
Fakultät Informatik, Institut für Software- und Multimediatechnik, Lehrstuhl für Softwaretechnologie

Lecture 2 – Modelling Dynamic Behavior 
with Petri Nets :

Basics
Patterns in Petri Nets
Refactorings
Composability
Parallel Composition with CPN 
Application to modelling

Softwaretechnologie II

Prof. Dr. U. Aßmann

Technische Universität Dresden

Institut für Software- und Multimediatechnik

Lehrstuhl Softwaretechnologie

http://st.inf.tu-dresden.de

WS 13-0.3, 23.10.2013



Obligatory Readings

• Balzert 2.17 or Ghezzi Chap 5 or 
http://www.scholarpedia.org/article/Petri_net

• W.M.P. van der Aalst and A.H.M. ter Hofstede. Verification of 
workflow task structures: A petri-net-based approach. Information 
Systems, 25(1): 43-69, 2000.    

• Kurt Jensen, Lars Michael Kristensen and Lisa Wells. Coloured Petri 
Nets and CPN Tools for Modelling and Validation of Concurrent 
Systems. Software Tools for Technology Transfer (STTT). Vol. 9, 
Number 3-4, pp. 213-254, 2007.

• J. B. Jörgensen. Colored Petri Nets in UML-based Software 
Development – Designing Middleware for Pervasive Healthcare. 
www.pervasive.dk/publications/files/CPN02.pdf 

• Web portal “Petri Net World” http://www.informatik.uni-
hamburg.de/TGI/PetriNets/ 

Petri Nets - Prof. Dr. Aßmann

2

http://www.scholarpedia.org/article/Petri_net


Literature

• K. Jensen: Colored Petri Nets. Lecture Slides 
http://www.daimi.aau.de/~kjensen Many other links and 
informations, too
– www.daimi.aau.dk/CPnets the home page of CPN. Contains lots of 

example specifications. Very recommended 

• K. Jensen, Colored Petri Nets. Vol. I-III. Springer, 1992-96. Landmark 
book series on CPN.

• T. Murata. Petri Nets: properties, analysis, applications. IEEE volume 
77, No 4, 1989.

• W. Reisig. Elements of Distributed Algorithms – Modelling and 
Analysis with Petri Nets. Springer. 1998.

• W. Reisig, G. Rozenberg: Lectures on Petri Nets I+II, Lecture Notes in 
Computer Science, 1491+1492, Springer.

• J. Peterson. Petri Nets. ACM Computing Surveys, Vol 9, No 3, Sept 
1977

• http://www.daimi.au.dk/CPnets/intro/example_indu.html

Petri Nets - Prof. Dr. Aßmann

3

http://www.daimi.aau.de/~kjensen
http://www.daimi.aau.dk/CPnets
http://www.daimi.au.dk/CPnets/intro/example_indu.html


Relationship of PN and other Behavioral Models

• P.D. Bruza, Th. P. van der Weide. The Semantics of Data-
Flow Diagrams. Int. Conf. on the Management of Data. 
1989
– http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.93

98

• E.E.Roubtsova, M. Aksit.  Extension of Petri Nets by Aspects 
to Apply the Model Driven Architecture Approach. 
University of Twente, Enschede,the Netherlands

• Other courses at TU Dresden:
– Entwurf und Analyse mit Petri-Netzen
– Lehrstuhl Alg. u. log. Grundlagen d. Informatik
– Dr. rer. nat. W. Nauber
– http://wwwtcs.inf.tu-dresden.de/~nauber/eapn10add.html

Petri Nets - Prof. Dr. Aßmann

4



Goals

• Understand untyped and Colored Petri nets 
(CPN) 

• Understand that CPN are a verifiable and 
automated technology for safety-critical 
systems

• PN have subclasses corresponding to finite 
automata and data-flow graphs

• PN can be refined, then reducible graphs 
result

Petri Nets - Prof. Dr. Aßmann

5



The Initial Problem

• You work for PowerPlant Inc. Your boss comes in and says:

• Our government wants a new EPR reactor, similarly, in the 
way Finland has it. How can we produce a verified control 
software? We need a good modelling language. Assembler 
would be too bad...

UML does not work...

How do we produce software for safety-critical systems?

Petri Nets - Prof. Dr. Aßmann

6



Interesting Projects with Safety-Critical, Parallel Embedded Software

• Arial
– The WITAS UAV unmanned autonomously flying helicopter from 

Linköping 
http://www.ida.liu.se/~marwz/papers/ICAPS06_System_Demo.
pdf

• Automotive
– Prometheus: driving in car queues on the motorway 

• http://www.springerlink.com/content/j06n312r36805683/

• Trains
– www.railcab.de Autonomous rail cabs
– www.cargocab.de Autonomous cargo metro

• http://www.cargocap.de/files/cargocap_presse/2005/2005_01_12%2
0kruse.pdf

– http://www.rubin-nuernberg.de/ Autonomous mixed metro

Petri Nets - Prof. Dr. Aßmann

7

http://www.railcab.de/
http://www.cargocab.de/
http://www.rubin-nuernberg.de/


Application Areas of Petri Nets

• Model introduced by C.A. Petri in 1962(1965).
– Ph.D. Thesis: ”Communication with Automata”.
– Over many years developed within GMD (now Fraunhofer, FhG)
– PNs describe explicitly and graphically: Conflict/non-

deterministic choice, concurrency

• Reliable software (quality-aware software)
– PetriNets can be checked on deadlocks, liveness, fairness, 

bounded resources

• Safety-critical software that require proofs
– Control software in embedded systems or power plants

• User interface software 
– Users and system can be modeled as separate components

• Hardware synthesis
– Software/Hardware co-design

Petri Nets - Prof. Dr. Aßmann

8



Application Area I: Behavior Specifications in UML

• Instead of describing the behavior of a class with a statechart, a 
CPN can be used

• CPN have several advantages:
– They model parallel systems naturally
– They are compact and modular, can be reducible
– They lend themselves to aspect-oriented composition, in particular of 

parallel protocols
– They can be used to generate code, also for complete applications
– UML statecharts, data flow diagrams, and activity diagrams are special 

instances of CPN

• Informal: for CPN, the following features can be proven
– Liveness: All parts of the net do never get into a dead lock, i.e., can 

always proceed
– Fairness: all parts of the net are equally “loaded” with activity
– K-boundedness: the data that flows through the net is bound by a 

threshold
– Deadlock-freeness: the net does not stop (deadlock)

Petri Nets - Prof. Dr. Aßmann

9



Application Area II: Contract checking for Components

• Petri Nets describe behavior of components (dynamic semantics)
– They can be used to check whether components fit to each other

• Problem: General fit of components is undecidable
– The protocol of a component must be  described with a decidable 

language
– Due to complexity, context-free or -sensitive protocol languages are 

required

• Algorithm:
– Describe the behavior of two components with two CPN
– Link their ports
– Check on liveness of the unified CPN
– If the unified net is not live, components will not fit to each other…

• Liveness and fairness are very important criteria in safety-critical 
systems

Petri Nets - Prof. Dr. Aßmann

10



3.1 Basics of PN

• Petri Net Classes

• Predicate/Transition Nets: simple tokens, no 
hierarchy.

• Place-Transition Nets: multiple tokens 

• High Level Nets: structured tokens, hierarchy

• There are many other variants, e.g., with 
timing constraints

Petri Nets - Prof. Dr. Aßmann

11



Language Levels

• PN extend finite automata with indeterminism
– Asynchronous execution model (partial ordering)

CH-0 computable

CH-1 context 
sensitive

CH-2 context free

CH-3 regular

Petri 
Nets

Algebraic
Specifi-
cations

Finite state machines are PN with finite reachability graph

Petri Nets - Prof. Dr. Aßmann

12



Elementary Nets: Predicate/Transition Nets

• A Petri Net (PN) is a directed, bipartite graph over two kinds 
of nodes, namely places (circles) and transitions (bars or 
boxes)

• An elementary PN contains boolean tokens, i.e., one token 
per place (bound of place = 1)

– aka basic, predicate/transition nets (PTN), condition/Event 
nets

– The presence of a token in a place means that the 
condition or predicate is true

– The firing of a transition means that from the input 
predicates the output predicates are concluded

– Thus elementary PN can model simple forms of logic

Petri Nets - Prof. Dr. Aßmann

13



Simple Petri Net

Train arrived

embarkment
Passenger on train

Passenger at station

Token

PlaceTransition



Integer Place/Transitions-Nets

• An integer PN is a directed, weighted, bipartite graph over places  
and transitions with integer tokens
• places may contain several tokens, and a capacity (bound = k)

– M(p) is the number of tokens in place p

• A marking assigns to each place a nonnegative integer
– A marking is denoted by M, an m-vector where m is the number of places.

– A PN has a initial marking, M0.

• Arcs have cardinalities (weights) to show how many tokens they 
transfer

H

O

react
H

2
02

Here: initial marking M0(2,2,0)

Petri Nets - Prof. Dr. Aßmann

15



Formal Transition Enabling and Firing

• In a PN a state is changed 
according  to the following 
transitions firing rule:

• A transition t is enabled if 
– each input place p of t is marked 

with at least w(p,t) tokens, where 
w(p,t) is the weight of the arc from 
p to t

– The output place can be filled

• An enabled transition may or may 
not fire.

• A firing of an enabled transition 
removes w(p,t) tokens from each 
input place p to t, and adds w(t,p) 
tokens to each output place p of t, 
where w(t,p) is the weight of the 
arc from t to p.

(a) t is enabled. 

(b) t has been fired.

H

O

t
H2O2

H

O

t
H2O

2

(a)

(b)

Petri Nets - Prof. Dr. Aßmann

16



High-Level Nets

• A high-level PN (colored PN) allows for typed places and arcs
– For types, any DDL can be used (e.g., UML-CD)

• High-level nets are modular
– Places and transitions can be refined

– A Colored Petri Net is a reducible graph

• The upper layers of a reducible CPN are called channel agency 
nets
– Places are interpreted as channels between components

2'H

1'O

Hydrogene

Oxygene

react
H

2
0

2

Petri Nets - Prof. Dr. Aßmann

17



3.1.1 Elementary Nets (Predicate/Transition Nets)



Meaning of Places and Transitions in Elementary Nets

• Predicate/Transition (Condition/Event-, 
State/Transition) Nets:
– Places represent conditions, states, or predicates

– Transitions represent the firing of events:
• if a transition has one input place, the event fires 

immediately if a token arrives in that place

• If a transition has several input places, the event fires when 
all input places have tokens

• A transition has input and output places (pre- and 
postconditions)
– The presence of a token in a place is interpreted as 

the condition is true

Petri Nets - Prof. Dr. Aßmann

20



Formal Definition of a Place/Transition Net

• A PN is a 5-tuple, P = (P, T, F, W, M0) with

is a finite set of places,

is a finite set of transitions,

is a set of arcs (flow relation),

is a weight function,

is the initial marking,

(if img(P) = {0,1}, we have a 

elementary net, otherwise

an integer net)

A PN structure N = (P, T, W) without any specific initial marking is denoted N
A PN with the given initial marking is denoted by (N, M

0
)

Petri Nets - Prof. Dr. Aßmann

21

𝑃 = 𝑝1, 𝑝2, ..., 𝑝𝑚

𝑇 = 𝑡1, 𝑡2, ..., 𝑡𝑚
 𝐹 ⊆ 𝑃 × 𝑇 ∪ 𝑇 × 𝑃)

𝑊:𝐹 → 1,2,3, ...
𝑀0: 𝑃 → 0,1,2,3, ...
𝑃 ∩ 𝑇 = ∅, 𝑃 ∪ 𝑇 ≠ ∅



3.1.2 Special Nets



Marked Graphs (MG) 

• A Marked Graph (MG) is an PN such each place is the input to only 
one transition and the output of only one transition. MG provide 
deterministic parallelism without confusion
– Then the places can be abstracted (identified with one flow edge)
– Transitions may split and join, however

• Marked Graphs correspond to a special class of data-flow graphs 
(Data flow diagrams with restricted stores, DFD) 
– Transitions correspond to processes in DFD, places to stores
– States can be merged with the ingoing and outcoming arcs → DFD 

without stores
– Restriction: Stores have only one producer and consumer
– But activities can join and split

• All theory for CPN holds for marked graph - DFD, too [BrozaWeide]
• Bsp. Robot is a DFD (but not the assembly line):

Petri Nets - Prof. Dr. Aßmann

25



More General Data-Flow Diagrams 

• General DFD without restriction can be modeled by PN, too. Then, places cannot 
be abstracted; they correspond to stores with 2 feeding or consuming processes

• Example: the full robot has places with 2 ingoing or outgoing edges, they cannot 
be abstracted

Taking 

up

Piece 

moving

Robot 1 free

Piece equipped

Taking 

up

Taking 

up

Piece 

moving

Piece equipped

Robot 2 free

Piece 

available

Piece 

ready

Laying 

down

Laying 

down

Piece 

moving

Piece equipped

Take piece 

from stock

Petri Nets - Prof. Dr. Aßmann

26



For DFD, Many Notations Exist

• Notation from Structured Analysis [Balzert]
produce tea

Pot

Water
GreenTea

Cup

TeaDrink

put tea 
in pot

add
boiling 

water

wait

Petri Nets - Prof. Dr. Aßmann

27



State Machines are PN with Cardinality Restrictions

• A Finite State Machine PN is an elementary PN such that each transition 
has only one input and one output place

– Then, it is equivalent to a finite automaton or a statechart

– From every class-statechart that specifies the behavior of a class, a State 
Machine can be produced easily

– Transitions correspond to transitions in statecharts, states to states

– Transitions can be merged with the ingoing and outcoming arcs

– In a FSM there is only one token

• All theory for CPN holds for Statecharts, too

• Ex. Robot is an FSM (but not with incoming data flow):

Taking 

up

Robot free

Laying 

down
Taking 

up

Robot free

Laying 

down

Petri Nets - Prof. Dr. Aßmann

28



Hierarchical StateCharts from UML

• States can be nested in StateCharts

• This corresponds to StateMachine-PN, in which states can be 
refined and nested  

Controlling

Non

Controlling

Off

SwitchOff

SwitchOn

Move Quiet

On

On Off

SwitchOff

SwitchOn

Autopilot

Petri Nets - Prof. Dr. Aßmann

29



3.1.2 Colored Petri Nets as Example of High Level Nets

• Modularity, Refinement, Reuse

• Preparing “reducible graphs”



Colored Petri Nets, CPN

• Colored (Typed) Petri Nets (CPN) refine Petri nets:
– Tokens are typed (colored)
– Types are described by data structure language, such 

as Java, ML, UML class diagrams
– but may also be data dictionaries, grammars
– Concept of time can be added

• Full tool support
– CPNTools (former Design/CPN)
– Prover proofs features about the PN
– Net simulator allows for debugging

• Much better for safety-critical systems than UML, 
because proofs can be done

Petri Nets - Prof. Dr. Aßmann

32



Annotations in CPN

• Places are annotated by
– Token types

• (STRING x STRING)

– Markings of objects and the cardinality in which they occur: 
• 2'(“Uwe”,”Assmann”)

• Edges are annotated by 
– Type variables which are unified by unification against the token 

objects
• (X,Y)

– Guards
• [ X == 10] 

– if-then-else statements
• if X < 20 then Y := 4 else Y := 7

– switch statements
– boolean functions that test conditions

Petri Nets - Prof. Dr. Aßmann

33



CPN are Modular 

• A subnet is called a page (module) 
– Every page has ports which mark in- and out-going 

transitions (into a place) or in- and outgoing places (into a 
transition)

• Transition page: interface contains transitions 
(transition ports)

• Place page (state page): interface contains place (place 
ports)

• Net class: a named page that is a kind of ”template” or 
”class”
– It can be instantiated to a net ”object”

• Reuse of pages and templates possible
– Libraries of CPN ”procedures” possible

Petri Nets - Prof. Dr. Aßmann

34



Robots with Transition Pages, Coupled by Transition Ports

Robot 1 free

Piece equipped

Taking 

up

Taking 

up

Piece 

moving

Piece equipped

Robot 2 free

Piece 

available

Piece 

ready

Laying 

down

Laying 

down

Piece 

moving

Robot 1

Robot 2

Buffer

Robot 
transition page

Robot 
transition page

reused here

Transition page; 
transitions replicated

Petri Nets - Prof. Dr. Aßmann

35



Robots with Place (State) Pages, Coupled by Replicated State Ports

Robot 1 free

Piece equipped

Taking 

up

Taking 

up

Piece 

moving

Piece equipped

Robot 2 free

Piece 

available

Piece 

ready

Laying 

down

Laying 

down

Piece 

moving

Robot 1

Robot 2

Buffer

Robot as 
state page

Robot state page
reused here

Port states replicated

Piece 

available

Piece 

ready

Piece 

available

Piece 

ready



CPN are Hierarchical 

• Places and transitions may be hierarchically 
refined
– Two pointwise refinement operations:

• Replace a transition with a transition page

• Replace a state with a state page

– Refinment condition: Retain the embedding 
(embedding edges)

• CPN can be arranged as hierarchical graphs 
(reducible graphs, see later)
– Large specifications possible, overview is still good

– Subnet stemming from refinements are also place or 
transition pages 

Petri Nets - Prof. Dr. Aßmann

37



Point-wise Refinement Example

• Pointwise refinement:

– Transition refining page: 
refines a transition, 
transition ports

– Place refining page 
(state refining page): 
refines a place, place 
ports

Taking 

up

Piece equipped

Law of syntactic refinement: The graph interface 
(attached edges) of a refined node must be retained by 
the refining page.

input

buffer

output

buffer
turning

around

Laying 

down

Piece equipped

(place refining page)

Petri Nets - Prof. Dr. Aßmann

38



Region (Hyperedge) Refinement Example

• Hyperedges and 
regions in PN can 
be refined

Taking 

up

Piece equipped

input

buffer

output

buffer
turning

around

Laying 

down

Piece equipped

(refining page)

Law of syntactic region refinement: 
The graph interface (attached edges) 
of a refined region must be retained by 
the refining region.

Petri Nets - Prof. Dr. Aßmann

39



Industrial Applications of CPN

• Large systems are constructed as reducible 
specifications

• ..have 10-100 pages, up to 1000 transitions, 
100 token types

• Example: ISDN Protocol specification

– Some page templates have more than 100 uses

– Corresponds to millions of places and transitions 
in the expanded, non-hierarchical net

– Can be done in several person weeks

Petri Nets - Prof. Dr. Aßmann

40



3.2 Patterns in Petri Nets

• Analyzability:

• Petri Nets can be analyzed for patterns (by 
pattern matching)



Modelling of Parallelism and Synchronization

• Petri Nets have a real advantage when parallel 
processes and synchronization must be 
modelled

• Many concepts can be expressed as PN patterns



Simple PN Buffering Patterns

Permanently live transition

generating objects (object source)
Permanently live transition

deleting/consuming objects

Process; sequentialization; action

Reservoir Place 

(does not generate objects) Archive of objects

Intermediate archive (buffer)



Parallelism Patterns

Replication and distribution

of objects;  forking off 

parallelism (AND-split) 

Joining parallelism

synchronization barrier

(AND-join) 

Forking off 

parallelism 

indeterministically 

(conflict, XOR split)

Collecting objects

from parallel

processes (OR-join)



Examples for Building Blocks

All there?

Synchronization

barrier

Bridges: Transitions

between phases



Patterns for Parallelism

All there?
Coupling processes with parallel

continuation

Producer/Consumer

with buffer

(CSP channel)



Semaphores For Mutual Exclusion

Lock Lock

Free Free

Binary or counting
semaphores:

depends on the

capacity of the

semaphore place



Dining Philosophers

Philosopher

thinking

Taking 

up fork1

Becoming hungry

Waiting

fork2
Taking up

fork 2

Fork2

(semaphore)

Waiting

fork1

Eating

Start eating

Fork1

(Semaphore)



Advantage

• Patterns can be used to model specific requirements
• PN can be checked for patterns by Pattern Matching 

(Graph Rewriting)
– Patterns can be restructured (refactorings)
– Patterns can be composed (composition)

• Further semantic analysis of PN: Parallel, 
indeterministic systems can be checked for
– Absence of deadlocks: will the parallel system run without 

getting stuck?
– Liveness: will all parts of the system work forever?
– Fairness: will all parts of the system be loaded equally?
– Bounded resources: will the system use limited memory, 

and how much? (important for embedded systems)
– Whether predicates hold in certain states (model checking)

Petri Nets - Prof. Dr. Aßmann

49



3.3 Refactorings (Reduction Rules) for Petri Nets

• .. in the form of graph rewrite rules

Petri Nets - Prof. Dr. Aßmann

50



Special Restructuring Patterns (Refactorings)

• Source transitions are always enabled, i.e., generate 
tokens (token generator)

• Sink transitions are always enabled and swallow 
tokens (token sink)

• A self-loop is a pair of a place p and a transition t if p 
is both output and input place of t

– A PN without any self-loops is pure. Its arc relation is 
irreflexive

Petri Nets - Prof. Dr. Aßmann

51



Simple Reduction Rules

1) Fusion of Series Places (FSP) 

(Bridge elimination)

2) Fusion of Series Transitions (FST)

(Intermediate buffer elimination)

Petri Nets - Prof. Dr. Aßmann

52



Simple Reduction Rules

3) Fusion of Parallel Places (FPP) 4) Fusion of Parallel Transitions (FPT)

Petri Nets - Prof. Dr. Aßmann

53



Simple Reduction Rules

5) Elimination of Self-loop Places (ESP) 6) Elimination of Self-loop Transitions (EST)

All transformations preserve liveness, safeness and boundedness.



3.4 Composability of CPN 

•

Petri Nets - Prof. Dr. Aßmann

55



Case Study for Composition:
Pervasive Healthcare Middleware (PHM)

• in development at the Pervasive Computing Center, 
University of Aarhus

• Basic idea: 
– Specify the structure of an application with UML
– and the behavior with CPN, describing the behavior of the 

classes/objects (object lifecycle)
– Glue behavior together with page glueing mechanism

• Electronic patient records (EPR) replace the papers
– First version in 2004, on stationary PC
– Next versions for pervasive computing (PDA, wireless): 

• Hospital employees will have access to the patient's data 
whereever they go, from Xray to station to laboratories

– For instance, medication plans are available immediately 

Petri Nets - Prof. Dr. Aßmann

56



The PHM Architecture

• A session is entered by several mobile devices 
that collaborate

Mobile Device

Controller

Viewer

PHM 
Server

Session
Manager

Component
Manager

Notification
Manager

Lookup
Manager

Petri Nets - Prof. Dr. Aßmann

57



Session Manager Use Cases

• The session manager manages all mobile 
devices that collaborate in a certain scenario

Session
Manager

Locking

Location
change

View
change

Session
creation Destroy

session

New 
Session

Configurati
on

Managem

ent

Enter
session

Show session
Status

Leave 
session

Free

Lock
at edit

request

Nurse

View
change

Petri Nets - Prof. Dr. Aßmann

58



Class Diagram Session Manager

Session
Manager

nr: int

Session

*

1

nr: int

Device
*

inactive

* active

sessions

LockManager1

Configuration
Manager

View
Manager

1

1



Sequence Diagram Session Manager

Session
Manager

Device1:Device Device2:Device

createSession()

shipDefaultController()

shipDefaultViewer()

joinSession()

shipDefaultController()

shipDefaultViewer()

leaveSession()

acquireLock()

freeLock()



Session Manager Top-Level CPN

• Double arrows indicate that arrows run in 
both directions

• Basic Types

– Session ::= SessionId DeviceList LockType

– ConfiguredDevice ::= Device Viewer ControllerConfiguration
Manager

View
Manager

Lock
Manager

Inactive:Devi
ce

Sessions:Session
== Id x DeviceList x 

Lock

ActiveConfigs:
ConfiguredDevice ==

Device x Viewer x 

Controller

Transition subpages

Petri Nets - Prof. Dr. Aßmann

61



Configuration Manager Page 

• Page is fused along common names of nodes

CreateSession

LeaveSessionJoinSession

Inactive:Devic
e

Sessions:Ses
sion

ActiveConfigs:
ConfiguredDevice ==

Device x Viewer x 

Controller

Configuration
Manager

NextId:
int

sid
sid+1

d

createSession(s,d)

leaveSession(d,s)joinSession(s,d)

(d,default  viewer, 
default controller)

s == (d,default  viewer, 
default controller)

[leaveOK(d,s) ]

s s

detachViewCtr(d,v,c)

[joinOK(d,s) ]

s == (d,v,c)

guard

Petri Nets - Prof. Dr. Aßmann

62



Lock Manager Page

Set Lock ReleaseLock

Sessions:Ses
sion

ActiveConfigs:
Device x Viewer x 

Controller

Lock Manager

setLock(session,device)

(device,viewer,controller)

releaseLock(session,device)
[not(sessionLocked(session)

and not participant(device,session)]

[hasLock(session,device)]

(device,viewer,controller)



View Manager Page

Detach
Viewer

Detach
Controller

ActiveConfigs:
Device x Viewer x 

Controller

View
Manager

[hasViewer(d,c)

(d,v,c)
(d,v,c)

detachViewer(d,v,c)

NoViewer:
Device x 

Controller

Attach
Viewer

(d,attachViewer(d),c)
(d,c)

[hasController(d,v)

detachController(d,v,c)

NoController:
Device x 

Viewer

Attach
Controller

(d,attachControllerr(v),v)
(d,c)



Remarks

• The CPN pages are attached to UML classes, i.e., describe 
their behavior
– States and transitions are marked by UML types

• Every subpage is coupled to others (composed with others) 
– via common states (fusing/join states)

• The union of the pages via join states is steered by OR, i.e., the pages 
add behavior, but do not destroy behavior of other pages

– Via common transitions (fusing/join transitions)
• The union of the pages via join transitions is steered by AND, i.e., the 

pages add behavior and synchronize with transitions of other pages

• Transitions are interpreted as coarse-grain events
– On the edges, other functions (actions) are called
– Hence, CPN are open: if something is too complicated to model 

as a PN, put it into functions

Petri Nets - Prof. Dr. Aßmann

65



Coupling of Place and Transition Pages

• Port state coupling (or fuse, merge, composition): Place 
pages are coupled to other place pages via common 
states (port states)
– The union of the pages is steered by OR, i.e., the pages add 

behavior, but do not destroy behavior of other pages

• Port transition coupling: Transition pages are coupled 
to other transition pages via common transitions (port 
transitions)
– The union of the pages is steered by AND, and every page 

changes the behavior of other page
– Events must be available on every incoming edge of a 

transition
– The transitions of the combined net only fire if the 

transitions of the page components fire

Petri Nets - Prof. Dr. Aßmann

66



Robots with State Pages, Coupled by Replicated State Ports

Robot 1 free

Piece equipped

Taking 

up

Taking 

up

Piece 

moving

Piece equipped

Robot 2 free

Piece 

available

Piece 

ready

Laying 

down

Laying 

down

Piece 

moving

Robot 1

Robot 2

Buffer

Robot as 
state page

Robot state page
reused here

Port states replicated

Piece 

available

Piece 

ready

Piece 

available

Piece 

ready

[Helmut Balzert]



A Robot OR-composed View

Robot 1 free

Piece equipped

Taking 

up

Taking 

up

Piece 

moving

Piece equipped

Robot 2 free

Piece 

available

Piece 

ready

Laying 

down

Laying 

down

Piece 

moving

Robot 1

Robot 2

Buffer

Robot works if
it gets piece A OR B

Piece 

available

Piece 

ready

Piece 

available

Piece 

ready

Piece 

moving

Piece 

available



Robots with Transition Pages, Coupled by Transition Ports

Robot 1 free

Piece equipped

Taking 

up

Taking 

up

Piece 

moving

Piece equipped

Robot 2 free

Piece 

available

Piece 

ready

Laying 

down

Laying 

down

Piece 

moving

Robot 1

Robot 2

Buffer

Robot 
transition page

Robot 
transition page

reused here

Transition page; 
transitions replicated



A Robot AND-composed view

Robot 1 free

Piece equipped

Taking 

up

Taking 

up

Piece 

moving

Piece equipped

Robot 2 free

Piece 

available

Piece 

ready

Laying 

down

Laying 

down

Piece 

moving

Robot 1

Robot 2

Buffer

Robot works if it
gets 

Piece A AND B

Piece 

moving

Piece 

available



Advantages of CPN for the PHM

• The PHM is a distributed  and mobile scenario
– Devices can fail (battery empty, wireless broken, 

etc)

– The resulting CPN can be checked on deadlock, 
i.e., will the PHM session manager get stuck?

• Compact specification
– Usually, CPN are much more compact than 

statecharts

• Variability
– The pages are modular, i.e., can be exchanged for 

variants easily (e.g., other locking scheme)

Petri Nets - Prof. Dr. Aßmann

71



3.4 Parallel Composition of Colored Petri Nets

Petri Nets - Prof. Dr. Aßmann

72



Parallel composition of PN

• Complex synchronization protocols can be 
abstracted to a pattern (als called transition 
page or a place page)

• When joining PN with AND (i.e., joining 
transition pages), synchronization protocols 
can be overlayed to existing sequential 
specifications

Petri Nets - Prof. Dr. Aßmann

73



Unforeseeable Extensible Workflows

• Workflows are described by Colored Petri Nets (CPN) or 
languages built on top of CPN:
– YAWL language [van der Aalst]
– Workflow nets

• We can use the extension of CPN for workflow 
composition, enriching a workflow core with a workflow 
aspect:
– Place extension (State extension): adding more edges in and out 

of a place (state):
• OR-based composition: Core OR view: Core-place is ORed with Aspect-

Place

– Transition extension (Activity extension): adding more edges in 
and out of a transition (activity)
• AND-based composition: Core-transition is ANDed with Aspect-

transition

Petri Nets - Prof. Dr. Aßmann

74



Weaving Patterns for Synchronization Protocols with AND Composition

 Complex synchronization protocols can be abstracted to a transition page 

 Weaving them with AND, they can be overlayed to existing sequential 

specifications



Semaphores For Mutual Exclusion Revisited

• Forms a 
synchronisation
aspect via 
ANDed Lock 
transitions

Lock Lock

Free Free

Petri Nets - Prof. Dr. Aßmann

76



Transaction Protocols as AND-Aspects

• Crosscut between processes (cores) and transaction 
protocol (aspect)

A

A

Z

Z:CommitA:Begin TA

Z

Transaction page

Petri Nets - Prof. Dr. Aßmann

77



Insight

• AND-Merge and OR-Merge of CPN are sufficient 
basic composition operators for building complex 
aspect weavers for workflow languages built on CPN

AND-weaving for synchronization

OR-weaving for functional extension

Petri Nets - Prof. Dr. Aßmann

78



3.5 The Application to Modelling



Petri Nets Generalize UML Behavioral Diagrams

• Activity Diagrams
• Activity Diagrams are similar to PN, but not formally grounded

– Without markings
– No liveness analysis
– No resource consumption analysis with boundness
– No correspondence to UML statechart, although for PN holds that PN 

with finite reachability graphs correspond to finite automata

• I.e., it is difficult to prove something about activity diagrams, and 
difficult to generate (parallel) code from them.

• Data-flow diagrams
• DFD are special form of activity diagrams, and correspond to 

Marked Graphs
• Statecharts
• Finite automata are restricted form of Petri nets
• The hierarchical structuring in Statecharts is available in High-Level 

Petri Nets (e.g., CPN)

Petri Nets - Prof. Dr. Aßmann

80



Petri Nets Generalize UML Sequence Diagrams

• The object life lines of a sequence diagram can be grouped into state such 
that a PN results

• All of a sudden, liveness conditions can be studied 

– Is there a deadlock in the sequence diagram? 

– Are objects treated fair?
Customer Service 

Station

Credit Card

System
Purchase Refuel

refuel()

verify

customer()
[cancel transaction]

pay_cash()

[transaction ok]

newPurchase()
newRefuel()

Petri Nets - Prof. Dr. Aßmann

81



A Simple Modelling Process for Safety-Critical Software with CPN

• Elaboration: Identify active and passive parts of the system
– Active become transitions, passive to places

• Elaboration: Find the relations between places and 
transitions

• Elaboration: How should the tokens look like: boolean? 
Integers? Structured data?
– Use UML class diagrams as token type model

• Restructure: Group out subnets to separate ”pages”
• Refactor: Simplify by reduction rules
• Verify: Analyse the specification on liveness, boundedness, 

reachability graphs, fairness. Use a model checker to verify 
the CPN

• TransformRepresentation: Produce views as statecharts, 
sequence, collaboration, and activity diagrams..

Petri Nets - Prof. Dr. Aßmann

82



How to Solve the Reactor Software Problem?

• Specify with UML and CPN
– Verify it with a model checker

– Let a prototype be generated

– Test it

– Freeze the assembler

• Then, verify the assembler, because you should 
not trust the CPN tool nor the compiler
– Any certification agency in the world will require a 

proof of the assembler!

• However, this is much simpler than programming 
reactors by hand...

Petri Nets - Prof. Dr. Aßmann

83



The Gloomy Future of PN

• PN will become the major tool in a future CASE 
tool or integrated development environment
– Different views on the PN: state chart view, sequence 

view, activity view, collaboration view!

• Many isolated tools for PN exist, and the world 
waits for a full integration into UML

• CPN will be applied in scenarios where 
parallelism is required 
– Architectural languages
– Web service langauges (BPEL, BPMN, ...)
– Workflow languages 
– Coordination languages

Petri Nets - Prof. Dr. Aßmann

84



The End

• Thanks to Björn Svensson for help in making 
slides, summarizing [Murata]

Petri Nets - Prof. Dr. Aßmann

85


