
Fakultät Informatik, Institut für Software- und Multimediatechnik, Lehrstuhl für Softwaretechnologie 

24) Event-Condition-Action Design and 
Conditions Analysis 

Prof. Dr. U. Aßmann 
Technische Universität Dresden 
Institut für Software- und 
Multimediatechnik 
Gruppe Softwaretechnologie 
http://st.inf.tu-dresden.de 
Version 12-1.o, 15.12.12 
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2.   Binary decision diagrams (BDD) And Ordered 
BDD 
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4.   Event-Condition Action Design 
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Obligatory Reading 

►  Balzert, Kapitel über Entscheidungstabellen 
►  Ghezzi 6.3 Decision-table based testing 
►  Pfleeger 4.4, 5.6 
►  Randal E. Bryant. Graph-based algorithms for Boolean function 

manipulation. IEEE Transactions on Computers, C-35:677-691, 
1986. 

Ø  Red Hat. JBoss Enterprise BRMS Platform 5: JBoss Rules 5 
Reference Guide. (lots of examples for ECA Drools) 
•  http://docs.redhat.com/docs/en-US/JBoss_Enterprise_BRMS_Platform/5/pdf/

JBoss_Rules_5_Reference_Guide/JBoss_Enterprise_BRMS_Platform-5-
JBoss_Rules_5_Reference_Guide-en-US.pdf 
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►  JBOSS Rules http://www.jboss.org/drools 
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Goal 

Ø  Decision analysis (Condition analysis) is a very important 
method to analyze complex decisions 
Ø  Understand that several views on a decision tree exist (tables, BDD, 

OBDD) 
Ø  Condition-action analysis can also be employed for 

requirements analysis 
Ø  Understand how to describe the control-flow of methods and 

procedures and their actions on the state of a program 
Ø  Event-condition-action-based design (ECA-based design) 

relies on condition-action analysis 
Ø  Understand that model checking is a technology with future 
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24.1 DECISION ANALYSIS WITH 
DECISION TREES AND TABLES  
(CONDITION-ACTION ANALYSIS) 
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A House-Selling Expert System 

Ø  Ok, I do not like bungalows, but my wife does not like that the car 
stands in free space in winter. Hmm... I rather would like to have 
the half double house... But we need anyway 2 floors, because I 
need this space for my hobbies. My wife also would like a garden…. 
 

►  How does the system analyze the customers requirements and 
derive appropriate proposals? 
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Decision Analysis (Condition-Action Analysis) 

Ø  Decision analysis is necessary when complex, intertwined decisions 
should be made  
•  In requirements analysis and elicitation 
•  In complex business cases, described with business rules 
•  In testing, for specification of complex test cases 

Ø  Decision analysis can be made in a decision algebra 
•  Boolean functions and their representations:  

§  Truth tables, decision trees, BDD, OBDD 
§  Decision tables 

•  Static single assigment form (SSA) (not treated here) 
•  Lattice theory, such as formal concept analysis (FCA) (not treated here) 

Ø  Decision trees and tables collect actions based on conditions 
Ø  Condition action analysis is a decision analysis that results in actions 

Ø  A simple form of event-condition-action (ECA) rules 
Ø  However, without events, only conditions 
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Which conditions provoke which actions? 
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Decision Trees 

Ø  Decisions can be analyzed with a decision tree, a simple form of a 
decision algebra 

Ø  A trie (Präfixbaum) is a tree which has an edge marking  
Ø  Every path in the trie assembles a word from a language of the marking  

Ø  A trie on lB = {0,1} is called decision tree 
Ø  Paths denote sequences of decisions (a set of vectors over lB). A path 

corresponds to a vector over lB 
Ø  A set of actions, each for one sequence of decisions 
Ø  Sequences of decisions can be represented in a path in the decision tree 
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Decision Trees with Code Actions 

►  The action may be code 
►  The inner nodes of same tree layer correspond to a condition E[i]  
►  Then, a Trie is isomorphic to an If-then-else cascade 
 
if (E0) then // case E0 === true 
 if (E1) then 
   if(E2) then   A5 
   else            A4 

else // case E0 === false 
 if (E1) then 
   if(E2) then   A3 
   else  
      if (E3) then  A2 
      else   A1 
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Decision Tables 

►  An alternative representation of decision trees are decision tables 
►  Conditions and actions can be entered in a table 
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How to Construct A Decision Table 

1)  Elaborate decisions 
2)  Elaborate actions 
3)  Enter into table 
4)  Construct a cross boolean product as upper right quadrant (set of 

boolean vectors) 
5)  Construct a multiple choice quadrant (lower right) by associating 

actions to boolean vectors 
6)  Consolidate 

■  Coalesce yes/no to “doesn’t matter” 
■  Introduce Else rule 
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What Students Should Do to Professors After Exams 
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Common Columns Can Be Folded 
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Or Abbreviated to Else Action (Consolidated Decision Table)  
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Applications of Decision Tables and Trees 

Ø  Requirements analysis: 
•  Deciding (decision analysis, case analysis) 
•  Complex case distinctions (more than 2 decisions) 

Ø  Design: 
•  Describing the behavior of methods 
•  Describing business rules 

Ø  Before programming if-cascades, better make first a nice decision tree or 
table 

Ø  Formal design methods 
Ø  CASE tools can generate code automatically 

Ø  Configuration management of product families: 
Ø  Decisions correspond here to configuration variants 
Ø  Processor=i486? 
Ø  System=linux? 
Ø  Same application as #ifdefs in C preprocessor 
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24.2 NORMALIZING 
CONTROL FLOW WITH 
NORMALIZED BDD 
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Truth Tables 

►  With action = {true, false}, boolean decision tables are truth tables  
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E0 E1 F 
Yes Yes 0 
Yes No 1 
No Yes 0 
No No 1 

Condition E0 Yes Yes No No 
Condition E1 Yes No Yes No 
Value of F = 0 X X 
Value of F = 1 X X 
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BDDs (Binary Decision Diagrams) 

►  BDD are dags that result by merging the same subtrees of a 
decision tree into one (common subtree elimination) 
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BDDs (Binary Decision Diagrams) 

►  If the action is just a boolean value boolean functions f: lBn --> lB 
can be represented 

►  The decisions E[i] are regarded as boolean variables 
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OBDDs (Ordered Binary Decision Diagrams) 

Ø  Problem: for one boolean function there are many BDD 
Ø  Idea: introduce a standardized order for the variables 
Ø  Result: orderd binary decision diagrams  

Ø  In all OBDD holds  
Ø  for all children u of parents v ord(u) > ord(v). 

Ø  For one order of variables there is one normal form OBDD 
(canonical OBDD) 

Ø  Leads to an efficient BDD-based comparison algorithm of 
boolean functions: 
 
 
compareBooleanFunction() = {  

Fix variable order for two BDD 

Transform both BDD into OBDD 

Compare both OBDD syntactically 

} 
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Complex BDD 
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The Influence of Variable Ordering 
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If-cascades, BDD and OBDD 

if A then 
  if B then 
      if C then true else false 
  else 

   if C then false else true  
else 
  if B then 
      if C then false else true  
  else 

   if C then true else false 
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Normalizing Wild Procedures: Normalized If-Structures with OBDD 

Ø  There is only one canonical OBDD for one order 
Ø  Develop normalized and factorized if-structures with it: 

1.  Elaborate arbitrary decision tree 
2.  Choose a variable order 
3.  Transform to OBDD 
4.  Transform to If structure 
5.  Factor out common subtrees by subprograms 
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Acyclic control flow can be represented canonically by an OBDD 



    

Applications 

Ø  Reengineering 
Ø  Structuring of legacy procedures: read in control-flow; construct control-

flow graph 
Ø  Produce a canonical OBDD for all acyclic parts of control-flow graph 
Ø  Pretty-print again 
Ø  Or: produce a statechart 

Ø  Configuration management  
Ø  Development of canonical versions of C preprocessor nestings 

Ø  Help to master large systems 
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24.2.2 MODEL CHECKING 
LARGE STATE SPACES 
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    Representation of Mathematical Structures in Decision Algebras 
(BDD and OBDD) 

Many mathematical data types can be represented with decision 
algebras (most efficiently with BDD/OBDD):  
►  Functions over finite domains of size n [Bryant86] 

■  Associate to every element a vector from lBk, where  k = ld n 
■  Code sets with sets of such vectors   
■  Map again to boolean algebra 

►  Sets, partial orders and lattices (e.g., in Z, VDM, SETL) 
■  Represent subsets of a set in the powerset lattice of the set 
■  Map the powerset lattice to a boolean algebra (theorem of  Stone) 
■  Use a BDD to encode the sets 
■  Uniform efficient representation in space and time 

►  Relations and graphs  
►  Interprete the elements of the relation (the edges) as sets of ordered k-

tuples 
►  Represent as in the case of sets 

►  State machines 
►  Data-flow graphs 

►  Propositional logic formulas 
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Model Checking on BDD 

►  BDD and OBDD are very compact representation for state 
machines, boolean functions, predicate logic, and modal logic  

►  Build a basis for checking state transition systems with modal logic 
(model checking) 
■  System is modeled as a state transition system and encoded as OBDD 
■  Features of the system (predicates, logic formulas) are encoded as OBDD, 

too 
■  Important: System and predicates to be checked are both encoded as OBDD 

■  Model checking: 
■  Then, a model checker compares the OBDDs and checks whether a feature 

holds in a state 
■  Effectively, the model checker only compares normalized representations of 

boolean functions, the OBDD 
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The Use of Model Checking 

►  State spaces up to 2**120 can be handled  
►  Model checking checks whether features hold in states of large 

state spaces 
■  Used in hardware verification   

♦  Proving circuits correct 
■  Software verification  

♦  Safety-critical systems 
♦  Minimization of boolean circuits 

►  Very important technique for verification of safety-critical hard- and 
software 
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24.3 VARIABILITY OF CA 
RULES 
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Variability 

Ø  Variability means that actions are exchanged for boolean 
combinations 
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Variability is simple in CA-Systems 

31 

    

24.4 EVENT-CONDITION-
ACTION BASED DESIGN 
(ECA) 
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Event-Condition-Action Design 

Ø  Decision analysis is invoked when events occur 
Ø Event-condition-action (ECA) based design uses 

•  ECA rules with condition-action analysis 
•  Complex event processing (CEP) for recognition of complex events 
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Given some (complex) events, which conditions provoke which actions? 
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ECA with State-Based Specifications 

►  An event-condition-action 
(ECA) system listens on 
channel(s) for events, 
analyses a condition, and 
executes an action 
■  Statecharts (see course ST) 
■  Petri Nets (see corr. Chapter) 
■  ECA rules (Drools) 
■  Condition analysis can  

be done by BDD  
■  Verification  

by model  
checking 

■  Process:  
■  Collect all ECA rules 
■  Collect all states 
■  Link states with ECA rules as 

transitions 
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ECA with Petri Nets 

►  In a Petri Net, an event-generating channel is a transition with 
fan-in=0 

►  Listening to the events, the Petri Net can do condition-action 
analysis 
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ECA-based Blackboard Style 

Ø  The ECA-blackboard has two repositories: a fact/object base and a 
rule base 

Ø  The rule base is an active repository (i.e., an active component) 
that coordinates all other components 
Ø  It investigates the state of the repository. If an event has occured by 

entering something in the repository (modify), components are fired/
triggered to work on or modify the repository 
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JBOSS ECA Rule Engine 

Ø  Drools (.drl-files) is an active repository with ECA rule processing 
Ø  Ex. Fire Alarm Rules [JRules]: 
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rule "Status output when things are ok"  
when  
  not Alarm() 
  not Sprinkler( on == true )  
then 
  System.out.println( "Everything is ok" ); 
end 
 
rule "Raise the alarm when we have one or more fires" 
when 
  exists Fire() // tests whether a Fire object exists 
then 
  insert( new Alarm() );  
  System.out.println( "Raise the alarm" ); 
end 

    

Ex. Fire Alarm 

Ø  Create a blackboard and fill the object base 
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// make a new blackboard 
KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();  
// add a .drl-file to the rule base 
kbuilder.add( ResourceFactory.newClassPathResource( "fireAlarm.drl", 
     getClass() ), ResourceType.DRL );  
if ( kbuilder.hasErrors() ) 
  System.err.println( kbuilder.getErrors().toString() );  
// open a session with the blackboard 
StatefulKnowledgeSession ksession = kbase.newStatefulKnowledgeSession(); 
 
// allocate objects in the object/fact base 
String[] names = new String[]{"kitchen","bedroom","office","livingroom"}; 
Map<String,Room> name2room = new HashMap<String,Room>(); 
for( String name: names ) { 
  Room room = new Room( name ); name2room.put( name, room );  
  ksession.insert( room );  
  Sprinkler sprinkler = new Sprinkler( room ); ksession.insert( sprinkler ); 
}  
ksession.fireAllRules(); 
 
// output>> ”Everything is ok” 
 

    

Ø  Raise fire by inserting a Fire object into the object base 
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Fire kitchenFire = new Fire( name2room.get( "kitchen" ) );  
Fire officeFire = new Fire( name2room.get( "office" ) ); 
 
// insert into the session 
FactHandle kitchenFireHandle = ksession.insert( kitchenFire );  
FactHandle officeFireHandle = ksession.insert( officeFire ); 
 
// investigate: 
ksession.fireAllRules(); 
 
// output>> “Raise the alarm"  

    

24.5 EXTENSIBILITY OF 
ECA RULES 
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Extensibility of ECA Rule Systems 

Ø  Extensibility means to add more ECA rules 
Ø  Rules are open constructs 
Ø  Problem: new rules should be conflict-free with the old rules 
Ø  Harmless extension is usually not provable 
Ø  In general, contracts of the old system cannot be retained 
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The End: What Have We Learned 

►  Decision analysis (Condition-Action analysis) is an important 
analysis  
■  to describe requirements,  
■  to describe complex behavior of a procedure 

■  Decision analysis must be encoded in a decision algebra 
►  Boolean functions, decision trees, relations, graphs, automata can be 

encoded in OBDD 
►  The control-flow of a procedure can be normalized with a BDD and OBDD 
►  Conditions in large state spaces can be encoded in OBDD and efficiently 

checked 
►  ECA-based design reacts on events and conditions with actions 
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