TECHNISCHE
UNIVERSITAT
DRESDEN

Fakultat Informatik, Institut fir Software- und Multimediatechnik, Lehrstuhl fiir Softwaretechnologie

Softwaretechnologie Il

Lecture 2 — Modelling Dynamic Behavior
with Petri Nets :

Basics

Patterns in Petri Nets
Refactorings

Composability

Parallel Composition with CPN
Application to modelling

Prof. Dr. U. ABmann

Technische Universitat Dresden

Institut fur Software- und Multimediatechnik
Lehrstuhl Softwaretechnologie
http://st.inf.tu-dresden.de

WS 13-0.3, 23.10.2013

TECHNISCHE
@ UNIVERSITAT
Petri Nets - Prof. Dr. ABmann DRESDEN

Obligatory Readings

Balzert 2.17 or Ghezzi Chap 5 or
http://www.scholarpedia.org/article/Petri net

W.M.P. van der Aalst and A.H.M. ter Hofstede. Verification of
workflow task structures: A petri-net-based approach. Information
Systems, 25(1): 43-69, 2000.

Kurt Jensen, Lars Michael Kristensen and Lisa Wells. Coloured Petri
Nets and CPN Tools for Modelling and Validation of Concurrent
Systems. Software Tools for Technology Transfer (STTT). Vol. 9,
Number 3-4, pp. 213-254, 2007.

J. B. Jorgensen. Colored Petri Nets in UML-based Software
Development — Designing Middleware for Pervasive Healthcare.
www.pervasive.dk/publications/files/CPNO2.pdf

Web portal “Petri Net World” http://www.informatik.uni-
hamburg.de/TGl/PetriNets/

http://www.scholarpedia.org/article/Petri_net

TECHNISCHE
@ UNIVERSITAT
Petri Nets - Prof. Dr. ABmann DRESDEN

Literature

K. Jensen: Colored Petri Nets. Lecture Slides
http://www.daimi.aau.de/~kjensen Many other links and

informations, too

— www.daimi.aau.dk/CPnets the home page of CPN. Contains lots of
example specifications. Very recommended

K. Jensen, Colored Petri Nets. Vol. I-lll. Springer, 1992-96. Landmark
book series on CPN.

T. Murata. Petri Nets: properties, analysis, applications. IEEE volume
77, No 4, 1989.

W. Reisig. Elements of Distributed Algorithms — Modelling and
Analysis with Petri Nets. Springer. 1998.

W. Reisig, G. Rozenberg: Lectures on Petri Nets I+Il, Lecture Notes in
Computer Science, 1491+1492, Springer.

J. Peterson. Petri Nets. ACM Computing Surveys, Vol 9, No 3, Sept
1977

http://www.daimi.au.dk/CPnets/intro/example indu.html

http://www.daimi.aau.de/~kjensen
http://www.daimi.aau.dk/CPnets
http://www.daimi.au.dk/CPnets/intro/example_indu.html

TECHNISCHE
@ UNIVERSITAT
Petri Nets - Prof. Dr. ABmann DRESDEN

Relationship of PN and other Behavioral Models

e P.D. Bruza, Th. P. van der Weide. The Semantics of Data-
Flow Diagrams. Int. Conf. on the Management of Data.
1989

— http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.93
98

* E.E.Roubtsova, M. Aksit. Extension of Petri Nets by Aspects
to Apply the Model Driven Architecture Approach.
University of Twente, Enschede,the Netherlands

* Other courses at TU Dresden:

— Entwurf und Analyse mit Petri-Netzen

— Lehrstuhl Alg. u. log. Grundlagen d. Informatik

— Dr. rer. nat. W. Nauber

— http://wwwtcs.inf.tu-dresden.de/~nauber/eapnl10add.html

TECHNISCHE
@ UNIVERSITAT
Petri Nets - Prof. Dr. ABmann DRESDEN

* Understand untyped and Colored Petri nets
(CPN)
 Understand that CPN are a verifiable and

automated technology for safety-critical
systems

* PN have subclasses corresponding to finite
automata and data-flow graphs

* PN can be refined, then reducible graphs
result

TECHNISCHE
@ UNIVERSITAT
Petri Nets - Prof. Dr. ABmann DRESDEN

The Initial Problem

You work for PowerPlant Inc. Your boss comes in and says:

Our government wants a new EPR reactor, similarly, in the
way Finland has it. How can we produce a verified control
software? We need a good modelling language. Assembler
would be too bad...

UML does not work...

How do we produce software for safety-critical systems?

TECHNISCHE
@ UNIVERSITAT
Petri Nets - Prof. Dr. ABmann DRESDEN

Interesting Projects with Safety-Critical, Parallel Embedded Software

* Arial
— The WITAS UAV unmanned autonomously flying helicopter from
Linkbping
http://www.ida.liu.se/~marwz/papers/ICAPS06_System_Demo.
pdf
* Automotive
— Prometheus: driving in car queues on the motorway
* http://www.springerlink.com/content/j06n312r36805683/
* Trains
— www.railcab.de Autonomous rail cabs

— www.cargocab.de Autonomous cargo metro

* http://www.cargocap.de/files/cargocap_presse/2005/2005 01 12%2
Okruse.pdf

— http://www.rubin-nuernberg.de/ Autonomous mixed metro

http://www.railcab.de/
http://www.cargocab.de/
http://www.rubin-nuernberg.de/

TECHNISCHE
@ UNIVERSITAT
Petri Nets - Prof. Dr. ABmann DRESDEN

Application Areas of Petri Nets

Model introduced by C.A. Petriin 1962(1965).

— Ph.D. Thesis: “Communication with Automata”.
— Over many years developed within GMD (now Fraunhofer, FhG)

— PNs describe explicitly and graphically: Conflict/non-
deterministic choice, concurrency

e Reliable software (quality-aware software)

— PetriNets can be checked on deadlocks, liveness, fairness,
bounded resources

e Safety-critical software that require proofs

— Control software in embedded systems or power plants
e User interface software

— Users and system can be modeled as separate components
 Hardware synthesis

— Software/Hardware co-design

TECHNISCHE
@ UNIVERSITAT
Petri Nets - Prof. Dr. ABmann DRESDEN

Application Area I: Behavior Specifications in UML

* Instead of describing the behavior of a class with a statechart, a
CPN can be used

 CPN have several advantages:
— They model parallel systems naturally
— They are compact and modular, can be reducible

— They lend themselves to aspect-oriented composition, in particular of
parallel protocols

— They can be used to generate code, also for complete applications

— UML statecharts, data flow diagrams, and activity diagrams are special
instances of CPN

* Informal: for CPN, the following features can be proven

— Liveness: All parts of the net do never get into a dead lock, i.e., can
always proceed

— Fairness: all parts of the net are equally “loaded” with activity

— K-boundedness: the data that flows through the net is bound by a
threshold

— Deadlock-freeness: the net does not stop (deadlock)

TECHNISCHE
@ UNIVERSITAT
Petri Nets - Prof. Dr. ABmann DRESDEN

Application Area Il: Contract checking for Components

e Petri Nets describe behavior of components (dynamic semantics)
— They can be used to check whether components fit to each other

* Problem: General fit of components is undecidable
— The protocol of a component must be described with a decidable
language
— Due to complexity, context-free or -sensitive protocol languages are
required
e Algorithm:
— Describe the behavior of two components with two CPN
— Link their ports
— Check on liveness of the unified CPN
— If the unified net is not live, components will not fit to each other...

* Liveness and fairness are very important criteria in safety-critical
systems

TECHNISCHE
@ UNIVERSITAT
Petri Nets - Prof. Dr. ABmann DRESDEN

@ 3.1 Basics of PN

 Petri Net Classes

* Predicate/Transition Nets: simple tokens, no
nierarchy.

* Place-Transition Nets: multiple tokens

* High Level Nets: structured tokens, hierarchy

* There are many other variants, e.g., with
timing constraints

TECHNISCHE
@ UNIVERSITAT
Petri Nets - Prof. Dr. ABmann DRESDEN

Language Levels

e PN extend finite automata with indeterminism

— Asynchronous execution model (partial ordering)

CH-0 computable

CH-1 context

sensitive
Algebraic
CH-2 context free Specifi-
cations
CH-3 regular

Finite state machines are PN with finite reachability graph

TECHNISCHE
@ UNIVERSITAT
Petri Nets - Prof. Dr. ABmann DRESDEN

Elementary Nets: Predicate/Transition Nets

A Petri Net (PN) is a directed, bipartite graph over two kinds

of nodes, namely places (circles) and transitions (bars or
boxes)

 An elementary PN contains boolean tokens, i.e., one token
per place (bound of place = 1)

— aka basic, predicate/transition nets (PTN), condition/Event
nets

— The presence of a token in a place means that the
condition or predicate is true

— The firing of a transition means that from the input
predicates the output predicates are concluded

— Thus elementary PN can model simple forms of logic

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Simple Petri Net

embarkment

Token =————— .
Passenger on train

O

Train arrived

Passenger at station

Transition Place

TECHNISCHE
@ UNIVERSITAT
Petri Nets - Prof. Dr. ABmann DRESDEN

Integer Place/Transitions-Nets

 Aninteger PN is a directed, weighted, bipartite graph over places
and transitions with integer tokens
* places may contain several tokens, and a capacity (bound = k)
— M(p) is the number of tokens in place p

* A marking assigns to each place a nonnegative integer

— A marking is denoted by M, an m-vector where m is the number of places.
— A PN has ainitial marking, MO.

* Arcs have cardinalities (weights) to show how many tokens they

transfer , react
H,0
“ ()
(o9

Here: initial marking M,(2,2,0)

Petri Nets - Prof. Dr. ABmann

TECHNISCHE
UNIVERSITAT
DRESDEN

In a PN a state is changed
according to the following
transitions firing rule:

A transition t is enabled if

— each input place p of t is marked
with at least w(p,t) tokens, where
w(p,t) is the weight of the arc from
ptot

— The output place can be filled

An enabled transition may or may
not fire.

A firing of an enabled transition
removes w(p,t) tokens from each
input place p to t, and adds w(t,p)
tokens to each output place p of t,
where w(t,p) is the weight of the
arc from t to p.

(b)
(a) tis enabled.

(b) thas been fired.

TECHNISCHE
@ UNIVERSITAT
Petri Nets - Prof. Dr. ABmann DRESDEN

High-Level Nets

* A high-level PN (colored PN) allows for typed places and arcs
— For types, any DDL can be used (e.g., UML-CD)

* High-level nets are modular
— Places and transitions can be refined
— A Colored Petri Net is a reducible graph

* The upper layers of a reducible CPN are called channel agency
nets

— Places are interpreted as channels between components

2'H
ydrogeng
react

TECHNISCHE
@ UNIVERSITAT
DRESDEN

3.1.1 Elementary Nets (Predicate/Transition Nets)

TECHNISCHE
@ UNIVERSITAT
Petri Nets - Prof. Dr. ABmann DRESDEN

Meaning of Places and Transitions in Elementary Nets

* Predicate/Transition (Condition/Event-,
State/Transition) Nets:

— Places represent conditions, states, or predicates

— Transitions represent the firing of events:

e if a transition has one input place, the event fires
immediately if a token arrives in that place

* If a transition has several input places, the event fires when
all input places have tokens

e A transition has input and output places (pre- and
postconditions)

— The presence of a token in a place is interpreted as
the condition is true

. TECHNISCHE
_ @ UNIVERSITAT
Petri Nets - Prof. Dr. ABmann DRESDEN

Formal Definition of a Place/Transition Net

e APNisa5-tuple, P=(P, T, F W, MO) with

P = {pl, Do, s pm} IS a finite set of places,
T = {tl: t2: v tm} IS a finite set of transitions,
F g(P X T)U(T X P) is a set of arcs (flow relation),
W:F - {1’2,3, } is a weight function,
MO: P - {0,1,2,3, } IS the initial marking,
PNT = Q), PUT =+ @ (if img(P) = {0,1}, we have a

elementary net, otherwise
an integer net)

A PN structure N = (P, T, W) without any specific initial marking is denoted N
A PN with the given initial marking is denoted by (N, M,)

TECHNISCHE
@ UNIVERSITAT
DRESDEN

3.1.2 Special Nets

TECHNISCHE
@ UNIVERSITAT
Petri Nets - Prof. Dr. ABmann DRESDEN

Marked Graphs (MG)

A Marked Graph (MG) is an PN such each place is the input to only
one transition and the output of only one transition. MG provide
deterministic parallelism without confusion

— Then the places can be abstracted (identified with one flow edge)
— Transitions may split and join, however

Marked Graphs correspond to a special class of data-flow graphs
(Data flow diagrams with restricted stores, DFD)

— Transitions correspond to processes in DFD, places to stores

— States can be merged with the ingoing and outcoming arcs - DFD
without stores

— Restriction: Stores have only one producer and consumer
— But activities can join and split

All theory for CPN holds for marked graph - DFD, too [BrozaWeide]
Bsp. Robot is a DFD (but not the assembly line):

Petri Nets - Prof. Dr. ABmann

More General Data-Flow Diagrams

TECHNISCHE
@ UNIVERSITAT
DRESDEN

General DFD without restriction can be modeled by PN, too. Then, places cannot
be abstracted; they correspond to stores with 2 feeding or consuming processes

Example: the full robot has places with 2 ingoing or outgoing edges, they cannot

be abstracted
Robqt 1 free

Taking Laying
down
Piece equipped
Piece Piec ”) ‘ \
available readyn
Piece Piece
moving moving
Piece equped

Taklngl< .. 73 Laying
down

Robot 2 free

Take piece

from stock
I

v

—O

Plece
moving

Taking‘iI
up

TECHNISCHE
@ UNIVERSITAT
Petri Nets - Prof. Dr. ABmann DRESDEN

For DFD, Many Notations Exist

 Notation from Structured Analysis [Balzert]

produce tea

Pot

TeaDrink

Cup

TECHNISCHE
@ UNIVERSITAT
Petri Nets - Prof. Dr. ABmann DRESDEN

State Machines are PN with Cardinality Restrictions

* A Finite State Machine PN is an elementary PN such that each transition
has only one input and one output place

— Then, it is equivalent to a finite automaton or a statechart

— From every class-statechart that specifies the behavior of a class, a State
Machine can be produced easily

— Transitions correspond to transitions in statecharts, states to states
— Transitions can be merged with the ingoing and outcoming arcs
— In a FSM there is only one token

e All theory for CPN holds for Statecharts, too
* Ex. Robotis an FSM (but not with incoming data flow):

Taking Laying Taking Laying
up down up down

Robot free Robot free

Petri Nets - Prof. Dr. ABmann

Hierarchical StateCharts from UML

e States can be nested in StateCharts

TECHNISCHE
@ UNIVERSITAT
DRESDEN

e This corresponds to StateMachine-PN, in which states can be
refined and nested

I

Autopilot

On

SwitchOn

<«

SwitchOff

Off

-

On

I)

c

SwitchOn

ontrolling]

Move

A

Quiet

A\ 4

Non

ontrolling] /

\[C

-

SwitchOff

~

Off

TECHNISCHE
@ UNIVERSITAT
DRESDEN

3.1.2 Colored Petri Nets as Example of High Level Nets

 Modularity, Refinement, Reuse
* Preparing “reducible graphs”

TECHNISCHE
@ UNIVERSITAT
Petri Nets - Prof. Dr. ABmann DRESDEN

Colored Petri Nets, CPN

* Colored (Typed) Petri Nets (CPN) refine Petri nets:
— Tokens are typed (colored)

— Types are described by data structure language, such
as Java, ML, UML class diagrams

— but may also be data dictionaries, grammars
— Concept of time can be added
* Full tool support
— CPNTools (former Design/CPN)
— Prover proofs features about the PN
— Net simulator allows for debugging

* Much better for safety-critical systems than UML,
because proofs can be done

TECHNISCHE
@ UNIVERSITAT
Petri Nets - Prof. Dr. ABmann DRESDEN

Annotations in CPN

* Places are annotated by
— Token types
* (STRING x STRING)
— Markings of objects and the cardinality in which they occur:
e 2'(“Uwe”,”Assmann”)
e Edges are annotated by

— Type variables which are unified by unification against the token
objects

* (X))
— Guards

e [X==10]
— if-then-else statements

e fX<20thenY:=4elseY:=7
— switch statements

— boolean functions that test conditions

TECHNISCHE
@ UNIVERSITAT
Petri Nets - Prof. Dr. ABmann DRESDEN

CPN are Modular

* Asubnetis called a page (module)

— Every page has ports which mark in- and out-going

transitions (into a place) or in- and outgoing places (into a
transition)

* Transition page: interface contains transitions
(transition ports)

e Place page (state page): interface contains place (place
ports)

* Net class: a named page that is a kind of “template” or
“class”

— It can be instantiated to a net “object”

* Reuse of pages and templates possible
— Libraries of CPN “procedures” possible

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Petri Nets - Prof. Dr. ABmann

Robots with Transition Pages, Coupled by Transition Ports

Robot 1 free
Robot
transition page

A

Robot 1

. Laying
r down
Buffer

i) Piece Piece ”
| "\./ available | read V

Piece o

P moving
- . T —
e Transition page;
Taking Laying transitions replicatec
down

up

Piece equipped

Robot
transition page
Robot 2 Robot 2 free reused hperg

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Robots with Place (State) Pages, Coupled by Replicated State Ports

Robot 1 free

Robot 1
" Robot as
Laying state page
down

Piece
available

I:I Piece AO

moving

Piece Piece
available ready

Port states replicated

Robot state page
reused here

Robot 2 Robot 2 free

TECHNISCHE
@ UNIVERSITAT
Petri Nets - Prof. Dr. ABmann DRESDEN

CPN are Hierarchical

* Places and transitions may be hierarchically
refined
— Two pointwise refinement operations:

* Replace a transition with a transition page
* Replace a state with a state page

— Refinment condition: Retain the embedding
(embedding edges)
* CPN can be arranged as hierarchical graphs
(reducible graphs, see later)
— Large specifications possible, overview is still good

— Subnet stemming from refinements are also place or
transition pages

TECHNISCHE
@ UNIVERSITAT
Petri Nets - Prof. Dr. ABmann DRESDEN

Point-wise Refinement Example

: : Laying
. Piece equipped
Taking quipp down

e Pointwise refinement: up

— Transition refining page:
refines a transition,
transition ports

Piece equipped
(place refining page)

1

v

— Place refining page
(state refining page):
refines a place, place
ports

input turning output
around buffer

Law of syntactic refinement: The graph interface
(attached edges) of a refined node must be retained by
the refining page.

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Petri Nets - Prof. Dr. ABmann

O

Laying
down

* Hyperedges and
regions in PN can Taking (Pergeauipped
be refined

Law of syntactic region refinement:
The graph interface (attached edges)
of a refined region must be retained by

the refining region.

Piece equipped
(refining page)

turning
around

TECHNISCHE
@ UNIVERSITAT
Petri Nets - Prof. Dr. ABmann DRESDEN

Industrial Applications of CPN

* Large systems are constructed as reducible
specifications

e ..have 10-100 pages, up to 1000 transitions,
100 token types

 Example: ISDN Protocol specification
— Some page templates have more than 100 uses

— Corresponds to millions of places and transitions
in the expanded, non-hierarchical net

— Can be done in several person weeks

TECHNISCHE
@ UNIVERSITAT
DRESDEN

3.2 Patterns in Petri Nets

* Analyzability:

* Petri Nets can be analyzed for patterns (by
pattern matching)

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Modelling of Parallelism and Synchronization

* Petri Nets have a real advantage when parallel
processes and synchronization must be
modelled

 Many concepts can be expressed as PN patterns

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Simple PN Buffering Patterns

Reservoir Place

I:I——> Permart\.entlybl!vettranz!tlo? Permanently live transition
generating objects (object source) deleting/consuming objects ‘ \
O (does not generate objects) Archive of objects —O

Process; sequentialization; action

\ 4
v

v

{)

Intermediate archive (buffer)

Parallelism Patterns

Replication and distribution
of objects; forking off
parallelism (AND-split)

Forking off
parallelism

indeterministically
(conflict, XOR split)

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Joining parallelism
synchronization barrier

(AND-join)

Collecting objects
from parallel
processes (OR-join)

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Examples for Building Blocks

Synchronization Bridges: Transitions
barrier between phases
o),
U/

All there?

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Patterns for Parallelism

Coupling processes with parallel
continuation All there?

Producer/Consumer R
with buffer M |

(CSP channel)

N

Semaphores For Mutual Exclusion

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Binary or counting
semaphores:

depends on the
capacity of the
semaphore place

Lock
\

Free i

/l Lock

Free

o %

Dining Philosophers

Forkl _
(Semaphore) Talf('ngl
up for

S R~ W i

Philosopher
thinking

Becoming hun

Tak
fa

)ry

ing up
rk 2

TECHNISCHE
@ UNIVERSITAT
DRESDEN

(se

Fork2
'maphore)

a

art eating

Ea

ing

»

TECHNISCHE
@ UNIVERSITAT
Petri Nets - Prof. Dr. ABmann DRESDEN

Advantage

e Patterns can be used to model specific requirements
* PN can be checked for patterns by Pattern Matching
(Graph Rewriting)
— Patterns can be restructured (refactorings)
— Patterns can be composed (composition)
* Further semantic analysis of PN: Parallel,
indeterministic systems can be checked for

— Absence of deadlocks: will the parallel system run without
getting stuck?

— Liveness: will all parts of the system work forever?
— Fairness: will all parts of the system be loaded equally?

— Bounded resources: will the system use limited memory,
and how much? (important for embedded systems)

— Whether predicates hold in certain states (model checking)

TECHNISCHE
@ UNIVERSITAT
Petri Nets - Prof. Dr. ABmann DRESDEN

3.3 Refactorings (Reduction Rules) for Petri Nets

e ..in the form of graph rewrite rules

TECHNISCHE
@ UNIVERSITAT
Petri Nets - Prof. Dr. ABmann DRESDEN

Special Restructuring Patterns (Refactorings)

e Source transitions are always enabled, i.e., generate
tokens (token generator)

e Sink transitions are always enabled and swallow
tokens (token sink)

* Aself-loop is a pair of a place p and a transition tif p
is both output and input place of t

— A PN without any self-loops is pure. Its arc relation is
irreflexive

TECHNISCHE
@ UNIVERSITAT
Petri Nets - Prof. Dr. ABmann DRESDEN

Simple Reduction Rules

1) Fusion of Series Places (FSP) 2) Fusion of Series Transitions (FST)
(Bridge elimination) (Intermediate buffer elimination)

TECHNISCHE
@ UNIVERSITAT
Petri Nets - Prof. Dr. ABmann DRESDEN

Simple Reduction Rules

3) Fusion of Parallel Places (FPP) 4) Fusion of Parallel Transitions (FPT)

Simple Reduction Rules

5) Elimination of Self-loop Places (ESP) 6) Elimination of Self-loop Transitions (EST)

All transformations preserve liveness, safeness and boundedness.

TECHNISCHE
@ UNIVERSITAT
Petri Nets - Prof. Dr. ABmann DRESDEN

3.4 Composability of CPN

TECHNISCHE
@ UNIVERSITAT
Petri Nets - Prof. Dr. ABmann DRESDEN

Case Study for Composition:
Pervasive Healthcare Middleware (PHM)

* in development at the Pervasive Computing Center,
University of Aarhus

* Basicidea:
— Specify the structure of an application with UML

— and the behavior with CPN, describing the behavior of the
classes/objects (object lifecycle)

— Glue behavior together with page glueing mechanism

* Electronic patient records (EPR) replace the papers
— First version in 2004, on stationary PC

— Next versions for pervasive computing (PDA, wireless):

* Hospital employees will have access to the patient's data
whereever they go, from Xray to station to laboratories

— For instance, medication plans are available immediately

TECHNISCHE
@ UNIVERSITAT
Petri Nets - Prof. Dr. ABmann DRESDEN

a The PHM Architecture

* Asession is entered by several mobile devices
that collaborate
PHM %
Server

Mobile Device %
Session g

Manager

Controller g “ Component

Manager

Viewer g Notification g

Manager

Lookup %
Manager

TECHNISCHE
@ UNIVERSITAT
Petri Nets - Prof. Dr. ABmann DRESDEN

Session Manager Use Cases

* The session manager manages a
devices tha%llaborate i

Nurse

Session
Manager

Session e
session

Class Diagram Session Manager

Session
Manager

LockManager

1| Configuration

sessions

*

Session

nr: int

% | active

inactive

Device

nr: int

Manager

1 View
Manager

Sequence Diagram Session Manager

Session

Manager Devicel:Device Device2:Device

createSession()

A

shipDefaultController()

v

shipDefaultViewer()

v

joinSession()

A

shipDefaultController()

v

shipDefaultViewer()

v

acquireLock()
freeLock()

leaveSession()

TECHNISCHE
@ UNIVERSITAT
Petri Nets - Prof. Dr. ABmann DRESDEN

Session Manager Top-Level CPN

Double arrows indicate that arrows run in
both directions

Col\;llg%l;;aeﬂron 2 1 x DeviceList x Vlewer Co ntroller
Lock Lock
Manager

ActiveConfigs:
ConfiguredDevice ==
Device x Viewer X
Controller

View
Manager

TECHNISCHE
@ UNIVERSITAT
Petri Nets - Prof. Dr. ABmann DRESDEN

createSession(s,d)

joinSession(s/d)

LeaveSession

JoinSession

(d,default viewer,

[joinOK(d,s)]
default controller)

== (d,default viewer,
default controller)

[leaveOK(d,s)]
== (d,v,c)

ActiveConfigs:
ConfiguredDevice ==
Device x Viewer x
Controller

guérd

Lock Manager Page

Lock Manager

ctiveConfigs:
Device x Viewer x

(device,viewer,controller) Controller

(device,viewer,controller)

Set Lock ReleaselLock

[not(sessionLocked(session)

and not participant(device,se releaselock(session,device)

[hasLock(session,device)]
setLock(session,device)

Sessions:Ses
sion

View Manager Page

View
Manager

evice x Viewer
Controller

dv,
(d.v.c) (d.v,c)

Detach
Viewer

Detach
Controller

detachViewer(d,v,c) detachController(d,v,c)

(d,attachViewer(d),c) (d,attachControllerr

[hasViewer(d,c)

" [hasController(

/At{ach Attaéh\

Viewer Controller

TECHNISCHE
@ UNIVERSITAT
Petri Nets - Prof. Dr. ABmann DRESDEN

Remarks

 The CPN pages are attached to UML classes, i.e., describe
their behavior

— States and transitions are marked by UML types

e Every subpage is coupled to others (composed with others)

— via common states (fusing/join states)

* The union of the pages via join states is steered by OR, i.e., the pages
add behavior, but do not destroy behavior of other pages

— Via common transitions (fusing/join transitions)

* The union of the pages via join transitions is steered by AND, i.e., the
pages add behavior and synchronize with transitions of other pages

* Transitions are interpreted as coarse-grain events
— On the edges, other functions (actions) are called

— Hence, CPN are open: if something is too complicated to model
as a PN, put it into functions

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Petri Nets - Prof. Dr. ABmann

Coupling of Place and Transition Pages

* Port state coupling (or fuse, merge, composition): Place
pages are coupled to other place pages via common
states (port states)

— The union of the pages is steered by OR, i.e., the pages add
behavior, but do not destroy behavior of other pages

e Port transition coupling: Transition pages are coupled
to other transition pages via common transitions (port
transitions)

— The union of the pages is steered by AND, and every page
changes the behavior of other page

— Events must be available on every incoming edge of a
transition

— The transitions of the combined net only fire if the
transitions of the page components fire

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Robot as
state page

D Piece A'Q

moving

Port states replicated

available ready

“ Robot state page
reused here

Robot 2 Robot 2 free

[Helmut Balzert]

Robot 2

Piece
available

Laying
down

Robot 2 free

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Robot works if

... itgets piece AOR B

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Robots with Transition Pages, Coupled by Transition Ports

Robot 1 free

Robot 1

A

Robot
transition page

. Laying
up =
Buffer
i R Piece Piece ‘
| "\ available | read V
Piece =i
e moving
T —
. Transition page;
Taking Laying transitions replicated
up b

Riece equigped

< Robot
transition page

Robot 2 Robot 2 free reused here

TECHNISCHE
@ UNIVERSITAT
DRESDEN

A Robot AND-composed view

Robot 1 free

Robot 1

Laying o
down Robot works if it
__.----IIIIIIIIIII-- ... E gets
E .. Piece AAND B
] R Piece | . :
availablg*’
Piece K Buffer
moving e Piece .
read g
Piece
moving
Laying
down

Riece equipgped

Robot 2 Robot 2 free

TECHNISCHE
@ UNIVERSITAT
Petri Nets - Prof. Dr. ABmann DRESDEN

Advantages of CPN for the PHM

e The PHM is a distributed and mobile scenario

— Devices can fail (battery empty, wireless broken,
etc)

— The resulting CPN can be checked on deadlock,
i.e., will the PHM session manager get stuck?

 Compact specification

— Usually, CPN are much more compact than
statecharts

* Variability

— The pages are modular, i.e., can be exchanged for
variants easily (e.g., other locking scheme)

TECHNISCHE
@ UNIVERSITAT
Petri Nets - Prof. Dr. ABmann DRESDEN

3.4 Parallel Composition of Colored Petri Nets

TECHNISCHE
@ UNIVERSITAT
Petri Nets - Prof. Dr. ABmann DRESDEN

Parallel composition of PN

 Complex synchronization protocols can be
abstracted to a pattern (als called transition
page or a place page)

* When joining PN with AND (i.e., joining
transition pages), synchronization protocols

can be overlayed to existing sequential
specifications

TECHNISCHE
@ UNIVERSITAT
Petri Nets - Prof. Dr. ABmann DRESDEN

Unforeseeable Extensible Workflows

 Workflows are described by Colored Petri Nets (CPN) or
languages built on top of CPN:

— YAWL language [van der Aalst]
— Workflow nets

 We can use the extension of CPN for workflow
composition, enriching a workflow core with a workflow

aspect:

— Place extension (State extension): adding more edges in and out
of a place (state):
* OR-based composition: Core OR view: Core-place is ORed with Aspect-
Place
— Transition extension (Activity extension): adding more edges in
and out of a transition (activity)

e AND-based composition: Core-transition is ANDed with Aspect-
transition

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Weaving Patterns for Synchronization Protocols with AND Composition

W Complex synchronization protocols can be abstracted to a transition page

W Weaving them with AND, they can be overlayed to existing sequential
specifications

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Petri Nets - Prof. Dr. ABmann

Semaphores For Mutual Exclusion Revisited

* Formsa
synchronisation
aspect via

ANDed Lock Lock .\ Lock
transitions /

Free Free

X

TECHNISCHE
@ UNIVERSITAT
Petri Nets - Prof. Dr. ABmann DRESDEN

Transaction Protocols as AND-Aspects

* Crosscut between processes (cores) and transaction
protocol (aspect)

®_,A_.OO_,Z———»O

Transaction page

A:Begin TA Z:Commit

@———vA—-»OO/Z——>O

TECHNISCHE
@ UNIVERSITAT
Petri Nets - Prof. Dr. ABmann DRESDEN

Insight

* AND-Merge and OR-Merge of CPN are sufficient
basic composition operators for building complex
aspect weavers for workflow languages built on CPN

AND-weaving for synchronization

OR-weaving for functional extension

TECHNISCHE
@ UNIVERSITAT
DRESDEN

3.5 The Application to Modelling

TECHNISCHE
@ UNIVERSITAT
Petri Nets - Prof. Dr. ABmann DRESDEN

Petri Nets Generalize UML Behavioral Diagrams

* Activity Diagrams

e Activity Diagrams are similar to PN, but not formally grounded
— Without markings
— No liveness analysis
— No resource consumption analysis with boundness

— No correspondence to UML statechart, although for PN holds that PN
with finite reachability graphs correspond to finite automata

* |.e,, itis difficult to prove something about activity diagrams, and
difficult to generate (parallel) code from them.

e Data-flow diagrams

 DFD are special form of activity diagrams, and correspond to
Marked Graphs

e Statecharts
 Finite automata are restricted form of Petri nets

 The hierarchical structuring in Statecharts is available in High-Level
Petri Nets (e.g., CPN)

TECHNISCHE
@ UNIVERSITAT
Petri Nets - Prof. Dr. ABmann DRESDEN

Petri Nets Generalize UML Sequence Diagrams

* The object life lines of a sequence diagram can be grouped into state such
that a PN results

 All of a sudden, liveness conditions can be studied

— Is there a deadlock in the sequence diagram?

— Are nhiertc tregted Fair') _
Customer Service Credit Card Purchase Refuel

<>refuelI) S@Sn I %Ssem O O

— 14

< customer()
[cancel trandaction] e —
— pay_cast() I <:>
<> [transpction ok]
<> newPurchase()
newRefuel()

DO

TECHNISCHE
@ UNIVERSITAT
Petri Nets - Prof. Dr. ABmann DRESDEN

A Simple Modelling Process for Safety-Critical Software with CPN

Elaboration: Identify active and passive parts of the system
— Active become transitions, passive to places

* Elaboration: Find the relations between places and
transitions

 Elaboration: How should the tokens look like: boolean?
Integers? Structured data?

— Use UML class diagrams as token type model
e Restructure: Group out subnets to separate “pages”
* Refactor: Simplify by reduction rules

e Verify: Analyse the specification on liveness, boundedness,
reachability graphs, fairness. Use a model checker to verify
the CPN

* TransformRepresentation: Produce views as statecharts,
sequence, collaboration, and activity diagrams..

TECHNISCHE
@ UNIVERSITAT
Petri Nets - Prof. Dr. ABmann DRESDEN

How to Solve the Reactor Software Problem?

e Specify with UML and CPN
— Verify it with a model checker

— Let a prototype be generated
— Test it

— Freeze the assembler

* Then, verify the assembler, because you should
not trust the CPN tool nor the compiler

— Any certification agency in the world will require a
proof of the assembler!

* However, this is much simpler than programming
reactors by hand...

TECHNISCHE
@ UNIVERSITAT
Petri Nets - Prof. Dr. ABmann DRESDEN

The Gloomy Future of PN

* PN will become the major tool in a future CASE
tool or integrated development environment

— Different views on the PN: state chart view, sequence
view, activity view, collaboration view!

* Many isolated tools for PN exist, and the world
waits for a full integration into UML

 CPN will be applied in scenarios where
parallelism is required
— Architectural languages
— Web service langauges (BPEL, BPMN, ...)
— Workflow languages
— Coordination languages

TECHNISCHE
@ UNIVERSITAT
Petri Nets - Prof. Dr. ABmann DRESDEN

The End

* Thanks to Bjorn Svensson for help in making
slides, summarizing [Murata]

