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Obligatory Readings

► Balzert 2.17
► Or Ghezzi Chap 5  
► or (not enough in Pfleeger):
► W.M.P. van der Aalst and A.H.M. ter Hofstede. Verification of 

workflow task structures: A petri-net-based approach. Information 
Systems, 25(1): 43-69, 2000.    

► Kurt Jensen, Lars Michael Kristensen and Lisa Wells. Coloured 
Petri Nets and CPN Tools for Modelling and Validation of 
Concurrent Systems. Software Tools for Technology Transfer 
(STTT). Vol. 9, Number 3-4, pp. 213-254, 2007.

► J. B. Jörgensen. Colored Petri Nets in UML-based Software 
Development – Designing Middleware for Pervasive Healthcare. 
www.pervasive.dk/publications/files/CPN02.pdf 

► Web portal “Petri Net World” http://www.informatik.uni-
hamburg.de/TGI/PetriNets/ 
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Literature

► K. Jensen: Colored Petri Nets. Lecture Slides 
http://www.daimi.aau.de/~kjensen Many other links and 
informations, too

■ www.daimi.aau.dk/CPnets the home page of CPN. Contains lots of 
example specifications. Very recommended 

► K. Jensen, Colored Petri Nets. Vol. I-III. Springer, 1992-96. 
Landmark book series on CPN.

► T. Murata. Petri Nets: properties, analysis, applications. IEEE 
volume 77, No 4, 1989.

► W. Reisig. Elements of Distributed Algorithms – Modelling and 
Analysis with Petri Nets. Springer. 1998.

► W. Reisig, G. Rozenberg: Lectures on Petri Nets I+II, Lecture 
Notes in Computer Science, 1491+1492, Springer.

► J. Peterson. Petri Nets. ACM Computing Surveys, Vol 9, No 3, 
Sept 1977

► http://www.daimi.au.dk/CPnets/intro/example_indu.html 

http://www.daimi.aau.de/~kjensen
http://www.daimi.aau.dk/CPnets
http://www.daimi.au.dk/CPnets/intro/example_indu.html


P
ro

f. 
U

. A
ß

m
a

n
n,

 S
of

tw
a

re
te

ch
n

ol
o

g
i e

 II

4

Relationship of PN and other Behavioral 
Models

► P.D. Bruza, Th. P. van der Weide. The Semantics of Data-Flow 
Diagrams. Int. Conf. on the Management of Data. 1989

■ http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.9398

► E.E.Roubtsova, M. Aksit.  Extension of Petri Nets by Aspects to 
Apply the Model Driven Architecture Approach. University of 
Twente, Enschede,the Netherlands

► Other courses at TU Dresden:
■ Entwurf und Analyse mit Petri-Netzen
■ Lehrstuhl Alg. u. log. Grundlagen d. Informatik
■ Dr. rer. nat. W. Nauber
■ http://wwwtcs.inf.tu-dresden.de/~nauber/eapn10add.html
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Goals

► Understand untyped and Colored Petri nets (CPN) 
► Understand that CPN are a verifiable and automated technology 

for safety-critical systems
► PN have subclasses corresponding to finite automata and data-

flow graphs
► PN can be refined, then reducible graphs result
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The Initial Problem

UML does not work...

► You work for PowerPlant Inc. Your boss comes in and says:

Our government wants a new EPR reactor, similarly, in the way 
Finland has it. How can we produce a verified control software? 
We need a good modelling language. Assembler would be too 
bad...

How do we produce software for safety-critical systems?
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Interesting Projects with Safety-Critical, 
Parallel Embedded Software

► Arial
■ The WITAS UAV unmanned autonomously flying helicopter from 

Linköping 
http://www.ida.liu.se/~marwz/papers/ICAPS06_System_Demo.pdf

► Automotive
■ Prometheus: driving in car queues on the motorway 

. http://www.springerlink.com/content/j06n312r36805683/

► Trains
■ www.railcab.de  Autonomous rail cabs
■ www.cargocab.de  Autonomous cargo metro

. http://www.cargocap.de/files/cargocap_presse/2005/2005_01_12%20krus
e.pdf

■ http://www.rubin-nuernberg.de/  Autonomous mixed metro

http://www.railcab.de/
http://www.cargocab.de/
http://www.rubin-nuernberg.de/
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Application Areas of Petri Nets

► Model introduced by C.A. Petri in 1962.
■ Ph.D. Thesis: ”Communication with Automata”.
■ Over many years developed within GMD (now Fraunhofer, FhG)
■ PNs describe explicitly and graphically: Conflict/non-deterministic 

choice, concurrency

► Reliable software (quality-aware software)
■ PetriNets can be checked on deadlocks, liveness, fairness, bounded 

resources

► Safety-critical software that require proofs
■ Control software in embedded systems or power plants

► User interface software 
■ Users and system can be modeled as separate components

► Hardware synthesis
■ Software/Hardware co-design
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Application Area I: 
Behavior Specifications in UML

► Instead of describing the behavior of a class with a statechart, a CPN 
can be used

► CPN have several advantages:
■ They model parallel systems naturally
■ They are compact and modular, can be reducible
■ They lend themselves to aspect-oriented composition, in particular of 

parallel protocols
■ They can be used to generate code, also for complete applications
■ UML statecharts, data flow diagrams, and activity diagrams are special 

instances of CPN

► Informal: for CPN, the following features can be proven
■ Liveness: All parts of the net do never get into a dead lock, i.e., can 

always proceed
■ Fairness: all parts of the net are equally “loaded” with activity
■ K-boundedness: the data that flows through the net is bound by a 

threshold
■ Deadlock-freeness: the net does not stop (deadlock)
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Application Area II: Contract checking 
(Protocol Checking) for Components

► Petri Nets describe behavior of components (dynamic semantics)
■ They can be used to check whether components fit to each other

► Problem: General fit of components is undecidable
■ The protocol of a component must be  described with a decidable 

language
■ Due to complexity, context-free or -sensitive protocol languages are 

required

► Algorithm:
■ Describe the behavior of two components with two CPN
■ Link their ports
■ Check on liveness of the unified CPN
■ If the unified net is not live, components will not fit to each other…

► Liveness and fairness are very important criteria in safety-critical 
systems
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3.1 Basics of PN

Petri Net Classes

Predicate/Transition Nets: simple tokens, no hierarchy.

Place-Transition Nets: multiple tokens 

High Level Nets: structured tokens, hierarchy

There are many other variants, e.g., with timing 
constraints
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Language Levels

CH-0 computable

CH-1 context 
sensitive

CH-2 context free

CH-3 regular

Petri 
Nets

Algebraic
Specifi-
cations

Finite state machines are PN with finite reachability graph

► PN extend finite automata with indeterminism
■ Asynchronous execution model (partial ordering)
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Elementary Nets: Predicate/Transition Nets

► A Petri Net (PN) is a directed, bipartite graph over two kinds of 
nodes, namely places (circles) and transitions (bars or boxes)

► An elementary PN is  with boolean tokens, i.e., one token per 
place (bound of place = 1)

■ aka basic, predicate/transition nets (PTN), condition/Event nets
■ The presence of a token in a place means that the condition or 

predicate is true
■ The firing of a transition means that from the input predicates the 

output predicates are concluded
■ Thus elementary PN can model simple forms of logic

Train arrived

embarkment
Passenger on train

Passenger at station



P
ro

f. 
U

. A
ß

m
a

n
n,

 S
of

tw
a

re
te

ch
n

ol
o

g
i e

 II

14

Integer Place/Transitions-Nets

► An integer PN is a directed, weighted, bipartite graph over places  
and transitions with integer tokens, i.e., places may contain several 
tokens, and a capacity (bound = k)

■ k tokens in a place indicate that k data items are available
■ M(p) is the number of tokens in place p

► A marking assigns to each place a nonnegative integer
■ A marking is denoted by M, an m-vector where m is the number of 

places.
■ A PN has a initial marking, M0.

► Arcs have cardinalities (weights) to show how many tokens they 
transfer

H

O

react
H

2
02

Here: initial marking M0(2,2,0)
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Formal Transition Enabling and Firing

In a PN a state is changed according  
to the following transitions firing 
rule:

► A transition t is enabled if 
■ each input place p of t is 

marked with at least w(p,t) 
tokens, where w(p,t) is the 
weight of the arc from p to t

■ The output place can be filled
► An enabled transition may or may 

not fire.
► A firing of an enabled transition 

removes w(p,t) tokens from each 
input place p to t, and adds w(t,p) 
tokens to each output place p of t, 
where w(t,p) is the weight of the 
arc from t to p.

(a) t is enabled. 
(b) t has been fired.

H

O

t H2O2

H

O

t
H2O

2

(a)

(b)
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High-Level Nets

► A high-level PN (colored PN) allows for typed places and arcs
■ For types, any DDL can be used (e.g., UML-CD)

► High-level nets are modular
■ Places and transitions can be refined
■ A Colored Petri Net is a reducible graph

► The upper layers of a reducible CPN are called channel agency 
nets

■ Places are interpreted as channels between components

2'H

1'O

Hydrogene

Oxygene

react
H

2
0

2
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3.1.1 Elementary Nets 
(Predicate/Transition Nets)
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Meaning of Places and Transitions in 
Elementary Nets

► Predicate/Transition (Condition/Event-, State/Transition) Nets:
■ Places represent conditions, states, or predicates
■ Transitions represent the firing of events:

. if a transition has one input place, the event fires immediately if a token 
arrives in that place

. If a transition has several input places, the event fires when all input 
places have tokens

► A transition has input and output places (pre- and postconditions)
■ The presence of a token in a place is interpreted as the condition is 

true



P
ro

f. 
U

. A
ß

m
a

n
n,

 S
of

tw
a

re
te

ch
n

ol
o

g
i e

 II

20 ► A PN is a 5-tuple, P = (P, T, F, W, M0) with

Formal Definition of a Place/Transition Net

P={p 1 , p 2 , . . . , pm }
T ={t1 , t 2 , . . . , tm }
F⊆P×T ∪T ×P 
W :F{1,2,3 , . . . }
M0 :P{0,1 ,2,3 , . . . }
P∩T=∅ ,P∪T ≠∅

is a finite set of places,

is a finite set of transitions,

is a set of arcs (flow relation),

is a weight function,

is the initial marking,
(if img(P) = {0,1}, we have a 

elementary net, otherwise
an integer net)

A PN structure N = (P, T, W) without any specific initial marking is denoted N
A PN with the given initial marking is denoted by (N, M

0
)
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Example of 2 Robots as 
Predicate/Transition Net

Robot 1 free

Piece equipped

Taking 
up

Taking 
up

Piece 
moving

Piece equipped

Robot 2 free

Piece 
available

Piece 
ready

Laying 
down

Laying 
down

Robot 1 free

Piece equipped

Taking 
up

Taking 
up

Piece 
moving

Piece equipped

Robot 2 free

Piece 
available

Piece 
ready

Laying 
down

Laying 
down

Piece 
moving

Piece 
moving
Piece 
moving
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Example of 2 Robots as 
Predicate/Transition Net

Robot 1 free

Piece equipped

Taking 
up

Taking 
up

Piece 
moving

Piece equipped

Robot 2 free

Piece 
available

Piece 
ready

Laying 
down

Laying 
down

Robot 1 free

Piece equipped

Taking 
up

Taking 
up

Piece 
moving

Piece equipped

Robot 2 free

Piece 
available

Piece 
ready

Laying 
down

Laying 
down

Piece 
moving

Piece 
moving

► Places represent predicates; tokens show validity
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3.1.2 Special Nets
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Marked Graphs (MG) 

► A Marked Graph (MG) is an PN such each place is the input to only one transition and the output of 
only one transition. MG provide deterministic parallelism without confusion

■ Then the places can be abstracted (identified with one flow edge)

■ Transitions may split and join, however

► Marked Graphs correspond to a special class of data-flow graphs (Data flow diagrams with 
restricted stores, DFD) 

■ Transitions correspond to processes in DFD, places to stores

■ States can be merged with the ingoing and outcoming arcs → DFD without stores

■ Restriction: Stores have only one producer and consumer

■ But activities can join and split

► All theory for CPN holds for marked graph - DFD, too [BrozaWeide]

► Bsp. Robot is a DFD (but not the assembly line):

Piece equipped

Taking 
up

Piece 
moving

Robot free

Piece 
available

Piece 
ready

Laying 
down

Piece 
moving

Taking 
up

Piece 
moving

Taking 
up

Piece 
moving

Laying 
down

Piece 
moving
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More General Data-Flow Diagrams 

► General DFD without restriction can be modeled by PN, too. Then, 
places cannot be abstracted; they correspond to stores with 2 feeding 
or consuming processes

► Example: the full robot has places with 2 ingoing or outgoing edges, 
they cannot be abstracted

Taking 
up

Piece 
moving

Robot 1 free

Piece equipped

Taking 
up

Taking 
up

Piece 
moving

Piece equipped

Robot 2 free

Piece 
available

Piece 
ready

Laying 
down

Laying 
down

Piece 
moving

Piece equipped

Take piece 
from stock
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For DFD, Many Notations Exist

produce tea

Pot

Water
GreenTea

Cup

► Notation from Structured Analysis [Balzert]

TeaDrink

put tea 
in pot

add
 boiling 

water

wait
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State Machines are PN with Cardinality 
Restrictions
► A Finite State Machine PN is an elementary PN such that each 

transition has only one input and one output place
■ Then, it is equivalent to a finite automaton or a statechart
■ From every class-statechart that specifies the behavior of a class, a 

State Machine can be produced easily
. Flattening the nested states

■ Transitions correspond to transitions in statecharts, states to states
■ Transitions can be merged with the ingoing and outcoming arcs
■ In a FSM there is only one token

► All theory for CPN holds for Statecharts, too
► Ex. Robot is an FSM (but not with incoming data flow):

Taking 
up

Robot free

Laying 
down

Taking 
up

Robot free

Laying 
down
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Hierarchical StateCharts from UML

► States can be nested in StateCharts
► This corresponds to StateMachine-PN, in which states can be 

refined and nested  

Controlling

Non
Controlling

Off

SwitchOff

SwitchOn

Move Quiet

On

On Off

SwitchOff

SwitchOn

Autopilot
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3.1.2 Colored Petri Nets as 
Example of High Level Nets

Modularity, Refinement, 
Reuse

Preparing “reducible graphs”
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Colored Petri Nets, CPN

► Colored (Typed) Petri Nets (CPN) refine Petri nets:
■ Tokens are typed (colored)
■ Types are described by data structure language, such as Java, ML, 

UML class diagrams
■ but may also be data dictionaries, grammars
■ Concept of time can be added

► Full tool support
■ Fully automated code generation in Java and ML  (in contrast to 

UML), e.g., DesignCPN of Aarhus University http://www.daimi.aau.dk
■ Prover proofs features about the PN
■ Net simulator allows for debugging

► Much better for safety-critical systems than UML, because proofs 
can be done



P
ro

f. 
U

. A
ß

m
a

n
n,

 S
of

tw
a

re
te

ch
n

ol
o

g
i e

 II

32

Annotations in CPN

► Places are annotated by
■ Token types

. (STRING x STRING)

■ Markings of objects and the cardinality in which they occur: 
. 2'(“Uwe”,”Assmann”)

► Edges are annotated by 
■ Type variables which are unified by unification against the token 

objects
. (X,Y)

■ Guards
. [ X == 10] 

■ if-then-else statements
. if X < 20 then Y := 4 else Y := 7

■ switch statements
■ boolean functions that test conditions
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CPN are Modular 

► A subnet is called a page (module) 
■ Every page has ports which mark in- and out-going transitions (into a 

place) or in- and outgoing places (into a transition)

► Transition page: interface contains transitions (transition ports)
► Place page (state page): interface contains place (place ports)
► Net class: a named page that is a kind of ”template” or ”class”

■ It can be instantiated to a net ”object”

► Reuse of pages and templates possible
■ Libraries of CPN ”procedures” possible
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Robots with Transition Pages, Coupled by 
Transition Ports

Robot 1 free

Piece equipped

Taking 
up

Taking 
up

Piece 
moving

Piece equipped

Robot 2 free

Piece 
available

Piece 
ready

Laying 
down

Laying 
down

Piece 
moving

Robot 1

Robot 2

Buffer

Robot 
transition page

Robot 
transition page

reused here

Transition page; 
transitions replicated



P
ro

f. 
U

. A
ß

m
a

n
n,

 S
of

tw
a

re
te

ch
n

ol
o

g
i e

 II

35

Robots with Place (State) Pages, Coupled 
by Replicated State Ports

Robot 1 free

Piece equipped

Taking 
up

Taking 
up

Piece 
moving

Piece equipped

Robot 2 free

Piece 
available

Piece 
ready

Laying 
down

Laying 
down

Piece 
moving

Robot 1

Robot 2

Buffer

Robot as 
state page

Robot state page
reused here

Port states replicated

Piece 
available

Piece 
ready

Piece 
available

Piece 
ready



P
ro

f. 
U

. A
ß

m
a

n
n,

 S
of

tw
a

re
te

ch
n

ol
o

g
i e

 II

36

CPN are Hierarchical 

► Places and transitions may be hierarchically refined
■ Two pointwise refinement operations:

. Replace a transition with a transition page

. Replace a state with a state page

■ Refinment condition: Retain the embedding (embedding edges)

► CPN can be arranged as hierarchical graphs (reducible graphs, 
see later)

■ Large specifications possible, overview is still good
■ Subnet stemming from refinements are also place or transition pages 

►
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Point-wise Refinement Example

► Pointwise refinement:
■ Transition refining page: 

refines a transition, 
transition ports

■ Place refining page (state 
refining page): refines a 
place, place ports

Taking 
up

Piece equipped

Law of syntactic refinement: The graph interface 
(attached edges) of a refined node must be retained by 
the refining page.

Law of syntactic refinement: The graph interface 
(attached edges) of a refined node must be retained by 
the refining page.

input
buffer

output
buffer

turning
around

Laying 
down

Piece equipped
(place refining page)
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Region (Hyperedge) Refinement Example

► Hyperedges and regions 
in PN can be refined

Taking 
up

Piece equipped

input
buffer

output
buffer

turning
around

Laying 
down

Piece equipped
(refining page)

Law of syntactic region refinement: 
The graph interface (attached edges) 
of a refined region must be retained 
by the refining region.

Law of syntactic region refinement: 
The graph interface (attached edges) 
of a refined region must be retained 
by the refining region.
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Industrial Applications of CPN

► Large systems are constructed as reducible specifications
► ..have 10-100 pages, up to 1000 transitions, 100 token types
► Example: ISDN Protocol specification

■ Some page templates have more than 100 uses
■ Corresponds to millions of places and transitions in the expanded, 

non-hierarchical net
■ Can be done in several person weeks
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3.2 Patterns in Petri Nets

Analyzability:

Petri Nets can be analyzed for patterns (by 
pattern matching)
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Modelling of Parallelism and 
Synchronization

Petri Nets have a real advantage when parallel processes 
and synchronization must be modelled

Many concepts can be expressed as PN patterns
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Simple PN Buffering Patterns

Permanently live transition
generating objects 

(object source)

Permanently live transition
deleting/consuming objects

(object sink)

Process; sequentialization; action

Reservoir Place 
(does not generate 

objects)

Archive of objects

Intermediate archive (buffer)
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Parallelism Patterns

Replication and distribution
of objects;  forking off 
parallelism (AND-split) 

Joining parallelism
synchronization barrier

(AND-join) 

Forking off 
parallelism 

indeterministically 
(conflict, XOR split)

Collecting objects
from parallel

processes (OR-join)
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Examples for Building Blocks

All there?

Synchronization
barrier

Bridges: Transitions
between phases
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Patterns for Parallelism

All there?
Coupling processes with parallel

continuation

Producer/Consumer
with buffer

(CSP channel)
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Semaphores For Mutual Exclusion

Lock Lock

Free Free

Binary or counting
semaphores:

depends on the
capacity of the

semaphore place
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Dining Philosophers

Philosopher
thinking

Taking 
up fork1

Becoming hungry

Waiting
fork2

Taking up
fork 2

Fork2
(semaphore)

Waiting
fork1

Eating

Start eating

Fork1
(Semaphore)
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Advantage

► Patterns can be used to model specific requirements
► PN can be checked for patterns by Pattern Matching (Graph 

Rewriting)
■ Patterns can be restructured (refactorings)
■ Patterns can be composed (composition)

► Further semantic analysis of PN: Parallel, indeterministic systems 
can be checked for

■ Absence of deadlocks: will the parallel system run without getting 
stuck?

■ Liveness: will all parts of the system work forever?
■ Fairness: will all parts of the system be loaded equally?
■ Bounded resources: will the system use limited memory, and how 

much? (important for embedded systems)
■ Whether predicates hold in certain states (model checking)
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3.3 Refactorings
(Reduction Rules) for Petri Nets

.. in the form of graph 
rewrite rules
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Special Restructuring Patterns 
(Refactorings)

► Source transitions are always enabled, i.e., generate tokens 
(token generator)

► Sink transitions are always enabled and swallow tokens (token 
sink)

► A self-loop is a pair of a place p and a transition t if p is both 
output and input place of t

■ A PN without any self-loops is pure. Its arc relation is irreflexive
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Simple Reduction Rules

1) Fusion of Series Places (FSP) 
(Bridge elimination)

2) Fusion of Series Transitions (FST)
(Intermediate buffer elimination)
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Simple Reduction Rules

3) Fusion of Parallel Places (FPP) 4) Fusion of Parallel Transitions (FPT)
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Simple Reduction Rules

5) Elimination of Self-loop Places (ESP) 6) Elimination of Self-loop Transitions (EST)

All transformations preserve liveness, safeness and boundedness.
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3.4 Composability of CPN 
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Case Study for Composition:
Pervasive Healthcare Middleware (PHM)

► in development at the Pervasive Computing Center, University of 
Aarhus

► Basic idea: 
■ Specify the structure of an application with UML
■ and the behavior with CPN, describing the behavior of the 

classes/objects (object lifecycle)
■ Glue behavior together with page glueing mechanism

► Electronic patient records (EPR) replace the papers
■ First version in 2004, on stationary PC
■ Next versions for pervasive computing (PDA, wireless): 

. Hospital employees will have access to the patient's data whereever they 
go, from Xray to station to laboratories

■ For instance, medication plans are available immediately 
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The PHM Architecture

Mobile Device

Controller

Viewer

PHM 
Server

Session
Manager

Component
Manager

Notification
Manager

Lookup
Manager

► A session is entered by several mobile devices that collaborate
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Session Manager Use Cases

► The session manager manages all mobile devices that 
collaborate in a certain scenario

Session
Manager

Locking

Location
change

View
change

Session
creation Destroy

session

New Session

Configuration
Management

Enter
session

Show session
Status

Leave session

Free

Lock
at edit

request

Nurse

View
change
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Class Diagram Session Manager

Session
Manager

nr: int

Session
*

1

nr: int

Device
*

inactive

* active

sessions

LockManager1

Configuration
Manager

View
Manager

1

1
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Sequence Diagram Session Manager

Session
Manager

Device1:Device Device2:Device

createSession()

shipDefaultController()

shipDefaultViewer()

joinSession()

shipDefaultController()

shipDefaultViewer()

leaveSession()

acquireLock()

freeLock()
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Session Manager Top-Level CPN

► Double arrows indicate that arrows run in both directions
► Basic Types

■ Session ::= SessionId DeviceList LockType

■ ConfiguredDevice ::= Device Viewer Controller

Configuration
Manager

View
Manager

Lock
Manager

Inactive:Device

Sessions:Session
== Id x DeviceList x Lock

ActiveConfigs:
ConfiguredDevice ==

Device x Viewer x Controller

Transition subpages
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Configuration Manager Page 

CreateSession

LeaveSessionJoinSession

Inactive:Device

Sessions:Session

ActiveConfigs:
ConfiguredDevice ==

Device x Viewer x Controller

Configuration
Manager

NextId:
int

sid
sid+1

d

createSession(s,d)

leaveSession(d,s)joinSession(s,d)

(d,default  viewer, 
default controller)

s == (d,default  viewer, 
default controller)

[leaveOK(d,s) ]

s s

detachViewCtr(d,v,c)

[joinOK(d,s) ]

s == (d,v,c)

guard

► Page is fused along common names of nodes
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Lock Manager Page

Set Lock ReleaseLock

Sessions:Session

ActiveConfigs:
Device x Viewer x Controller

Lock Manager

setLock(session,device)

(device,viewer,controller)

session session

releaseLock(session,device)
[not(sessionLocked(session)

and not participant(device,session)]

[hasLock(session,device)]

(device,viewer,controller)
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View Manager Page

Detach
Viewer

Detach
Controller

ActiveConfigs:
Device x Viewer x Controller

View
Manager

[hasViewer(d,c)

(d,v,c)
(d,v,c)

detachViewer(d,v,c)

NoViewer:
Device x Controller

Attach
Viewer

(d,attachViewer(d),c)
(d,c)

[hasController(d,v)

detachController(d,v,c)

NoController:
Device x Viewer

Attach
Controller

(d,attachControllerr(v),v)
(d,c)
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Remarks

► The CPN pages are attached to UML classes, i.e., describe their 
behavior

■ States and transitions are marked by UML types

► Every subpage is coupled to others (composed with others) 
■ via common states (fusing/join states)

. The union of the pages via join states is steered by OR, i.e., the pages 
add behavior, but do not destroy behavior of other pages

■ Via common transitions (fusing/join transitions)
. The union of the pages via join transitions is steered by AND, i.e., the 

pages add behavior and synchronize with transitions of other pages

► Transitions are interpreted as coarse-grain events
■ On the edges, other functions (actions) are called
■ Hence, CPN are open: if something is too complicated to model as a 

PN, put it into functions
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Coupling of Place and Transition Pages

► Port state coupling (or fuse, merge, composition): Place 
pages are coupled to other place pages via common states (port 
states)

■ The union of the pages is steered by OR, i.e., the pages add 
behavior, but do not destroy behavior of other pages

► Port transition coupling: Transition pages are coupled to other 
transition pages via common transitions (port transitions)

■ The union of the pages is steered by AND, and every page changes 
the behavior of other page

■ Events must be available on every incoming edge of a transition
■ The transitions of the combined net only fire if the transitions of the 

page components fire
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Robots with State Pages, Coupled by 
Replicated State Ports

Robot 1 free

Piece equipped

Taking 
up

Taking 
up

Piece 
moving

Piece equipped

Robot 2 free

Piece 
available

Piece 
ready

Laying 
down

Laying 
down

Piece 
moving

Robot 1

Robot 2

Buffer

Robot as 
state page

Robot state page
reused here

Port states replicated

Piece 
available

Piece 
ready

Piece 
available

Piece 
ready

[Helmut Balzert]
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A Robot OR-composed View

Robot 1 free

Piece equipped

Taking 
up

Taking 
up

Piece 
moving

Piece equipped

Robot 2 free

Piece 
available

Piece 
ready

Laying 
down

Laying 
down

Piece 
moving

Robot 1

Robot 2

Buffer

Robot works if
it gets piece A OR B

Piece 
available

Piece 
ready

Piece 
available

Piece 
ready

Piece 
moving

Piece 
available
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Robots with Transition Pages, Coupled by 
Transition Ports

Robot 1 free

Piece equipped

Taking 
up

Taking 
up

Piece 
moving

Piece equipped

Robot 2 free

Piece 
available

Piece 
ready

Laying 
down

Laying 
down

Piece 
moving

Robot 1

Robot 2

Buffer

Robot 
transition page

Robot 
transition page

reused here

Transition page; 
transitions replicated
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A Robot AND-composed view

Robot 1 free

Piece equipped

Taking 
up

Taking 
up

Piece 
moving

Piece equipped

Robot 2 free

Piece 
available

Piece 
ready

Laying 
down

Laying 
down

Piece 
moving

Robot 1

Robot 2

Buffer

Robot works if it
gets 

Piece A AND B

Piece 
moving

Piece 
available
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Advantages of CPN for the PHM

► The PHM is a distributed  and mobile scenario
■ Devices can fail (battery empty, wireless broken, etc)
■ The resulting CPN can be checked on deadlock, i.e., will the PHM 

session manager get stuck?

► Compact specification
■ Usually, CPN are much more compact than statecharts

► Variability
■ The pages are modular, i.e., can be exchanged for variants easily 

(e.g., other locking scheme)
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3.4 Parallel Composition of 
Colored Petri Nets
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Parallel composition of PN

► Complex synchronization protocols can be abstracted to a pattern 
(als called transition page or a place page)

► When joining PN with AND (i.e., joining transition pages), 
synchronization protocols can be overlayed to existing sequential 
specifications
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Unforeseeable Extensible Workflows

► Workflows are described by Colored Petri Nets (CPN) or 
languages built on top of CPN:

■ YAWL language [van der Aalst]
■ Workflow nets

► We can use the extension of CPN for workflow composition, 
enriching a workflow core with a workflow aspect:

■ Place extension (State extension): adding more edges in and out of 
a place (state):

. OR-based composition: Core OR view: Core-place is ORed with Aspect-
Place

■ Transition extension (Activity extension): adding more edges in 
and out of a transition (activity)

. AND-based composition: Core-transition is ANDed with Aspect-transition
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Weaving Patterns for Synchronization 
Protocols with AND Composition

 Complex synchronization protocols can be abstracted to a transition page 

 Weaving them with AND, they can be overlayed to existing sequential 
specifications

 Complex synchronization protocols can be abstracted to a transition page 

 Weaving them with AND, they can be overlayed to existing sequential 
specifications
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Semaphores For Mutual Exclusion Revisited

Lock Lock

Free Free

► Forms a synchronisation aspect via ANDed Lock transitions
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Transaction Protocols as AND-Aspects

A

A

Z

Z:CommitA:Begin TA

Z

Transaction page

► Crosscut between processes (cores) and transaction protocol 
(aspect)
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Insight

► AND-Merge and OR-Merge of CPN are sufficient basic 
composition operators for building complex aspect weavers for 
workflow languages built on CPN

AND-weaving for synchronizationAND-weaving for synchronization

OR-weaving for functional extensionOR-weaving for functional extension
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3.5 The Application to Modelling



P
ro

f. 
U

. A
ß

m
a

n
n,

 S
of

tw
a

re
te

ch
n

ol
o

g
i e

 II

79

Petri Nets Generalize UML Behavioral 
Diagrams

Activity Diagrams
► Activity Diagrams are similar to PN, but not formally grounded

■ Without markings
■ No liveness analysis
■ No resource consumption analysis with boundness
■ No correspondence to UML statechart, although for PN holds that PN 

with finite reachability graphs correspond to finite automata

► I.e., it is difficult to prove something about activity diagrams, and 
difficult to generate (parallel) code from them.

Data-flow diagrams
► DFD are special form of activity diagrams, and correspond to Marked 

Graphs

Statecharts
► Finite automata are restricted form of Petri nets
► The hierarchical structuring in Statecharts is available in High-Level 

Petri Nets (e.g., CPN)
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Petri Nets Generalize UML Sequence 
Diagrams

► The object life lines of a sequence diagram can be grouped into 
state such that a PN results

► All of a sudden, liveness conditions can be studied 
■ Is there a deadlock in the sequence diagram? 
■ Are objects treated fair?

Customer Service 
Station

Credit Card
System

Purchase Refuel

refuel()

verify
customer()

[cancel transaction]
pay_cash()

[transaction ok]
newPurchase()

newRefuel()
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A Simple Modelling Process for Safety-
Critical Software with CPN

► Elaboration: Identify active and passive parts of the system
■ Active become transitions, passive to places

► Elaboration: Find the relations between places and transitions
► Elaboration: How should the tokens look like: boolean? 

Integers? Structured data?
■ Use UML class diagrams as token type model

► Restructure: Group out subnets to separate ”pages”
► Refactor: Simplify by reduction rules
► Verify: Analyse the specification on liveness, boundedness, 

reachability graphs, fairness. Use a model checker to verify the 
CPN

► TransformRepresentation: Produce views as statecharts, 
sequence, collaboration, and activity diagrams..
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82 ► Specify with UML and CPN
■ Verify it with a model checker
■ Let a prototype be generated
■ Test it
■ Freeze the assembler

► Then, verify the assembler, because you should not trust the CPN 
tool nor the compiler

■ Any certification agency in the world will require a proof of the 
assembler!

► However, this is much simpler than programming reactors by 
hand...

How to Solve the Reactor Software Problem?
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The Gloomy Future of PN

► PN will become the major tool in a future CASE tool or integrated 
development environment

■ Different views on the PN: state chart view, sequence view, activity 
view, collaboration view!

► Many isolated tools for PN exist, and the world waits for a full 
integration into UML

► CPN will be applied in scenarios where parallelism is required 
■ Architectural languages
■ Web service langauges (BPEL, BPMN, ...)
■ Workflow languages 
■ Coordination languages
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The End

► Thanks to Björn Svensson for help in making slides, 
summarizing [Murata]
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