

Fakultät Informatik, Institut für Software- und Multimediatechnik, Lehrstuhl für Softwaretechnologie

24) Event-Condition-Action Design and Conditions Analysis

- 1. Structured decisions: decision diagrams and decision tables)
- Binary decision diagrams (BDD) And Ordered BDD
- 1. Model Checking
- Variability of CA
- 4. Event-Condition Action Design
- 5. Extensibility of ECA

Obligatory Reading

- Balzert, Kapitel über Entscheidungstabellen
- Ghezzi 6.3 Decision-table based testing
- Pfleeger 4.4, 5.6
- Randal E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE Transactions on Computers, C-35:677-691, 1986.
- Red Hat. JBoss Enterprise BRMS Platform 5: JBoss Rules 5 Reference Guide. (lots of examples for ECA Drools)
 - http://docs.redhat.com/docs/en-US/JBoss_Enterprise_BRMS_Platform/5/pdf/ JBoss_Rules_5_Reference_Guide/JBoss_Enterprise_BRMS_Platform-5-JBoss_Rules_5_Reference_Guide-en-US.pdf

TU Dresden, Prof. U. Aßmann

Decision Analysis

Goal

References

Decision algebra:

Prof. Dr. U. Aßmann

Multimediatechnik

Technische Universität Dresden

Institut für Software- und

Gruppe Softwaretechnologie

http://st.inf.tu-dresden.de Version 12-1.o, 15.12.12

- Danylenko, Antonina, Lundberg, Jonas, Löwe, Welf. Decisions: Algebra and Implementation. In Machine Learning and Data Mining in Pattern Recognition. Perner, Petra(ed.) Lecture Notes in Computer Science, 6871, Springer 2011. <u>http://dx.doi.org/10.1007/978-3-642-23199-5_3</u>
- ECA state of the art
 - REWERSE-DEL-2004-I5-D1

José Júlio Alferes, James Bailey, Mikael Berndtsson, François Bry, Jens Dietrich, Alex Kozlenkov, Wolfgang May, Paula-Lavinia Pătrânjan, Alexandre Miguel Pinto, Michael Schroeder, and Gerd Wagner: Wolfgang May (editor): <u>State-of-the-art on evolution and reactivity.</u> http://rewerse.net/publications/rewerse-publications.html#REWERSE-DEL-2004-I5-D1

- http://en.wikipedia.org/wiki/Complex_event_processing
- ECA Engines
 - Websphere Jrules engine <u>http://www-01.ibm.com/software/integration/business-rule-management/</u> <u>decision-server/</u>
 - JBOSS Rules <u>http://www.jboss.org/drools</u>
 - http://docs.redhat.com/docs/de-DE/JBoss_Enterprise_BRMS_Platform/ index.html

Decision Analysis

з

- Decision analysis (Condition analysis) is a very important method to analyze complex decisions
 - Understand that several views on a decision tree exist (tables, BDD, OBDD)
- Condition-action analysis can also be employed for requirements analysis
 - Understand how to describe the control-flow of methods and procedures and their actions on the state of a program
- Event-condition-action-based design (ECA-based design) relies on condition-action analysis
- Understand that model checking is a technology with future

Dresden.	Prof	A ßmann

Decision Analysis

Decision Analysis (Condition-Action Analysis)

- Decision analysis is necessary when complex, intertwined decisions should be made
 - In requirements analysis and elicitation
 - In complex business cases, described with business rules
 - In testing, for specification of complex test cases
- > Decision analysis can be made in a **decision algebra**
 - Boolean functions and their representations:
 - Truth tables, decision trees, BDD, OBDD
 - Decision tables
 - Static single assigment form (SSA) (not treated here)
 - Lattice theory, such as formal concept analysis (FCA) (not treated here)
- > Decision trees and tables collect actions based on conditions
- > Condition action analysis is a decision analysis that results in actions
 - ➤ A simple form of event-condition-action (ECA) rules
 - However, without events, only conditions

Which conditions provoke which actions?

A House-Selling Expert System

Ok, I do not like bungalows, but my wife does not like that the car stands in free space in winter. Hmm... I rather would like to have the half double house... But we need anyway 2 floors, because I need this space for my hobbies. My wife also would like a garden....

How does the system analyze the customers requirements and derive appropriate proposals?

TU Dresden, Prof. U. Aßmann

Decision Analysis

Decision Trees with Code Actions

- ► The action may be code
- ▶ The inner nodes of same tree layer correspond to a condition E[i]
- ▶ Then, a Trie is isomorphic to an If-then-else cascade

How to Construct A Decision Table

- 1) Elaborate decisions
- 2) Elaborate actions
- 3) Enter into table
- 4) Construct a cross boolean product as upper right quadrant (set of boolean vectors)
- 5) Construct a multiple choice quadrant (lower right) by associating actions to boolean vectors
- 6) Consolidate
 - Coalesce yes/no to "doesn't matter"
 - Introduce Else rule

- ► An alternative representation of decision trees are **decision tables**
- Conditions and actions can be entered in a table

Points <= 30	yes	yes	yes	yes	No	No	No	no	
50 < Points	yes	yes	no	no	yes	yes	no	no	
St. Francophil?	yes	no	yes	no	yes	no	yes	No	
Student pays a			Х				Х		
Professor pays a					Х				
Bordeaux Professor pays a						х			
beer Student pays a				x					
beer				~					
Professor drinks a beer	Х	Х						X	

11

TU Dresden, Prof. U. Aßmann

			Со	ommo	on Co	lumr	ns Ca	n Be	Folded
	Points <= 30 50 < Points St. Francophil?	yes yes -	- no yes	yes no no	no yes yes	no yes no	no no no		
	Student pays a Bordeaux Professor pays a Bordeaux Professor pays a beer Student pays a beer Professor drinks a beer	x	X	X	Х	x	x		
ſU Dresden, Prof.	U. Aßmann	C	ecision An	alysis				13	TECHNISCHE UNIVERSITAT DRESDEN

Applications of Decision Tables and Trees

 \succ Requirements analysis:

- Deciding (decision analysis, case analysis)
- Complex case distinctions (more than 2 decisions)
- > Design:
 - Describing the behavior of methods
 - Describing business rules
 - $\succ\,$ Before programming if-cascades, better make first a nice decision tree or table
 - Formal design methods
 - CASE tools can generate code automatically
- Configuration management of product families:
 - > Decisions correspond here to configuration variants
 - Processor=i486?
 - > System=linux?
 - Same application as #ifdefs in C preprocessor

TU Dre

Or Abbreviated to Else Action (Consolidated Decision Table)

	Points <= 30	-	yes	No	No	Else		
	50 < Points	no	no	yes	yes			
-	Francophil?	yes	no	yes	no			
	Student pays a Bordeaux Professor pays a Bordeaux Professor pays a beer Student pays a beer Professor drinks a beer	×	x	×	x	x		
den, Prof.	U. Aßmann		Decisior	n Analysis	5		14	TECHNISCHE UNIVERSITÄT DRESDEN

15

TU Dresden, Prof. U. Aßmann

Truth Tables

	With action = {	{true, false},	boolean decision	tables are truth tables
--	-----------------	----------------	------------------	-------------------------

lo	No		1	1			
lo	No		1	1			
lo	No		1	1			
lo	Yes		(C			
es	No		1	1			
es	Yes		(C			
0	E1		F	F			
alue of $F = 1$		Х			Х		
alue of $F = 0$	X		Х				
Condition E1	Yes	No	Yes		No		
Condition E0	Yes	Yes	No		No		
	ondition E0	ondition E0Yesondition E1Yesolue of F = 0Xolue of F = 1Fone of F = 1Fone of FYesone of FYesone of FYesone of FYesone of FYesone of FYesone of FYes	ondition E0YesYesondition E1YesNoolue of F = 0XXolue of F = 1XSYesSYesSNoSYesSYes	ondition E0YesYesNoondition E1YesNoYesolue of F = 0XXXolue of F = 1XXoneE1XoneYesXoneYesXoneYesX	Ondition E0YesYesNoondition E1YesNoYesalue of F = 0XXXalue of F = 1XYesFon the formation of F = 1Yes0esYes0ssNo1on the formation of Yes0	VesYesNoNoondition E1YesNoYesNoalue of F = 0XXXXalue of F = 1XXXXvalue of F = 1Yes0Yes0esYes01obYes01	VesYesNoNoondition E1YesNoYesNoalue of F = 0XXXXalue of F = 1XXXXvesYes0Ves1vesYes0Ves0

BDDs (Binary Decision Diagrams)

 BDD are dags that result by merging the same subtrees of a decision tree into one (common subtree elimination)

Applications

Reengineering

- \succ Structuring of legacy procedures: read in control-flow; construct control-flow graph
- \blacktriangleright Produce a canonical OBDD for all acyclic parts of control-flow graph
- Pretty-print again
- Or: produce a statechart
- Configuration management
 - \succ Development of canonical versions of C preprocessor nestings
- Help to master large systems

Representation of Mathematical Structures in Decision Algebras (BDD and OBDD)

Many mathematical data types can be represented with decision algebras (most efficiently with BDD/OBDD):

- Functions over finite domains of size n [Bryant86]
 - Associate to every element a vector from IB^k , where k = Id n
 - Code sets with sets of such vectors
 - Map again to boolean algebra
- Sets, partial orders and lattices (e.g., in Z, VDM, SETL)
 - Represent subsets of a set in the powerset lattice of the set
 - Map the powerset lattice to a boolean algebra (theorem of Stone)
 - Use a BDD to encode the sets
 - Uniform efficient representation in space and time
- Relations and graphs
 - Interprete the elements of the relation (the edges) as sets of ordered ktuples
 - Represent as in the case of sets
- State machines
 - Data-flow graphs
- Propositional logic formulas

27

24.2.2 MODEL CHECKING LARGE STATE SPACES

TU Dresden, Prof. U. Aßmann

Decision Analysis

Analysis

Model Checking on BDD

- BDD and OBDD are very compact representation for state machines, boolean functions, predicate logic, and modal logic
- Build a basis for checking state transition systems with modal logic (model checking)
 - System is modeled as a state transition system and encoded as OBDD
 - Features of the system (predicates, logic formulas) are encoded as OBDD, too
 - Important: System $\ensuremath{\text{and}}$ predicates to be checked are both encoded as OBDD
- Model checking:
 - Then, a model checker compares the OBDDs and checks whether a feature holds in a state
 - Effectively, the model checker only compares normalized representations of boolean functions, the OBDD

- State spaces up to 2**120 can be handled
- Model checking checks whether features hold in states of large state spaces
 - Used in hardware verification
 - Proving circuits correct
 - Software verification
 - Safety-critical systems
 - Minimization of boolean circuits
- Very important technique for verification of safety-critical hard- and software

TU Dresden, Prof. U. Aßmann	Decision Analysis	29	

24.3 VARIABILITY OF CA RULES

TU Dresden, Prof. U. Aßmann

Decision Analysis

s

TU Dresden, Prof. U. Aßmann

Decision Analysi

30

Event-Condition-Action Design

- Decision analysis is invoked when events occur
- Event-condition-action (ECA) based design uses
 - ECA rules with condition-action analysis
 - Complex event processing (CEP) for recognition of complex events

	ECA with Petri Nets
 In a Petri Net, an e fan-in=0 Listening to the eve analysis 	vent-generating channel is a transition with ents, the Petri Net can do condition-action
 Process: Collect all ECA rules Collect all states 	Tür öffnen() Schließknopf drücken schließen() Öffne-Knopf drücken verriegeln() Öffne-Knopf drücken
 Link states with ECA rules as subnets reacting on event- generating channels 	Knopf offnen(), offnen(), offnen(), offnen(), offnen(), offnen(),
U Dresden, Prof. U. Aßmann	ventregeln(), entriegeln() Uversitat ukesoen

JBOSS ECA Rule Engine

Ex. Fire Alarm

Extensibility of ECA Rule Systems

- Extensibility means to add more ECA rules
- Rules are open constructs
- > Problem: new rules should be conflict-free with the old rules
- > Harmless extension is usually not provable
- > In general, contracts of the old system cannot be retained

The End: What Have We Learned

- Decision analysis (Condition-Action analysis) is an important analysis
 - to describe requirements,
 - to describe complex behavior of a procedure
- Decision analysis must be encoded in a decision algebra
 - Boolean functions, decision trees, relations, graphs, automata can be encoded in OBDD
 - The control-flow of a procedure can be normalized with a BDD and OBDD
 - Conditions in large state spaces can be encoded in OBDD and efficiently checked
- ECA-based design reacts on events and conditions with actions

TU Dresden, Prof. U. Aßmann

Decision Analysis