
Fakultät Informatik, Institut für Software- und Multimediatechnik, Lehrstuhl für Softwaretechnologie

16. How to Structure Large Models -
Graph Structurings

Prof. Dr. U. Aßmann
Technische Universität Dresden
Institut für Software- und Multimediatechnik
Gruppe Softwaretechnologie
http://st.inf.tu-dresden.de
Version 12-1.1, 05.12.12

1.  TopSorting (Layering)
2.  Strongly Connected Components
3.  Reducibility
4.  Summary of Structurings

Obligatory Reading

Ø  Jazayeri Chap 3. If you have other books, read the lecture slides
carefully and do the exercise sheets

Ø  F. Klar, A. Königs, A. Schürr: "Model Transformation in the Large",
Proceedings of the the 6th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on the
foundations of software engineering, New York: ACM Press, 2007;
ACM Digital Library Proceedings, 285-294.
http://www.idt.mdh.se/esec-fse-2007/

Ø  Tom Mens, Pieter Van Gorp. A Taxonomy of Model Transformation.
Electronic Notes in Theoretical Computer Science 152 (2006) 125–
142, doi:10.1016/j.entcs.2005.10.021

Ø  T. Mens. On the Use of Graph Transformations for Model
Refactorings. In GTTSE 2005, Springer, LNCS 4143
•  http://www.springerlink.com/content/5742246115107431/

Ø  T. Fischer, Jörg Niere, L. Torunski, and Albert Zündorf, 'Story
Diagrams: A new Graph Rewrite Language based on the Unified
Modeling Language', in Proc. of the 6th International Workshop on
Theory and Application of Graph Transformation (TAGT), Paderborn,
Germany (G. Engels and G. Rozenberg, eds.), LNCS 1764, pp.
296--309, Springer Verlag, November 1998. http://www.upb.de/cs/
ag-schaefer/Veroeffentlichungen/Quellen/Papers/1998/
TAGT1998.pdf

TU Dresden, Prof. U. Aßmann Model Structurings 2

Reducibility

Ø  [Tarjan74] Robert E. Tarjan. Testing flow graph reducibility.
Journal Computer System Science, 9:355-365, 1974.

Ø  [ASU86] Alfred A. Aho, R. Sethi, and Jeffrey D. Ullman. Compilers:
Principles, Techniques, and Tools. Addison-Wesley, 1986.

TU Dresden, Prof. U. Aßmann Model Structurings 3

Further Reading

Ø  Reducible graphs
Ø  [ASU86] Alfred A. Aho, R. Sethi, and Jeffrey D. Ullman. Compilers: Principles,

Techniques, and Tools. Addison-Wesley, 1986.
Ø  Search for these keywords at

Ø  http://scholar.google.com
Ø  http://citeseer.ist.psu.edu
Ø  http://portal.acm.org/guide.cfm
Ø  http://ieeexplore.ieee.org/
Ø  http://www.gi-ev.de/wissenschaft/digitbibl/index.html
Ø  http://www.springer.com/computer?SGWID=1-146-0-0-0

TU Dresden, Prof. U. Aßmann Model Structurings 4

TU Dresden, Prof. U. Aßmann Model Structurings 5

The Problem: How to Master Large Models

Ø  Large models have large graphs
Ø  They can be hard to understand

Ø  Figures taken from Goose Reengineering Tool, analysing a Java
class system [Goose, FZI Karlsruhe]

TU Dresden, Prof. U. Aßmann Model Structurings 6

Problems

Ø  Question: How to Treat the Models of
a big Swiss Bank?
Ø  25 Mio LOC
Ø  170 terabyte databases

Ø  Question: How to Treat the Models of
a big Operating System?
Ø  25 Mio LOC
Ø  thousands of variants

Ø  Requirements for Modelling in Requirements and Design
Ø  We need automatic structuring methods
Ø  We need help in restructuring by hand...

Ø  Motivations for structuring
Ø  Getting better overview
Ø  Comprehensibility
Ø  Validatability, Verifyability

TU Dresden, Prof. U. Aßmann Model Structurings

??

7

Answer: Simon's Law of Complexity

Ø  H. Simon. The Architecture of Complexity. Proc. American
Philosophical Society 106 (1962), 467-482. Reprinted in:

Ø  H. Simon, The Sciences of the Artificial. MIT Press. Cambridge, MA,
1969.

TU Dresden, Prof. U. Aßmann Model Structurings

Hierarchical structure reduces complexity.
Herbert A. Simon, 1962

8

Remember, structuring is a basic engineering activity

Model Transformations in General

Ø  Model refactorings, lowerings, higherings, optimizers, and other
transformations can be specified by graph transformations [Mens]

Ø  Graph transformations can be specified by graph rewrite systems
•  Or by a programming language, of course

TU Dresden, Prof. U. Aßmann Model Structurings 9

Horizontal Vertical
Endogeneous
(within one
language)

Structurings Syntactic and
semantic
refinement

Refactorings
(course DPF)

Exogeneous
(crossing
languages)

Language
migration

PSM generation
(see chapter MDA)

PSI generation
(code generation)

Idea of Structurings

Ø  If a graph-based model is too complex, try structurings
Ø  Structurings overlay graphs with skeleton lists, trees, and dags
Ø  Structuring can be achieved with graph analysis, logic-based

analysis, and graph rewriting
Ø  Example: finding a spanning tree:

TU Dresden, Prof. U. Aßmann Model Structurings

.......

.......

.......

root root

sinks

.......

.......

root root

sinks

.......

10

Idea of Structurings

Ø  Then, following the structure,
Ø  Sequential algorithms can be applied
Ø  Recursive algorithm schemas can be applied
Ø  Wavefronts can be applied

Ø  Structures are nice for thinking and abstraction (see Simon’s law)
Ø  In particular in analysis and design

Ø  Structurings prepare further refactorings
Ø  The structural information can be exploited to further transform the code

and to prove preservation of semantics
Ø  Structurings need

Ø  Logics with types (e.g., F-Datalog)
Ø  Graph reachability analysis
Ø  Graph transformation

TU Dresden, Prof. U. Aßmann Model Structurings 11

16.1 TOPOLOGIC SORTING
OF DAGS (LAYERING)

Overlaying a list on a dag

TU Dresden, Prof. U. Aßmann Model Structurings 12

Topologic Sorting on Dags

Ø  If constraints for the partial order of some things are given, but no
total order

Ø  It doesn’t matter in which order some things are executed
Ø  May be even in parallel

Ø  There are many “legal” orderings, the topological sortings
(topsorts, Totalordnung)

TU Dresden, Prof. U. Aßmann Model Structurings

.......

.......

.......

13

Partial Order for Car Departure

TU Dresden, Prof. U. Aßmann Model Structurings

open left door

open right door

close left door

close right door

drive

14

Topological Sorts on Car Departure

TU Dresden, Prof. U. Aßmann Model Structurings

1

2 3

4
5 open left door

open right door

close left door

close right door

drive

15

Topological Sorts on Car Departure

TU Dresden, Prof. U. Aßmann Model Structurings

1

2
3

4

5

open left door

open right door

close left door

close right door

drive

16

Topological Sort

Ø  Topological sorting sorts the nodes with the „least many ancestors“
first

Ø  TopSort can be described by a subtractive graph rewrite system
(SGRS)

TU Dresden, Prof. U. Aßmann Model Structurings

A

A:depth B

A
depth := gdepth

TopSort-R1: Numbering entry nodes

B
1

TopSort-R2: Contraction: Remove entry nodes

0

gdepth := gdepth+1

0

0

http://de.wikipedia.org/wiki/Topologische_Sortierung

17

Topological Sorts on Car Departure

TU Dresden, Prof. U. Aßmann Model Structurings

Open door

Open door

close door

close door

Drive

Open door 1

Open door 0

close door

close door

Drive

close door

close door

Drive

close door 3

close door 2

Drive 4

R1
R2, R2

R1, R1

ETC…

18

Results: Topological Sortings

Ø  The derivations of the GRS TopSort result in different topological
sortings of the dag.

Ø  For instance:

TU Dresden, Prof. U. Aßmann Model Structurings 19

Open door

Open door

close door

close door

Drive

Benefit of TopSorts

Ø  TopSorted dags are simpler
Ø  Because they structure partial orderings
Ø  Removing parallelism and indeterminism

Ø  Question: why are all cooking recipes sequential?

TU Dresden, Prof. U. Aßmann Model Structurings 20

Applications of TopSort

Ø  Marshalling (serialization) of data structures
Ø  Compute a topsort and flatten all objects in the order of the topsort

Ø  Package trees
Ø  Systems with big package trees can be topsorted and then handled in this

order for differenzing between versions (regression tests)
Ø  Task scheduling

Ø  Find sequential execution order for parallel (partially ordered) activities
Ø  UML activity diagrams

Ø  Finding a sequential execution order

Ø  Execution of parallel processes (sequentialization of a parallel
application)
Ø  Execute the processes according to dependencies of a topsort

Ø  Project management:
Ø  Task scheduling for task graphs (milestone plans): who does when what?
Ø  Find a topsort for the construction of your next house!

TU Dresden, Prof. U. Aßmann Model Structurings 21

16.2 STRONGLY
CONNECTED COMPONENTS

How to make an arbitrary relationship acyclic: overlaying a
graph with a dag

TU Dresden, Prof. U. Aßmann Model Structurings

.......

.......

.......

22

Strongly Connected Components (Acyclic Condensation)

Ø  The acyclic condensation asks for mutual reachability of nodes,
hence for the effect of cycles in graphs

Ø  A digraph is strongly connected, if every node is reachable from
another one

Ø  A subgraph of a graph is a strongly connected component (SCC)
Ø  If every of its nodes is strongly connected

Ø  The reachability relation is symmetric
Ø  All edges on a cycle belong to the same SCC

Ø  How to compute reachability:
Ø  Declaratively: Specification with an EARS or recursive Datalog:

sameSCC(X,Y) :- reachable(X,Y), reachable(Y,X).

Ø  Imperatively: Depth first search in O(n+e)
Ø  The AC has n strongly connected components

TU Dresden, Prof. U. Aßmann Model Structurings 23

Acyclic Condensation

Ø  The SCC of a graph form „abstract super nodes“
Ø  That dag of super nodes is called acyclic condensation (AC)

TU Dresden, Prof. U. Aßmann Model Structurings

SCC (super nodes)

24

Applications on SCC: Attribute Evaluations on Digraphs

Ø  Many algorithms need acyclic graphs, in particular attribute
evaluation algorithms
Ø  The data flow flows along the partial order of the nodes
Ø  For cyclic graphs, form an AC

Ø  Propagate attributes along the partial order of the AC (wavefront
algorithm)
Ø  Within an SCC compute until nothing changes anymore (fixpoint)
Ø  Then advance
Ø  No backtracking to earlier SCCs

Ø  Evaluation orders are the topsorts of the AC

TU Dresden, Prof. U. Aßmann Model Structurings 25

A Wavefront on an AC

TU Dresden, Prof. U. Aßmann Model Structurings 26

Applications

Ø  SCCs can be made on every graph
Ø  Always a good structuring means for every kind of diagram in design
Ø  SCCs form “centers”
Ø  Afterwards, the AC can always be topsorted, i.e., evaluated in a total

order that respects the dependencies
Ø  Useful for structuring large

•  Data diagrams: Class diagrams, package diagrams, object diagrams

•  Behavioral diagrams: statecharts, data-flow diagrams, Petri nets, and
UDUGs, call graphs

•  Coalesce loops into subdiagrams
Ø  Wavefronts can be used for attribute calculations on graphs

Ø  Analyzing statistics on graphs
Ø  “reduce” problems: reducing all attributes of a specific kind over all

nodes and edges of the graph
Ø  Flow problems: calculating costs of paths

TU Dresden, Prof. U. Aßmann Model Structurings 27

Applications of SCC

Ø  Computing definition-use graphs
Ø  Many diagrams allow to define a thing (e.g., a class) and to use it
Ø  Often, you want to see the graph of definitions and uses (the definition-

use graph)
Ø  Definition-use graphs are important for refactoring, restructuring of

software
Ø Whenever a definition is edited, all uses must be adapted
Ø A definition use graph refactoring tool automatically updates all

uses
Ø  Computing Software Metrics

Ø  A metric is a quantitative measure for code or models
Ø  Metrics are computed as attributes to source code entities, usually in a

wavefront
Ø  Examples:

Ø Number of instruction nodes in program graphs (instead of Lines-
of-code)

Ø Call graph depth (how deep is the call graph?)
Ø Depth of inheritance dag (too deep is horrible)

TU Dresden, Prof. U. Aßmann Model Structurings 28

16.3 REDUCIBILITY

Has the graph a skeleton tree structure? [ASU86]
(Finding a hierarchy in a graph-based model)

TU Dresden, Prof. U. Aßmann Model Structurings 29

Why Is a UML Statechart Simple to Understand?

Ø  It is not a plain automaton
Ø  But hierarchically organized

Ø  Certain states abstract substatecharts

TU Dresden, Prof. U. Aßmann Model Structurings

Controlling

Non
Controlling

Off

SwitchOff

SwitchOn

Move Quiet

On

On Off

SwitchOff

SwitchOn

Auto Pilot

30

... it is a Reducible Graph

Ø  But hierarchically organized

TU Dresden, Prof. U. Aßmann Model Structurings

Controlling

Non
Controlling

Off

SwitchOff

SwitchOn

Move Quiet

On

Auto Pilot

Working

Working

On Off

Controlling Non-
Controlling

31

A Reducible Graph

Ø  A reducible graph has special areas with subdags and cycles,
supernodes

Ø  In a reducible graph, there is a spanning tree with primary edges:
Ø  Each diamond has a secondary edge, ending in a join node
Ø  Each cycle has one backedge to a loop head node

Ø  Attention: this is not an acyclic condensation!

TU Dresden, Prof. U. Aßmann Model Structurings 32

Loop head
node

Join node

A Reducible Graph

Ø  Every supernode has a head that represents or abstracts it
Ø  All ingoing edges into the super node end in the head
Ø  Loop head nodes can be head nodes; join nodes not
Ø  The head node of a supernode is refined from a refinement node in another

supernode

TU Dresden, Prof. U. Aßmann Model Structurings

Supernode

33

Refinement
nodes

Head
node

Reducible Graphs

Ø  Reducible graphs have a hierarchical structure, expressed by their
skeleton tree of super nodes with head nodes
Ø  Supernodes can hide subgraphs
Ø  Attention: SCC have a DAG structure (different!)

Ø  Reducible graphs may stem from the refinement operation applied
to refinement nodes
•  If an engineer refines, reducible structures result

TU Dresden, Prof. U. Aßmann Model Structurings

Super nodes

34

A Reducible Graph

Ø  A skeleton tree (skeleton hierarchy) between the supernodes
results

Ø  Graph is structured and much simpler to comprehend

TU Dresden, Prof. U. Aßmann Model Structurings

Head
Supernode

35

Reducible Graphs in Software Engineering

Ø  Submodels can be abstracted into single nodes
Ø  Whole model can be abstracted into one node
Ø  Skeleton tree structures the model
Ø  Reducibility law:

Ø  Otherwise large models cannot be understood

TU Dresden, Prof. U. Aßmann Model Structurings

A model should use reducible graphs
to be comprehensilbe
and to enable efficient algorithms

36

Principle of structured modeling and structured programming:
The refinement operation is very helpful because
it results in reducible graphs and models

The Fractal-Like Behavior of Reducible Graphs

Ø  A reducible graph can be zoomed-in and zoomed-out, like a fractal
Ø  Refinement nodes can be zoomed in
Ø  Zooming-out means abstraction
Ø  Zooming-in means detailing

TU Dresden, Prof. U. Aßmann Model Structurings

Zoom-In

Zoom-In

37

Computing Reducibility with T1-T2 Graph Rewrite System

Ø  A reducible digraph is a digraph, that can be reduced to one node
by the following graph rewrite rules [Tarjan74]

Ø  Specification with a subtractive GRS (SGRS):

TU Dresden, Prof. U. Aßmann Model Structurings

A A

Reducibility-T1: Remove reflective edges

38

A B AB
1

Reducibility-T2a: Merge successors with no fan-out and
fan-in 1 (collapse rule a)

Computing Reducibility with T1-T2 Graph Rewrite System

TU Dresden, Prof. U. Aßmann Model Structurings 39

A B AB
1

Reducibility-T2b: Merge successors with fan-in of 1
and fanout (collapse rule b)

■  Side condition of Reducibility-T2: If there is a node B, that has a unique predecessor, A, then m
may consume n by deleteing B and making all successors C of B (including A, possibly) be
successors of A.

C C

Example: T1 – T2 Reduction

Ø  On every level, in the super nodes there may be cycles
Ø  T2 shortens these cycles
Ø  T1 reduces reflective cycles to super nodes

Ø  Example: Reduction of a finite state automaton

TU Dresden, Prof. U. Aßmann Model Structurings

a

 b c

 d

a

 b cd

a

 b cd

ab

cd

abcd

=> =>

=> =>

T1 T2

T2 T2

40

Ø  Reduction of an IF structure

TU Dresden, Prof. U. Aßmann Model Structurings 41

A:If

 b c =>

T2

Join

A:If

c

B Join

=>

T2

A:If

B Join C

A B Join C
=>

T2

Reducible Graphs

Ø  All recursion techniques on trees can be taken over to the skeleton
trees of the reducible graphs

Ø  For reducible graphs, usually recursion schemas can be applied
Ø  Branch-and-bound
Ø  Depth-first search
Ø  Dynamic programming

Ø  Applications
Ø  Organisation diagrams: if a organization diagram is not reducible,

something is wrong with the organization
Ø This is the problem of matrix organizations in contrast to

hierarchical organizations
Ø  How to Diff a Specification?

Ø  Text: well-known algorithms (such as in RCS)
Ø  XML trees: recursive comparison (with link check)
Ø  Dags: layer-wise comparison
Ø  Graphs: ??? For general graphs, diffing is NP-complete (graph

isomorphism problem)

TU Dresden, Prof. U. Aßmann Model Structurings 42

Application: Simple Diffing in Reducible Graphs

Ø  Given a difference operator on two nodes in a graph, there is a
generic linear diff algorithm for a reducible graph:
Ø  Walk depth-first over both skeleton trees
Ø  Form the left-to-right spanning tree of an SCC and compare it to the current

SCC in the other graph
Ø  Exercises: effort?

Ø  how to diff two UML class diagrams?
Ø  how to diff two UML statecharts?
Ø  how to diff two colored Petri Nets?
Ø  how to diff two Modula programs?
Ø  how to diff two C programs?

TU Dresden, Prof. U. Aßmann Model Structurings 43

Applications of Reducibility in Software Engineering

Ø  Structured programming produces reducible control flow graphs
(Modula and Ada, but not C)
Ø  Dijkstra‘s concern was reducibility
Ø  Decision tables (Entscheidungstabellen) sind hierarchisch
Ø  Structured Analysis (SA) is a reducible design method
Ø  Colored Petri Nets can be made reducible
Ø  UML

Ø  CBSE Course:
Ø  Component-connector diagrams in architecture languages are reducible
Ø  Many component models (e.g., Enterprise Java Beans, EJB)

Ø  Architectural skeleton programming (higher order functional
programming)
Ø  Functional skeletons map, fold, reduce, bananas

TU Dresden, Prof. U. Aßmann Model Structurings 44

Example: UML Restructuring

Ø  Structure UML Class Diagrams
Ø  Choose an arbitrary UML class diagram
Ø  Calculate reducibility

Ø  If the specification is reducible, it can be collapsed into one class
Ø  Reducibility structure gives a simple package structure

Ø  Test dag feature
Ø  If the diagram is a dag, it can be layered

Ø  TopSort the diagram
Ø  A topsort gives a linear order of all classes

Ø  UML Packages are not reducible per se
Ø  Large package systems can be quite overloaded
Ø  Layering is important (e.g., 3-tier architecture)
Ø  Reducible packages can be enforced by programming discipline. Then,

packages can better be reused in different reuse contexts
Ø  UML statecharts are reducible
Ø  UML component, statecharts and sequence diagrams are reducible

TU Dresden, Prof. U. Aßmann Model Structurings 45

16.3.2 MAKING GRAPHS
REDUCIBLE

Restructuring an arbitrary graph to be reducible

TU Dresden, Prof. U. Aßmann Model Structurings 46

Graphs Can Be Made Reducible

Ø  By duplicating shared parts of the graph that destroy reducibility
structure
Ø  Builds a skeleton tree

Ø  The process is called node splitting:
Ø  If the reducability analysis yields a limit graph that is other than a single

node, we can proceed by splitting one or more nodes
Ø  If a node n has k predecessors, we may replace n by k nodes.
Ø  The ith predecessor of n becomes the predecessor of ni only, while all

successors of n become successors of all the ni’s.

TU Dresden, Prof. U. Aßmann Model Structurings 47

Example: Node Splitting

Ø  If a loop is irreducible, node has two ancestors. For instance, a join
node may also be a loop head node

Ø  Remedy
Ø  Separate the loop from the join node
Ø  Duplicate the irreducible node in an irreducible loop (even with subtrees)
Ø  Most often, the join and loop head node can be taken

TU Dresden, Prof. U. Aßmann Model Structurings

1

2 3

1

2a 3

2b

1,2a

2b,3

1,2a,2b,3
=> => =>

Irreducible
graph:

Duplicate a node
with fan-in 2

Reduce with
Reducibility-T2

Reduce with
Reducibility-T2

48

16.4 SUMMARY OF
STRUCTURINGS

TU Dresden, Prof. U. Aßmann Model Structurings 49

Structurings Producing Lists and Graphs

Ø  More Structurings Producing Lists
Ø  Layering

Ø  Overlaying a list of layers onto a
dag

Ø  ”same generation problem”
Ø  Standard Datalog, DL, EARS

problem

TU Dresden, Prof. U. Aßmann Model Structurings

•  More Structurings Producing Trees
•  Dominance Analysis

•  Overlays a dominator tree to a graph
•  A node dominates another if all paths go

through it
•  Applications: analysis of complex

specifiations
•  Planarity

•  Finds a skeleton tree for planar drawing
•  A graph is planar, if it can be drawn without

crossings of edges
•  Computation with a reduction GRS, i.e.,

planarity is a different form of reducibility
•  Application: graph drawing

•  Graph parsing with context-free graph
grammars

•  Overlaying a derivation tree
•  Rules are context-free

50

More Structurings Producing Dags

Ø  Stratification
Ø  Layers of graphs with two relations
Ø  Normal (cheap) and dangerous (expensive) relation
Ø  The dangerous relation must be acyclic
Ø  And is layered then
Ø  Applications: negation in Datalog, Prolog, and GRS

Ø  Concept Analysis [Wille/Ganter]
Ø  Structures bipartite graphs by overlaying a lattice (a dag)
Ø  Finds commonalities and differences automatically
Ø  Eases understanding of concepts

TU Dresden, Prof. U. Aßmann Model Structurings 51

Comparison of Structurings

TU Dresden, Prof. U. Aßmann Model Structurings

Implementation of
process diagrams

Order x TopSort

Structure Forward flow
Wavefronts

x Strongly conn.
components

Structure Hierarchy x Graph parsing

Structure Layering x Stratification

Comparison Commonalities x Concept analysis

Drawing Hierarchy x Planarity

Visit frequency Importance of nodes x Dominance

Structure Hierarchy x Reducibility

Layers Order x Layering

Purpose Concept Dag Tree List

52

Simple Models in Software Engineering

Ø  Models and specifications, problems and systems are easier to
understand if they are
Ø  Sequential
Ø  Hierarchical
Ø  Acyclic
Ø  Structured (reducible)

Ø  And this hold for every kind of model and specification in Software
Engineering
Ø  Structurings can be applied to make them simpler
Ø  Structurings are applied in all phases of software development:

requirements, design, reengineering, and maintenance
Ø  Forward engineering: define a model and test it on structure
Ø  Reverse engineering: apply the structuring algorithms

TU Dresden, Prof. U. Aßmann Model Structurings 53

Other Software Engineering Applications

Ø  Structured Programming (reducible control flow graphs), invented
from Dijkstra and Wirth in the 60s

Ø  Description of software architectures (LeMetayer, 1995)
Ø  Description of refactorings (Fowler, 1999)
Ø  Description of aspect-oriented programming (Aßmann/Ludwig

1999)
Ø  Virus detection in self-modifying viruses

TU Dresden, Prof. U. Aßmann Model Structurings 54

The End: What Have We Learned

Ø  Understand Simon’s Law of Complexity and how to apply it to
graph-based models

Ø  Techniques for treating large requirements and design models
Ø  Concepts for simple software models
Ø  You won't find that in SE books
Ø  but it is essential for good modelling in companies

TU Dresden, Prof. U. Aßmann Model Structurings 55

