recognize the change, and change your

market.

• Which of the expected changes will create pain? (pain change)
– Year 2000 problem was a pain change problem with deadline.
– Lots of problems had to be solved

• Investigate the future
– By looking at market change forecasts, e.g., [Canton]

• Look out for goldrushs: A goldrush is a change with disruptive changes,
opening many new changes
– The German “Energiewende” is a goldrush change with deadline in 2020

STII - Engineering - Prof. Dr. Uwe Aßmann

60

Exploit Eternal Differences

• Know-how vs absent know-how

– Consultance

• Differences in knowledge:

– Wikonomics: sharing knowledge in a web
community

• Cultural differences

• Export from one region; import to the other

– Asian restaurants, Gyros, Döner

– Teleconferencing

STII - Engineering - Prof. Dr. Uwe Aßmann

61

Eternal Satisfaction - IBM's secret: Customer Satisfaction

• Satisfy your customer (Customer satisfaction)

– IBM: T. Watson, “THINK”

• Dont' loose a customer. Try to please him so
that she returns.

– It is much more easy to gain somebody who was
customer before than getting a new customer

– Quality and confidence pays off.

STII - Engineering - Prof. Dr. Uwe Aßmann

62

The New New Thing

• Innovation creates new new things for which
customers may pay higher prices

• “New New Things” are goldrush changes

• Michael Lewis. The New New Thing. A Silicon
Valley Story. Coronet Books. Hodder and
Stoughton. Tells the story about Jim Clark,
founder of Netscape, how he founds another
company, Healtheon, end of the 90s.

STII - Engineering - Prof. Dr. Uwe Aßmann

63

2.3.2 What to Sell as a Software Engineer

STII - Engineering - Prof. Dr. Uwe Aßmann

64

Different Types of Things to Sell

• What you might sell:
• Consultancy: sell your know-how

– Analysis studies on a market, trend or strategy

• Service (Requ.analysis, testing, maintenance, modernization,
reengineering)
– Many big companies have their focus there: IBM

• Individual projects for “individual software”
– SD&M, Accenture, Saxonia systems, …

• Product
• Product line (product family)

– Horizontal product line: one product idea in several markets
– Vertical product line: several products in one market

• Software platform for software ecosystem
• Enterprise landscapes (Anwendungslandschaft) with integration

of many tools

STII - Engineering - Prof. Dr. Uwe Aßmann

65

Guidelines

• “Go directly to the product” (Prof. Hufenbach)
– Always consider: which unit of my work will others want to

sell?
– What can be made to a product?
– For products, licences can be sold

• However, it is difficult to get a software product
– Software is often considered as a commodity, for which

people do not want to pay
– If a software technology (tool, framework, etc.) is not used,

it does not immediately create pain in the customer

• Software is “Soft”:
– Does not have a production cost
– Others may be able to easily rebuild it

• How can we nevertheless have “software products”?

STII - Engineering - Prof. Dr. Uwe Aßmann

66

What to Sell: How SAP Earns Money

• Figures of 2005 in Mrd. Euro [IX Magazine, 3/2006]
• Products

– Software licences 2.7 (18% growth)
– Products incl. maintenance 5.9 (ERP 1.2, CRM 0.6, SRM 0.12)

• Service
– Consultancy 2.1
– Training 0.3

• Turnaround (Umsatz) 8.5
• Win (Gewinn vor Steuern) 2.3
• Win net (Gewinn n. Steuern) 1.5
• Market size:

– Currently targeted: 40 Mrd Euro
– In 2010, with an extended product portfolio: 70 Mrd Euro

STII - Engineering - Prof. Dr. Uwe Aßmann

67

Maturity Levels of Companies

• Class 1 - Work hour business
– Consultancy and service and individual projects have no income

out of licenses, and do not generate a dependency on vendor
– Easy to switch to another company
– They earn money by selling work hours

• Class 2 - Licensing business
– Products, product lines, software platforms, and enterprise

landscapes generate license incomes
– Ex. Kontron (embedded systems vendor) is a product and

product line company, without vendor lock-in.

• Class 3 - Vendor lock-in
– Product lines, software platforms, and enterprise landscapes

generate dependencies on the vendor.
– Hard to switch
– Ex. SAP is class 3

STII - Engineering - Prof. Dr. Uwe Aßmann

Software companies are called mature, if they generate license
fees or maintain a vendor lock-in

68

Software Engineers: What They May Sell

• What you might also sell:
– Consultancy

• Sell your know-how
– Analysis studies on a market, trend or strategy

– Service
• Exampl: Requ.analysis, testing, maintenance, modernization, reengineering
• Many big companies have their focus there: IBM

– Individual projects for “individual software”
• SD&M, Accenture, Saxonia systems, …

– Product
– Product line (product family)

• Horizontal product line: one product idea in several markets
• Vertical product line: several products in one market

– Software platform for software ecosystem
– Enterprise landscapes (Anwendungslandschaft) with integration of

many tools

STII - Engineering - Prof. Dr. Uwe Aßmann

Chapter testing, requirements analysis,
modeling, model structuring

Chapter “design methods”

Chapter “Product lines” Chapter “Earning money
with software“

69

STII - Engineering - Prof. Dr. Uwe Aßmann

70

What Have We Learned?

• Specifications - Complete representations of what the problem is
or the system should do
– Consist of models (abstract representations of worlds)

• Analysis models in the problem domain
• System models in the system domain

• Engineers analyze, form hypotheses, construct, validate, improve,
sell
– Detailed models are validated against their more abstract ancestors
– Implementations are validated against specifications

• Software companies earn money with different forms of activities
– Mature companies have revenues based on licensing and vendor-lock-

in
– Product lines are important for selling

• The course is structured along these activities

STII - Engineering - Prof. Dr. Uwe Aßmann

71

Remark: Software and Systems Engineering

• Software Engineering is closely related to a
twin, the Systems Engineering

– Building software into a system (embedded
system)

– Many concepts can be used in both areas.

• See study line “Distributed Systems Engineering (DSE)”.

STII - Engineering - Prof. Dr. Uwe Aßmann

72

