
Fakultät Informatik, Institut für Software- und Multimediatechnik, Lehrstuhl für Softwaretechnologie

20 Design Methods - An Overview

Ø Prof. Dr. U. Aßmann
Ø Technische Universität Dresden
Ø Institut für Software- und Multimediatechnik
Ø Gruppe Softwaretechnologie
Ø http://st.inf.tu-dresden.de/teaching/swt2
Ø Version 12-1.1, 15.12.12

1.  From Requirements to Design
2.  What is a Design Method?
3.  Overview of Design Methods

1.  Functional Development
2.  Action-Based Development
3.  Component-Based Development
4.  Data-Oriented Development
5.  Object-oriented Development
6.  Transformative Development
7.  Generative Development
8.  Model-Driven Software Development
9.  Formal Methods
10.  Aspect-oriented Development

4.  Other Architectural Styles
5.  Design Heuristics and Best Practices

Obligatory Readings

Ø  Pfleeger Chapter 5
Ø  Ghezzi Chapter 3

TU Dresden, Prof. U. Aßmann Development 2

Secondary Literature

Ø  [Thayer] Richard Thayer. Software Engineering. A curriculum book.
IEEE Press

Ø  [Budgen] David Budgen. Software Design: An Introduction. In
[Thayer]

Ø  [Thayer&McGettrick] Richard Thayer, Andrew McGettrick. Software
Engineering - A European Perspective. IEEE Press

Ø  [Parnas] David Parnas. On the Criteria To Be Used in Decomposing
Systems into Modules. Communications of the ACM Dec. 1972. The
classic article on modularity

Ø  [Brooks] Frederick P. Brooks jr. No Silver Bullet. Essence and
Accidents of Software Engineering. In [Thayer]. Wonderful article
on what software engineering is all about

Ø  Heise Developer Podcast http://www.heise.de/developer/podcast/

TU Dresden, Prof. U. Aßmann Development 3

Literature

Ø  [Budgen] David Budgen. Software Design. Addison-Wesley.
Expands on the Budgen paper. Pretty systematic.

Ø  [Shaw/Garlan] Software Architecture. 1996. Prentice-Hall. Great
book for architects.

Ø  [Shaw/Clements] M. Shaw, P. Clements. A Field Guide to Boxology.
Ø  [Endres/Rombach] A. Endres, D. Rombach. A Handbook of software

and systems engineering. Empirical observations, laws and
theories. Addison-Wesley. Very good collection of software laws.
Nice!

TU Dresden, Prof. U. Aßmann Development 4

Goals

Ø  Get an overview on the available methods to come from a
requirements specification to the design

Ø  Understand that software engineers shouldn't get stuck by a
specific design method

TU Dresden, Prof. U. Aßmann Development 5

Scenario

Ø  You are a project manager in Miller Car Radios, Inc
Ø  Your boss comes into your office and says:

“Our competitor Smith Car Radios has a new satellite radio. Their
sales are growing, and our customers demand it, too. How quickly
can you deliver me a satellite radio?”

TU Dresden, Prof. U. Aßmann Development 6

Scenario

Ø  You are a project manager in Miller Car Radios, Inc
Ø  Your boss comes into your office and says:

Ø “Our competitor Smith Car Radios has a new
satellite radio. Their sales are growing, and our
customers demand it, too. How quickly can you
deliver me a satellite radio?”

TU Dresden, Prof. U. Aßmann Development

cost calculation
time planning

requirements
analysis system design

project management
software process

7

The Ideal Design Process

Ø  "Design produces a workable solution to a given
problem" [Budgen]

Ø  "Design is the description of a solution" [Pfleeger]

Ø  "The Design Process is the creative process of transforming the
problem into a solution" [Pfleeger]

Ø  Goal: This lecture presents some systematic ways how to come to
a workable solution for a given problem

TU Dresden, Prof. U. Aßmann Development 8

20.1 From Requirements to Design

TU Dresden, Prof. U. Aßmann Development

System interaction analysis
(system context analysis)

Architectural Style
 Analysis

Functional Design

Requirement Analysis

OO Design Transformative
Design

System interfaces (Context model)

Architectural Design

Architecture (SAS)

Functional Design OO Design Transformative
Design

Detailed Design

SDDS

...

...

Top-level architecture

9

Ø Contents of the Software Requirements Specification (SRS) (rep.)

Ø  The Software Requirement
Specification (SRS) contains a
list of things the system has to
fulfill

Ø  Example [Richard Fairley,
Software Engineering]

Ø  Usually, specification languages
are the same or similar for
requirements and design

TU Dresden, Prof. U. Aßmann Development

Ø  Overview of Product
Ø  Background, Environment
Ø  Interfaces of the System

(context model)
Ø  I/O interfaces, data formats

(screens, protocols, etc.),
Commands

Ø  Overview of data flow through
system, Data dictionary

Ø  Functional requirements
Ø  Non-functional requirements
Ø  Error handling
Ø  Prioritization
Ø  Possible extensions
Ø  Acceptance test criteria
Ø  Documentation guideline
Ø  Literature
Ø  Glossary

10

Contents of the Software Architectural Design Specification (SAD, SAS)

Ø  Conceptual abstraction level
Ø  Conceptual instead of technical
Ø  Coarse grain instead of detailed

Ø  Design dimensions
Ø  Structure (part-of relations, is-a relations)
Ø  Function (types, interfaces)
Ø  Behavior

Ø  System components and their interfaces
Ø  Contract specifications of modules: how to use a module?
Ø  What should it take, what deliver (pre- and postconditions)

Ø  Component relations
Ø  Uses, is-a, part-of, behaves-like
Ø  Connections

Ø  Architectural styles (architectural patterns)
Ø  Coarse grain patterns of the architecture in terms of control flow and data

flow
Ø  Constraints of modules, relations, and connections

Ø  Design patterns
Ø  Micro-structures in the design model, mostly on the collaboration of 2-5

classes TU Dresden, Prof. U. Aßmann Development 11

Contents of Detailed Design Document (SDDS)

Ø  SDDS = Software Detailed Design Specification

Ø  Fine-grained design
Ø  Technical instead of conceptual
Ø  Sketch of the implementation with pseudo code, statecharts, petri nets, or

other design notations
Ø  Behavioral model
Ø  Tells more about the HOW, without giving the implementation

TU Dresden, Prof. U. Aßmann Development 12

20.2 DESIGN METHODS

TU Dresden, Prof. U. Aßmann Development 13

A Software Design Method (aka Development Method)

… has 3 components [Budgen]:
1. Representation part (notation, language)

Ø  Set of notations in (informal) textual, (semi-formal) diagrammatic, or
mathematic (formal) form

2.  Process model (“Vorgehensmodell”, “Prozessmodell”)
Ø  Design strategy: A basic design question (focus of refinement)
Ø  Restructuring methods
Ø  Consistency checking

3. Set of heuristics
Ø  General rules of thumb
Ø  Process-specific rules
Ø  Process patterns
Ø  Design patterns
Ø  Adaptation rules

TU Dresden, Prof. U. Aßmann Development 14

20.2.1 Design Representations

TU Dresden, Prof. U. Aßmann Development 15

Design Languages

TU Dresden, Prof. U. Aßmann Development

Programming
Languages

Specification
Languages

Executable
Specification
Languages

Paper
Specification
Languages

Text Diagrams Math

Parseable natural
language

Informal
Natural language
Pseudo-code

Flow chart
Data-flow Diagram
Entity-Relationship
Diagram ER

UML
Structure Diagram
Statecharts
Workflow languages
(BPEL, BPMN)...

Colored Petri nets
State machines

Vienna Development
Language VDL/VDM
Z
B

ELAN
SETL
Java
Scala
C#

Larch (with prover)
CSP
CCS

16

Modelica
Metamodelica
Matlab
Simulink

20.2.2 DESIGN
PROCESSES

Generic steps

TU Dresden, Prof. U. Aßmann Development 17

20.2.3 Design Process

Ø  A design process is a structured algorithm (or workflow) to
achieve a design model from a requirement specification
Ø  A sequence of steps
Ø  A set of milestones

Ø  The design process starts from the system’s interfaces (context
codel) and refines its internals

Ø  Every design process
Ø  Contains several central generic steps
Ø  Uses general design strategies
Ø  Ends up in a specific architectural style

Ø Design processes belong to software development methods/
processes
•  Together with requirements, testing etc.

TU Dresden, Prof. U. Aßmann Development 18

Repetition: Generic Steps in Design Processes

Every design process contains some generic steps
Ø  Elaboration

Ø  Work out a certain aspect of the design model, using an appropriate design
notation

Ø  Refinement
Ø  Refine an existing specification/model, replacing abstract parts by details,

e.g., add platform-specific details
Ø  Retain refinement conditions such as embedding
Ø  Abstraction is the opposite of refinement

Ø  Checking Consistency
Ø  Checking business rules and context constraints

Ø  Restructure (more structure, but keep semantics)
Ø  Split (decompose, introduce hierarchies, layers, reducibility)
Ø  Coalesce (rearrange)

Ø  Symmetry operations (semantics-preserving, restructuring):
Ø  Semantic refinement
Ø  Refactoring
Ø  Change Representation (Notation):

Ø  Simplification (factoring, transitive reduction, facading)
Ø  Change representation, but keep semantics
Ø  Transform a certain representation of the model into another one

TU Dresden, Prof. U. Aßmann Development 19

Development Operations of Design Methods

Ø  Every notation has elaboration, refinement, checking, and
structuring operations

Ø  Hand operations
Ø  Split (decompose, introduce hierarchies, layers, reducibility
Ø  Coalesce (rearrange)

Ø  Automatic operations
Ø  Graph analysis methods, such as constraints
Ø  Graph structuring methods, e.g., graph analysis or transformations
Ø  Text-based specifications can be transformed into ASGs and then structured

by graph structuring methods
Ø  Some notations have specific automatic methods

TU Dresden, Prof. U. Aßmann Development 20

20.2.2.1 Architectural Styles as Results of Design
Processes

TU Dresden, Prof. U. Aßmann Development 21

Denert's Law on Architectural Styles

Ø  Ernst Denert. Software Engineering. Springer, 1991.
Ø  Consequence of Denert's law:

Ø  if we can split off a concern in an application domain, we arrive at a new
standard architecture (architectural style)

TU Dresden, Prof. U. Aßmann Development

Separation of concerns leads to standard architectures.
E. Denert, 1991

22

Architectural Styles

Ø  An architecture style employs certain types of concepts
Ø  Certain types of components with
Ø  Certain types of connections/connectors
Ø  And a certain relation between control and data flow

Ø  Architectural styles enable us to talk about the coarse-grain
structure of a system
Ø  Good for documentation and comprehension
Ø  Good for maintenance

Ø  Architectural Styles vs Design Patterns
Ø  Design patterns have been called microarchitectures

Ø  They grasp a relationship between several classes of an application, but not of
the entire architecture or subsystem

Ø  Architectural styles are coarse-grain design patterns

TU Dresden, Prof. U. Aßmann Development 23

What Is In a Style ?

Ø  A style has 5 major concerns, in which it can vary [Shaw/Garlan]
Ø  Structural Parts: components, interfaces (ports), connectors, classes,

objects, modules
Ø  Control flow

Ø  Topology (in which form coordination taken place?)
Ø  Synchronisation (synchronous, asynchronous)
Ø  Binding time (When are the components organized?)

Ø  Data flow
Ø  Topology (How does the data flow?)
Ø  Continuity (singular, sporadic, continuous, strong, weak)
Ø Modus (shared memory, messages, ..)

Ø  Interaction between control- and data flow
Ø  Isomorphic similar to a data structure
Ø Direction (parallel, antiparallel)

Ø  Invariants
Ø  Features that never change

Ø  Analysis features
Ø How can be architecture be analyzed?

TU Dresden, Prof. U. Aßmann Development 24

The Design Problem

Ø  How do I derive at a design for the system?
Ø  How do I derive at an architectural style for the system?
Ø  How do I derive a detailed design?

Ø  Most often, after reading the requirements, the system looks like
in mist
Ø  Developers have a bad feeling in their stomach
Ø  They feel their way forward
Ø  Important is: which questions are asked?

Ø  In design meetings, the basic design questions are posed over and
over again, until a design is found
Ø  Select a design method
Ø  Pose the design method's basic question
Ø  Perform the design method's process

Ø Perform the design method's steps
Ø  If process gets stuck, change design method and try another one

Ø However, be aware, which design method and process you use

TU Dresden, Prof. U. Aßmann Development 25

Design Processes have a Focus of Elaboration and Refinement

Ø A central viewpoint with a set of concerns, according to which the system is
elaborated

• Decomposed
• Refined
• composed

Ø An elaboration strategy
Ø The central question

TU Dresden, Prof. U. Aßmann Development 26

20.3 Overview of Elaboration Strategies

Ø  A design method relies on a elaboration strategy, including a
basic question the developer has to pose himself, or the team asks
itself

Ø  A different question gives a different design method
Ø  Methods can be grouped according to their focus of decomposition

and the design notation they use.
Ø  Function-oriented: function in focus
Ø  Action-oriented, event-action-oriented: Action in focus
Ø  Data-oriented: A data structure is in focus
Ø  Component-oriented (structure-oriented): parts in focus
Ø  Object-oriented: objects (data and corresp. actions) in focus
Ø  Transformational: basic action is the transformation
Ø  Generative: basic action is a special form of transformation, the

generation. Also using planning
Ø  Formal methods: correct refinement and formal proofs in focus
Ø  Aspect-oriented methods: refinement according to viewpoints and

concerns

TU Dresden, Prof. U. Aßmann Development 27

20.3.1) Function-Oriented Design (Operation-oriented, Modular Design)

Ø  Design with functional units which transform inputs to outputs
Ø  Minimal system state
Ø  Information is typically communicated via parameters or shared

memory
Ø  No temporal aspect to functions

Ø  Functions/operations are grouped to modules or components
Ø  Divide: finding subfunctions
Ø  Conquer: grouping to modules

Ø  Examples
Ø  Parnas' change-oriented design (information-hiding based design, see ST-1)
Ø  Layered abstract machines (see ST-1)

Ø  Use: when the system has a lot of different functions

TU Dresden, Prof. U. Aßmann Development

What are the functions of the software and their subfunctions?

28

Ø  "Divide and Conquer” of function
Ø  Decompose system into smaller and smaller pieces

•  Ideally, each piece can be solved separately
•  Ideally, each piece can be modified independent of other pieces

Ø  Reality: each piece must communicate with other pieces
•  This communication implies a certain cost
•  At some point the cost is more than the benefit provided by the individual

pieces
•  At this point, the decomposition process can stop

TU Dresden, Prof. U. Aßmann Development 29

20.3.2) Action-Oriented Design

Ø  Action-oriented design is similar to function-oriented design, but
actions require state on which they are performed (imperative,
state-oriented style)

Ø  Divide: finding subactions
Ø  Conquer: grouping to modules
Ø  Examples:

Ø  Petri Nets
Ø  Use-case-based development
Ø  Data-flow based development SA, SADT

Ø  Use: when the system maps to a state space, in which actions form
the transitions

TU Dresden, Prof. U. Aßmann Development

What are the actions the system should perform?

30

Structural Decomposition

TU Dresden, Prof. U. Aßmann Development

A

y

A

y

x x

A

x y

A

x x

input output transform Co-ordinate

31

Result 1: Call-Based Architectural Style

Ø  Components denote procedures that call each other
Ø  Control flow is symmetric (calls and symmetric returns)
Ø  Data-flow can be

Ø  parallel the call (push-based system): caller pushes data into callee
Ø  antiparallel, i.e., parallel to the return (pull-based system): caller drags out

data from callee
Ø  Aka “Client-Server” in loosely coupled or distributed systems

TU Dresden, Prof. U. Aßmann Development

Module
Module

Module

System

call

return

call

return

call return
call

return

call

return

32

Result 2: Data-Flow Based Systems (Pipe-and-Filter,
Channels, Streams)

Ø  If data flows in streams, call-based systems are extended to stream-based
systems

Ø  Components: processes, connectors: streams
Ø  Control flow is asynchronous, continuous
Ø  Data-flow graph of connections, static or dynamic binding
Ø  Data-flow can be parallel to the control-flow (push-based system) or

antiparallel (pull-based system)

TU Dresden, Prof. U. Aßmann Development

architectural glue code

Filter

Pipe

cat server.log | grep "Adding student"

33

Examples

Data-flow based systems:
Ø  Image processing systems

Ø  Microscopy, object recognition

Ø  Digital signal processing systems
Ø  Video and audio processing, e.g., the satellite radio

Ø  Content management systems (CMS)
Ø  Data is stored in XML or relational format
Ø  Pipelines produce display format

Ø  Batch-processing systems
Ø  UNIX shell scripts provides untyped data flow (texts)
Ø  Microsoft Power Shell provides typed data-flow, typed in XML

Call-based systems:
Ø  Object-oriented frameworks
Ø  Layered architectures

TU Dresden, Prof. U. Aßmann Development 34

 20.3.2.2) Event-Condition-Action-Oriented Design

Ø  Event-condition-action rules (ECA rules)
Ø  On which event, under which condition, follows which action?

Ø  Divide: finding rules for contexts
Ø  Conquer: grouping of rules to rule modules
Ø  Example:

Ø  Business-rule-based design (SBVR)

Ø  Use: when the system maps to a state space, in which actions form
the transitions and the actions are guarded by events

TU Dresden, Prof. U. Aßmann Development

What are the events that may occur and
how does my software react on them?

35

Arch. Style: Event-based Architectural Style (Implicit
Invocation Style)

Ø  Components: processes or procedures
Ø  Connectors: Anonymous communication by events

Ø  Asynchronous communication
Ø  Dynamic topology: Listeners can dynamically register and unregister
Ø  Listeners are implicitly invoked by events

TU Dresden, Prof. U. Aßmann Development

On Event
If Condition
then Action

On Event
If Condition
then Action

On Event
If Condition
then Action

36

SBVR Example (OMG Business Rule Language)

current contact details

 Concept Type: role

 Definition: contact details of rental that have been confirmed by renter of rental

rental

 Definition: contract that is with renter and specifies use of a car of car group and is for
rental period and is for rental movement

optional extra

 Definition: Item that may be added to a rental at extra charge if the renter so chooses

 Example: One-way rental, fuel pre-payment, additional insurances, fittings (child seats,
satellite navigation system, ski rack)

 Source: CRISG [“optional extra”]

rental actual return date/ time

 Concept Type: role

 Definition: date/time when rented car of rental is returned to EU-Rent

rental requests car model

 Synonymous Form: car model is requested for rental

 Necessity: Each rental requests at most one car model.

 Possibility: The car model requested for a rental changes before the

 actual pick-up date/time of the rental.

 Necessity: No car model requested for a rental changes after the

 actual pick-up date/time of the rental

TU Dresden, Prof. U. Aßmann Development 37

JBoss Rules

<rule name="Free Fish Food Sample">
 <parameter identifier="cart">
 <java:class>org.drools.examples.java.petstore.ShoppingCart</java:class>
 </parameter>
 <parameter identifier="item">
 <java:class>org.drools.examples.java.petstore.CartItem</java:class>
 </parameter>

 <java:condition>cart.getItems("Fish Food Sample").size() == 0</java:condition>
 <java:condition>cart.getItems("Fish Food").size() == 0</java:condition>
 <java:condition>item.getName().equals("Gold Fish")</java:condition>

 <java:consequence>
 System.out.println("Adding free Fish Food Sample to cart");
 cart.addItem(new org.drools.examples.java.petstore.CartItem("Fish Food Sample",

0.00));
 drools.modifyObject(cart);
 </java:consequence>
</rule>

TU Dresden, Prof. U. Aßmann Development 38

Event-Bus

Ø  Basis of many interactive application frameworks (XWindows, Java
AWT, Java InfoBus,)

Ø  See design pattern Observer with Change Manager

TU Dresden, Prof. U. Aßmann Development

EventBus (Mediator)

Subject Subject Subject

Observer Jrules-
based
Observer

ECA-rule
based
Observer

39

Arch. Style: Workflow-Based Systems

Ø  A workflow describes the actions on certain events and conditions
Ø  Formed by a decision analysis, described by ECA rules

Ø  Instead of a data-flow graph as in pipe-and-filter systems, or a
control-flow graph as in call-based systems
Ø  A control-and-data flow graph steers the system
Ø  The data-flow graph contains control-flow instructions (if, while, ..)
Ø  This workflow graph is similar to a UML activity diagram, with pipes and

switch nodes
Ø  Often transaction-oriented

TU Dresden, Prof. U. Aßmann Development

Workflow

Filter

Pipe
?

?

40

Application Domains of Workflow Architectures

Ø  Business software
Ø  The big frameworks of SAP, Peoplesoft, etc. all organize workflows in

companies
Ø  Production planning software
Ø  Web services are described by workflow languages (BPEL)

Ø  More in course “Component-based Software Engineering”

TU Dresden, Prof. U. Aßmann Development 41

Arch. Style: Architectural Style of Communicating State
Machines

Ø  Processes can be modeled with state machines that react on
events, perform actions, and communicate

Ø  Model checking can be used for validation of specifications
Ø  Languages:

Ø  Esterelle, Lotos, SDL
Ø  UML and its statecharts
Ø  Heteregenous Rich Components (HRC)
Ø  EAST-ADL

TU Dresden, Prof. U. Aßmann Development 42

Applications

Ø  Protocol engineering
Ø  Automatic derivation of tests for systems

Ø  Telecommunication software
Ø  Embedded software

Ø  In cars
Ø  In planes
Ø  In robots

TU Dresden, Prof. U. Aßmann Development 43

20.3.3) Data-Oriented Design

Ø  Data-oriented design is grouped around a input/output/inner data
structure
Ø  or a language for a data structure (regular expressions, finite automata,

context-free grammars, ...)

Ø  The algorithm of the system is isomorphic to the data and can be
derived from the data
Ø  Input data (input-data driven design)
Ø  Output data (output-data driven design)
Ø  Inner data

Ø  Divide: finding sub-data structures
Ø  Conquer: grouping of data and algorithms to modules
Ø  Example:

Ø  Jackson Structured Programming (JSP)
Ø  ETL processing in information systems

TU Dresden, Prof. U. Aßmann Development

What does the data look like?

44

Data-Flow Style: Regular Batch Processing
(ETL Processing)

Ø  Regular Batch Processing is a specific batch-processing style. In
such an application, regular domains are processed:
Ø  Regular string languages, regular action languages, or regular state spaces

Ø  The form of the data can be described by a
Ø  Regular expression, regular grammar, statechart, or JSP diagram tree

Ø  Often transaction-oriented
Ø  Example:

Ø  Record processing in bank and business applications:
Ø  Bank transaction software
Ø Database transaction software for business

Ø  Business report generation for managers (controlling)

TU Dresden, Prof. U. Aßmann Development 45

Arch. Style: Repository Systems (Data Base
Systems)

Ø  Processing is data-oriented
Ø  Free coordination the components, can be combined with call-based

style or process-style
Ø  Often also state-oriented

TU Dresden, Prof. U. Aßmann Development

Repository

Read/write

46

Example: Repository Style in a Compiler

Ø  The algorithms are structured along the syntax of the programs
Ø  The Design Pattern “Visitor” separates data structures from

algorithms

TU Dresden, Prof. U. Aßmann Development

Lexical
Analyser

Parser

Semantic
Analysis

Optimizer

Transformation
Phase

Code
generator

Repository
47

Repository Style in a Integrated Development Environment

Ø  IDE store programs, models, tests in their repository

TU Dresden, Prof. U. Aßmann Development

Lexical
Analyser

Parser

Semantic
Analysis Refactoring

Pretty
Printer

Repository

Diagram
Visualizer

Unit Testing

48

Information Systems – Queries on a Repository

Ø  Algorithms are structured along the relational data
Ø  Data warehouse applications provide querying on multidimensional

data

TU Dresden, Prof. U. Aßmann Development

Query 1 Query
Optimizer

Query3

Repository

Query 2

49

Blackboard Style

Ø  The blackboard is an active repository (i.e., an active component)
and coordinates the other components
Ø  by event notification or call

Ø  Dominant style in expert systems

TU Dresden, Prof. U. Aßmann Development

Blackboard

Read/write

50

Fire/trigger

20.3.4) Component-Based Design (Structure-Oriented
Design)

Ø  Focus is on the HAS-A (PART-OF) relation
Ø  Focus is on parts, i.e., on an hierarchical structure of the system

Ø  Divide: finding subcomponents (parts)
Ø  Conquer: grouping of components to larger components

Ø  Example:

Ø  Design with architectural languages (such as EAST-ADL)
Ø  Design with classical component systems (components-off-the-shelf, COTS),

such as CORBA or AutoSAR
Ø  However, many component models exist
Ø  Separate course “Component-based software engineering (CBSE)”

TU Dresden, Prof. U. Aßmann Development

What are the components (parts) of the system,
their structure, and their relations?

51

20.3.5) Object-Oriented Design

Ø  Data and actions are grouped into objects, and developed together
Ø  Focus is on the is-a and the behaves-like relation
Ø  A part of the system is like or behaves like another part (similarity)

Ø  Divide: finding actions with their enclosing objects
Ø  Conquer: group actions to objects

TU Dresden, Prof. U. Aßmann Development

What are the "objects" of the system?
What are the actions and attributes of the objects?

52

Object-Oriented Design Methods

Ø  CRC cards (ST-1)
Ø  Verb substantive analysis (ST-1)
Ø  Collaboration-based design and CRRC (ST-1)
Ø  Use-Case Realization Analysis

Ø  Booch method
Ø  Rumbaugh method (OMT)
Ø  (Rational) Unified Process (RUP, or Unified Method)

Ø  uses UML as notation

Ø  Hierarchical OO Method (HOOD)

Ø  Often, OO is used, when the real world should be simulated
(simulation programs)

TU Dresden, Prof. U. Aßmann Development 53

Arch. Style: Object-Oriented Call-Based Architectural Style

Ø  Control flow is symmetric (calls and returns)
Ø  Control flow is not fixed (dynamic architecture via polymorphism)

Ø  Control-flow can be sequential or parallel
Ø  Data-flow can be parallel the call (push-based system) or

antiparallel, i.e., parallel to the return (pull-based system)

TU Dresden, Prof. U. Aßmann Development

Class

Subclass

Subclass

System

call

return

call
return

call

return

dispatch

54

Arch. Style: Object-Oriented Process Systems (Actor
Systems)

Ø  Object-oriented systems can be parallel
Ø  Actors are parallel communicating processes

Ø  Processes talk directly to each other
Ø  Unstructured communications

TU Dresden, Prof. U. Aßmann Development 55

Arch. Style: Process Tree Systems (UNIX-Like)

Ø  Processes (parallel objects) are organized in a tree
Ø  and talk only to their descendants

TU Dresden, Prof. U. Aßmann Development 56

20.3.6) Transformational Design

Ø  We start with an initial, abstract design that meets the
requirements
Ø  The context model and the top-level architecture

Ø  The implementation is achieved by an iterative transformation
process, starting from an initial design
Ø  Refinement-based development
Ø  Refactoring-based development uses symmetry operations (refactorings)
Ø  Semi-automatically deriving a final design

Ø  Divide: find steps from the initial to the final design
Ø  Conquer: chain the steps
Ø  Note: this design method is orthogonal to the others, because it can

be combined with all of them

TU Dresden, Prof. U. Aßmann Development

How should I transform the current design to an better version and
finally, the implementation?

57

Transformational Refinement-Based Design

Ø Wide spectrum languages uses rule-based transformation
systems and transformation planners
Ø  This starts at the requirement specification and refines (under proofs of

correctness) expressive expressions to executable programs (semantic-
preserving refinement)

Ø  The semantic refinements are refactorings which lower expressive
expressions to low-level

Ø  Semantics can be proven in different forms, e.g., with Hoare logic, Dynamic
logic, or denotational semantics

Ø  Semantic-preserving refinement does not need testing, because all
derived programs are correct by construction. The method is also a
formal method.

Ø  Examples
•  CIP-L (Munich University)
•  F. L. Bauer, M. Broy, R. Gnatz, W. Hesse, B. Krieg-Brückner, H. Partsch, P.

Pepper, and H. Wössner. Towards a wide spectrum language to support
program specification and program development. SIGPLAN Notices, 13(12)
15-24, 1978.

•  SETL (J. Schwartz, New York University)
•  KIDS (Kestrel institute), VDM, Z, B, Event-B

TU Dresden, Prof. U. Aßmann Development 58

Refactoring-Based Extreme Programming (XP)

Ø More informal and incremental process: Extreme Programming
(XP)
•  Based on refactorings for structural improvements, but not particularly for

lowerings
•  Refactoring can be supported by refactoring tools
•  Every requirement is implemented and tested in separation
•  Continuous testing and continuous integration (test-driven development)
•  Customer is involved (customer-driven development)
•  Permanent review with pair programming

TU Dresden, Prof. U. Aßmann Development 59

Model-Driven Architecture as Transformational Design Method

TU Dresden, Prof. U. Aßmann Development

Domain model,
Requirements specification

Platform Independent Model (PIM)

Platform Specific Model (PSM)

Platform Specific Implementation (PSI)
(Code)

Model mappings

Computationally Independent
Model (CIM)

60

20.3.7) Generative Design

Ø  (aka Generative Programming)
Ø  Specify the solution in

Ø  a "formal method", a specification language
Ø  a template which is expanded (generic programming)
Ø  In UML, which is generated into code by a CASE tool

Ø  Generate a solution with a generator tool that plans the solution
Ø  Planning the composition of the solution from components
Ø  Synthesizing the solution

Ø  Divide: depends on the specification language
Ø  Conquer: also
Ø  Fully generative programming is called Automatic Programming

TU Dresden, Prof. U. Aßmann Development

How can I derive the implementation from the design automatically?

61

Generative Specifications

Ø  Developing a specfication in one of these languages is simpler than
writing the code
Ø  Grammar-oriented development (grammarware)

Ø Finite automata from regular grammars
Ø Large finite automata from modal logic (model checkers)
Ø Parsers from Context-free grammars
Ø Type checkers, type inferencers from Attribute grammars
Ø Type checkers and interpreters from Natural semantics
Ø Optimizers from graph rewrite systems (see chapter on GRS)

Ø  Feature-oriented development (FODA): specify feature trees and derive
the components from them

TU Dresden, Prof. U. Aßmann Development

Specification
Model – Grammar – Logic - FeatureTree

Code

62

Automatic Programming

Ø  In automatic programming, a planner plans a way to generated
the code from the requirement specifications
•  Using a path of transformations

Ø  A.P. is generative, and transformative, and formal method.

TU Dresden, Prof. U. Aßmann Development 63

1.3.8 Model-Driven Software Development (MDSD)

Ø MDSD blends Transformational and Generative design
Ø Models

•  represent partial information about the system
•  Are not directly executable
•  But can be used to generate parts of the code of a system

Ø Model-driven architecture (MDA®) of OMG) blends
Transformational Design and Generative Design

Ø  See also Chapter “Model-Driven Architecture”

Ø  MDA needs Aspect-Oriented Modeling (model weaving)

TU Dresden, Prof. U. Aßmann Development 64

20.3.9) Formal Methods

Ø  A formal method is a design method that
Ø  Has a formal (mathematical) specification of the requirements
Ø  Develops a formal specification of the design
Ø  The design can be verified against the requirements specification

Ø  A formal method allows for proving a design correct
Ø  Very important for safety-critical systems

Ø  Formal methods are orthogonal to the other methods: every
method has the potential to be formal

Ø  Important in safety-critical application areas (power plants, cars,
embedded and real-time systems)
Ø  Ex. Petri nets (separate chapter), B, Z, VDM, …

TU Dresden, Prof. U. Aßmann Development

How can I prove that my design is correct with regard to the
requirements?

65

Checker-Based Systems

Ø  A checker-based system is fault-tolerant in the sense that for
every component, a checker exists that checks the correctness of
an application
Ø  Also called a monitor

Ø  Example: Verified compilers, fault-tolerant 24/7 systems

TU Dresden, Prof. U. Aßmann Development

Checker

Component

Checker-Wrapper
?

Error

Output Input

66

Test-Driven Architecture

Ø  A test-driven system maintains with every component a test
component

Ø  The test runs prior to the system
Ø  Example: TDD (Test-Driven Development)

TU Dresden, Prof. U. Aßmann Development

Component

Test
Component

Test-Wrapper

Error

Output Input

67

Voting Architectures

Ø  In a voting fault-tolerant architecture, the run-time checker is a
majority voter (quorum) that compares the results of several
instances of the component

Ø  Example: Space Shuttle

TU Dresden, Prof. U. Aßmann Development

 Voter
(Quorum)

Component

?
Component

Component

68

20.3.10 ASPECT-
ORIENTED SOFTWARE
DESIGN

TU Dresden, Prof. U. Aßmann Development 69

Debugging
 aspect Persistence

aspect Algorithm

Debugging aspect
Persistence aspect

Persistence
aspect Debugging aspect

Weaver-Tool

Debugging aspect

Arch. Style: Aspect-Oriented Software Design

Ø  Usual design methods have one aspect of development in focus
(“tyranny of decomposition”)

Ø  Aspect-oriented systems specify different aspects of a system in
separation (separation of concerns)
Ø  The slices are reintegrated by generative Aspect Weavers (Aspect/J)
Ø  More in chapters “Aspect-orientation”, “Feature-based product lines” and course

CBSE

TU Dresden, Prof. U. Aßmann 70

20.3.11 ADAPTIVE
ARCHITECTURES

TU Dresden, Prof. U. Aßmann Development 71

To be filled…

TU Dresden, Prof. U. Aßmann Development 72

20.4 ARCHITECTURAL
STYLES SPECIFIC TO
LAYERS

TU Dresden, Prof. U. Aßmann Development 73

Layered Architecture

Ø  The most general architectural style, which can be combined with
all others are layers

Ø  Layers can be combined with many other styles
Ø  Ingredients:

Ø  Connectors: procedure calls or streams
Ø  Ports: component interfaces
Ø  Control flow mostly synchronous
Ø  Data flow along the layers and the

call graphs, mostly singulary
Ø  Data- and control flow are isomorphic

Ø  Dominating style for large systems

TU Dresden, Prof. U. Aßmann Development 74

Example: 4-Tier Architectures in GUI-based Applications (BCED)

Ø  Already presented in ST-1
Ø  Acyclic USES Relation, divided into 3 (resp. 4) layers:

Ø  GUI (graphic user interface)
Ø  Middle layer (Application logic and middleware, transport layer)
Ø  Data repository (database)

TU Dresden, Prof. U. Aßmann Development

Data Repository Layer (database, memory)

Middleware (memory access, distribution)

Graphical user interface

Application logic (business logic)

75

Example: Operating Systems

TU Dresden, Prof. U. Aßmann Development

Kernel

User Space UNIX:

Kernel

User Space Apple-UNIX:

Microkernel (Mach)

Kernel

User Space Windows NT/XP:

Hardware Abstraction Layer (HAL)

76

Architectural Styles Can Be Layer Specific

TU Dresden, Prof. U. Aßmann Development 77

Data Repository Layer (database, memory)

Middleware (memory access, distribution)

Graphical user interface

Application logic (business logic)

Event-based

Data-based

Action-based

Functi
on-
based

Test-
driven

Trans-
formativ
e

MDA

Aspect-
oriented

Formal methods

Domain-Specific Architectural Styles

Ø  Often an application domain needs its own style, its reference
architecture

Ø  It's hard to say something in general about those

TU Dresden, Prof. U. Aßmann Development 78

Important

Ø  An architectural style results from a specific development method
Ø  Functional, modular design: call-based style
Ø  Action design: data-flow style, workflow style, regular processing, process

trees
Ø  Object-oriented design: object-oriented call-based systems, client-server,

actors (process systems)
Ø  Uses-oriented design: layered systems

Ø Specific layers need specific styles
Ø Reliable systems need specific styles
Ø  The dedicated engineer knows when to apply what

TU Dresden, Prof. U. Aßmann Development 79

Summary: Most Important Architecture Styles

Ø  Data flow styles
Ø  Sequential pipe-and-filter
Ø  Data flow graph/network
Ø  Workflow systems (mixed with

control flow)
Ø  Call-style

Ø  Modular systems
Ø  Abstract data types
Ø  Object-oriented systems
Ø  Client/service provider

Ø  Hierarchical styles
Ø  Layered architecture
Ø  Interpreter
Ø  Checker-based Architectures

TU Dresden, Prof. U. Aßmann Development

Ø  Interacting processes (actors)
Ø  Threads in a shared memory
Ø  Distributed objects
Ø  Event-based systems
Ø  Agenda parallelism

Ø  Data-oriented (Repository
architectures)
Ø  Transaction systems (data bases)

Ø Query-based systems
Ø  Blackboard (expert systems)
Ø  Transformation systems (compilers)
Ø  Generative systems (generators)
Ø  Data based styles

Ø  Compound documents
Ø Hypertext-based

80

Law of Method and Style

Ø  Functional and action design è call-based architectural style or
component-based style

Ø  Object-oriented design è object-oriented call style or actor style
Ø  Action-based design (with data-flow) è data-flow architectures

(pipe-and-filter architectures) or ECA systems

TU Dresden, Prof. U. Aßmann Development

A specific design method leads to a specific architectural style

81

Ø  A specific application domain needs a specific architectural style,
and due to that, a specific design method, e.g.,
•  Embedded software needs formal methods
•  Enterprise software needs workflow-based style
•  Information systems need repository style

Which Design Method for the Satellite Radio?

Ø  Real world objects must be simulated
Ø  Object-oriented design?

Ø  Events in the real world
Ø  Event-condition-action based design?

Ø  Flow of data from the satellite to the radio to the user
Ø  Data-oriented design? data-flow architecture!

TU Dresden, Prof. U. Aßmann Development 82

What Have We Learned?

Ø  There is no single “the way to the system”
Ø  Every project has to find its path employing an appropriate design method

Ø  The basic design questions are posed over and over again, until a
design is found
Ø  Select a design method
Ø  Pose the design method's basic question
Ø  Perform the design method's process
Ø  Perform the design method's steps: elaborate, refine, structure, change

representation, ...
Ø  If process gets stuck, change design method and try another one!
Ø  Architectural styles are the result of a design process

Ø  They give us a way to talk about a system on a rather abstract level
Ø  Architectural styles can be distinguished by the relation of data-flow and

control-flow (parallel vs antiparallel)
Ø  .. and the type of system structuring relation they use

TU Dresden, Prof. U. Aßmann Development 83

What is running in Part III – Design?

Ø  Presentation of Design Methods with Notations, Processes,
Heuristics

Ø  Presentation of the Development Focus
Ø  Presentation of resulting Architectural Styles
Ø  Presentation of Variability and Extensibility mechanims, to prepare

product line engineering

TU Dresden, Prof. U. Aßmann Development 84

Why Is This Important? (The Engineer's Parkinson Disease)

Ø  Don't be discouraged about the diversity of this lecture. There is
something to win...

Ø  A good object-oriented designer is not automatically a good
software engineer

Ø  A software engineer knows a large toolbox of different methods to
be able to choose the right method!

Ø  Usually, people stick to the methods in which they have been
educated
Ø  COBOL programmers
Ø  Imperative vs functional programmers
Ø  Object-oriented programmers vs procedural programmers

Ø  Do you want to get stuck?
Ø  You will have a large advantage if you are open-minded

TU Dresden, Prof. U. Aßmann Development 85

20.5 DESIGN HEURISTICS
AND BEST PRACTICES

General Strategies in Design Processes

Literature

Ø  Obligatory Reading
Ø  [Brooks] Frederick P. Brooks jr. No Silver Bullet. Essence and Accidents

of Software Engineering. In [Thayer]. Wonderful article on what
software engineering is all about.

Ø  Other Literature
Ø  [Budgen] David Budgen. Software Design. Addison-Wesley. Expands on

the Budgen paper. Pretty systematic.
Ø  [Endres/Rombach] A. Endres, D. Rombach. A Handbook of software and

systems engineering. Empirical observations, laws and theories.
Addison-Wesley. Very good collection of software laws. Nice!

TU Dresden, 12.05.2009

Sebastian Richly

Folie

87 von 18

Design Heuristics

Brook's Paradox on Software Beauty

Exciting
Ø  Unix
Ø  OS/2
Ø  APL
Ø  Pascal
Ø  Modula
Ø  Algol 68
Ø  Smalltalk

Useful, but unexciting
Ø  MVS/370
Ø  MS-DOS
Ø  Cobol
Ø  PL/1
Ø  Fortran
Ø  Algol 60
Ø  php

Nice systems are often too late in the market

... be the first or the second bird!

TU Dresden, 12.05.2009

Sebastian Richly

Folie

88 von 18

Design Heuristics

Heuristic: Lazy or Eager Design

Ø  In case of a difficult design decision
Ø  (when elaborating, refining, refactoring or changing representation)
Ø  …defer it (lazy design)

Ø  Iterative Software development methods such as Extreme Programming
Ø  …decide it (eager design)
Ø  …anticipate further developments in the design (anticipatory design)

Ø  Time-boxed design: (SCRUM XP process)
Ø  Do iterations in fixed time-slots (1 month)
Ø  Fix requirements only for one time-slot
Ø  Have it running under all circumstances
Ø  Update requirements with customer after the time-slot

TU Dresden, 12.05.2009

Sebastian Richly

Folie

89 von 18

Design Heuristics

Prepare for Evolution: Grow Living Software

Ø  Build development: “build, not write” [Brooks]
Ø  Software is a living thing

Ø  Lehman's first law of software evolution: “A system that is used will be
changed”

Ø  Incremental development
Ø  “grow, not build software” [Brooks]
Ø  Refactorings and refinement should always be possible

TU Dresden, 12.05.2009

Sebastian Richly

Folie

90 von 18

Design Heuristics

Heuristic: Divide and Conquer Strategy

Ø  Divide et impera (from Alexander the Great)
Ø  divide: problems into subproblems (simplification)

Ø  To find solutions in terms of the abstract
machine we can employ. When this mapping
is complete, we can conquer

Ø  conquer: solve subproblems (hopefully easier)
Ø  compose (merge): compose the complete

solution from the subsolutions
Ø  Reuse of partial solutions is possible

(then the tree is a dag)

Ø  Where do we begin?
Ø  Stepwise refinement (top-down)
Ø  Assemblage (bottom-up)
Ø  Design from the middle (middle-out, yo-yo)

.......

.......

.......

??

TU Dresden, 12.05.2009

Sebastian Richly

Folie

91 von 18

Design Heuristics

Stepwise Refinement (Top-Down, Classic Divide-and-Conquer)

Ø  Pointwise refinement
Ø  Fragment refinement
Ø  Control refinement (operation refinement)

Ø  We guess the solution of the problem in
terms of a higher-level abstract machine

Ø  We refine their operations until the given
abstract machine is reached

Ø  Data refinement
Ø  We may also refine the data structures

of the abstract machine

Ø  Syntactic refinement does not respect
semantics of the original model

Ø  Semantic refinement proves conformance of
the refined model to the original model, i.e.
whether it is semantically equivalent or richer
than the original model

Ø  Disadvantage:
Ø  We might never reach a realization
Ø  Often "warehouse solutions" are

developed, that are inappropriate
.......

.......

.......

??

Folie

92 von 18

Design Heuristics

Stepwise Construction (Bottom-up)

Ø  In this case we start with a given abstract machine and
Ø  assemble more complex operations of a

higher-level abstract machine
Ø  or assemble the more complex data

structures

Ø  Good:
Ø  Always realistic
Ø  A running partial solution

Ø  Bad:
Ø  Design might become clumsy since

global picture was not taken into account

.......

.......

.......

??

Folie

93 von 18

Design Heuristics

Middle out

Ø  Fix some subproblems in
the middle and solve them
by refinement

Ø  Then work your way up
Ø  Often avoids the disadvantages

of top-down and bottom-up
Ø  Finding lemmas in a

mathematical proof is similar

.......

.......

.......

??

Folie

94 von 18

Design Heuristics

Heuristic: Use Hierarchies and Reducible Graphs

Ø  Trees, trees, trees
Ø  Dags (directed acyclic graphs)

Ø  Can be layered
Ø  Reducible graphs

Ø  Can be layered too, on each
layer there are cycles

Ø  Every node can be refined
independently and abstracts
the lower levels

TU Dresden, 12.05.2009

Sebastian Richly

Folie

95 von 18

Design Heuristics

Heuristics on Size

Ø  Limit yourself to a small number of items
Ø  Never use more than 5 items

Ø  on a page
Ø  on a slide
Ø  on an abstraction level of a specification or model

Ø  KISS (keep it simple stupid)
Ø  Remove all superfluous things, make it fit on 1 page
Ø  Simplification takes a long time “I didn't have the time to make it shorter”
Ø  Einstein: "Make it as simple as possible, but not simpler!”
Ø  Stephen King: “When I think, I am ready, I usually have to reduce about

30% fat from my book."
Ø  Abstraction is neglection of unnecessary detail

Ø  Focus at one problem at a time and to forget about others
Ø  Display only essential information
Ø  Change representation if development strategy changes
Ø  This leads to design methods or decomposition methods

TU Dresden, 12.05.2009

Sebastian Richly

Folie

96 von 18

Design Heuristics

Heuristics on Abstraction

Ø  Separation of Concerns (SoC)
Ø  Different concepts should be separated so that they can be specified

independenly
Ø  Dimensional specifications: specify from different viewpoints
Ø  If separated, then concerns can be varied independently

Ø  Example of SoC: Separate Policy and Mechanism
Ø  Mechanism: The way how to technically realize a solution
Ø  Policy: The way how to parameterize the realization of a solution
Ø  If separated, then policy and mechanism can be varied independently

TU Dresden, 12.05.2009

Sebastian Richly

Folie

97 von 18

Design Heuristics

But Consider Brooks Law..

The central question in design is how to improve on the software art
centers - as it always has be - on

people.

[Brooks]

TU Dresden, 12.05.2009

Sebastian Richly

Design Heuristics Folie

98 von 18

Reflections on Brooks' Law

Ø  Education of people is very important!
Ø  However, the differences are not minor - they are rather like the differences

between Salieri and Mozart.
Ø  Study after study shows that the very best designers produce structures

that are faster, smaller, simpler, cleaner, and produced with less effort.
Ø  Great designers and great managers are both very rare

Ø  However, Farkas' Law: Fighting helps!
Ø  Farkas, a prominent trombone teacher, noticed that the most talented

pupils didn't make it
Ø  Instead, the middle-class survived that learned how to work hard

TU Dresden, 12.05.2009

Sebastian Richly

Folie

99 von 18

Design Heuristics

Other Literature

Ø  Simon Singh. Fermats letzer Satz. Die abenteuerliche Geschichte
eines mathematischen Rätsels. dtv.
Ø  Gute-Nacht-Geschichte über Fermat‘s jahrhundertealtes Rätsel. Erklärt den

komplizierten Beweis Andrew Wiles‘ für Nicht-Experten. Zum Verschenken!
(Galois inklusive..)

Ø  Uhrenarithmetik. Elliptische Gleichungen. Modulformen.

Ø  Merke: Genie entsteht aus viel, viel Fleiss (man beachte das
Erlebnis Wiles‘ bei der Korrektur des Beweises!)
Ø  Wenn selbst solch grosse Mathematiker Fehler in ihren Beweisen

produzieren..... keine Angst vor grossen Aufgaben...

Ø  Excellence is the result of enormous correction..

TU Dresden, 12.05.2009

Sebastian Richly

Folie

100 von 18

Design Heuristics

The End

Ø  In the following, we will see several examples for selected design
methods

Ø  With the concepts of simple graph-based models, we can see
common concepts in all of them

TU Dresden, Prof. U. Aßmann Development 101

