
Fakultät Informatik, Institut für Software- und Multimediatechnik, Lehrstuhl für Softwaretechnologie

24) Event-Condition-Action Design and
Conditions Analysis

Prof. Dr. U. Aßmann
Technische Universität Dresden
Institut für Software- und
Multimediatechnik
Gruppe Softwaretechnologie
http://st.inf.tu-dresden.de
Version 12-1.o, 15.12.12

1.   Structured decisions: decision diagrams and
decision tables)

2.   Binary decision diagrams (BDD) And Ordered
BDD

1.   Model Checking

3.   Variability of CA

4.   Event-Condition Action Design

5.   Extensibility of ECA

Obligatory Reading

►  Balzert, Kapitel über Entscheidungstabellen
►  Ghezzi 6.3 Decision-table based testing
►  Pfleeger 4.4, 5.6
►  Randal E. Bryant. Graph-based algorithms for Boolean function

manipulation. IEEE Transactions on Computers, C-35:677-691,
1986.

Ø  Red Hat. JBoss Enterprise BRMS Platform 5: JBoss Rules 5
Reference Guide. (lots of examples for ECA Drools)
•  http://docs.redhat.com/docs/en-US/JBoss_Enterprise_BRMS_Platform/5/pdf/

JBoss_Rules_5_Reference_Guide/JBoss_Enterprise_BRMS_Platform-5-
JBoss_Rules_5_Reference_Guide-en-US.pdf

TU Dresden, Prof. U. Aßmann Decision Analysis 2

References

►  Decision algebra:
►  Danylenko, Antonina, Lundberg, Jonas, Löwe, Welf. Decisions: Algebra and

Implementation. In Machine Learning and Data Mining in Pattern
Recognition. Perner, Petra(ed.) Lecture Notes in Computer Science, 6871,
Springer 2011. http://dx.doi.org/10.1007/978-3-642-23199-5_3

►  ECA state of the art
►  REWERSE-DEL-2004-I5-D1

José Júlio Alferes, James Bailey, Mikael Berndtsson, François Bry, Jens
Dietrich, Alex Kozlenkov, Wolfgang May, Paula-Lavinia Pătrânjan, Alexandre
Miguel Pinto, Michael Schroeder, and Gerd Wagner:
Wolfgang May (editor): State-of-the-art on evolution and reactivity.
http://rewerse.net/publications/rewerse-publications.html#REWERSE-
DEL-2004-I5-D1

►  http://en.wikipedia.org/wiki/Complex_event_processing

►  ECA Engines
►  Websphere Jrules engine

http://www-01.ibm.com/software/integration/business-rule-management/
decision-server/

►  JBOSS Rules http://www.jboss.org/drools
►  http://docs.redhat.com/docs/de-DE/JBoss_Enterprise_BRMS_Platform/

index.html

TU Dresden, Prof. U. Aßmann Decision Analysis 3

Goal

Ø  Decision analysis (Condition analysis) is a very important
method to analyze complex decisions
Ø  Understand that several views on a decision tree exist (tables, BDD,

OBDD)
Ø  Condition-action analysis can also be employed for

requirements analysis
Ø  Understand how to describe the control-flow of methods and

procedures and their actions on the state of a program
Ø  Event-condition-action-based design (ECA-based design)

relies on condition-action analysis
Ø  Understand that model checking is a technology with future

TU Dresden, Prof. U. Aßmann Decision Analysis 4

24.1 DECISION ANALYSIS WITH
DECISION TREES AND TABLES
(CONDITION-ACTION ANALYSIS)

TU Dresden, Prof. U. Aßmann Decision Analysis 5

A House-Selling Expert System

Ø  Ok, I do not like bungalows, but my wife does not like that the car
stands in free space in winter. Hmm... I rather would like to have
the half double house... But we need anyway 2 floors, because I
need this space for my hobbies. My wife also would like a garden….

►  How does the system analyze the customers requirements and
derive appropriate proposals?

TU Dresden, Prof. U. Aßmann Decision Analysis 6

Decision Analysis (Condition-Action Analysis)

Ø  Decision analysis is necessary when complex, intertwined decisions
should be made
•  In requirements analysis and elicitation
•  In complex business cases, described with business rules
•  In testing, for specification of complex test cases

Ø  Decision analysis can be made in a decision algebra
•  Boolean functions and their representations:

§  Truth tables, decision trees, BDD, OBDD
§  Decision tables

•  Static single assigment form (SSA) (not treated here)
•  Lattice theory, such as formal concept analysis (FCA) (not treated here)

Ø  Decision trees and tables collect actions based on conditions
Ø  Condition action analysis is a decision analysis that results in actions

Ø  A simple form of event-condition-action (ECA) rules
Ø  However, without events, only conditions

TU Dresden, Prof. U. Aßmann Decision Analysis

Which conditions provoke which actions?

7

Decision Trees

Ø  Decisions can be analyzed with a decision tree, a simple form of a
decision algebra

Ø  A trie (Präfixbaum) is a tree which has an edge marking
Ø  Every path in the trie assembles a word from a language of the marking

Ø  A trie on lB = {0,1} is called decision tree
Ø  Paths denote sequences of decisions (a set of vectors over lB). A path

corresponds to a vector over lB
Ø  A set of actions, each for one sequence of decisions
Ø  Sequences of decisions can be represented in a path in the decision tree

TU Dresden, Prof. U. Aßmann Decision Analysis

0

000 001

01 10 11

1

00

0 1

1 1

1

0

0

0

ε	

A1 A2

A3 A4 A5

8

Decision Trees with Code Actions

►  The action may be code
►  The inner nodes of same tree layer correspond to a condition E[i]
►  Then, a Trie is isomorphic to an If-then-else cascade

if (E0) then // case E0 === true
 if (E1) then
 if(E2) then A5
 else A4

else // case E0 === false
 if (E1) then
 if(E2) then A3
 else
 if (E3) then A2
 else A1

TU Dresden, Prof. U. Aßmann Decision Analysis

0

000 001

01 10 11

1

00

0 1

1 1

1

0

0

0

ε	

A1 A2

A3 A4 A5

E0

E1

E2

E3

9

Decision Tables

►  An alternative representation of decision trees are decision tables
►  Conditions and actions can be entered in a table

TU Dresden, Prof. U. Aßmann Decision Analysis

0

01 10 11

1

00

0 1

1 1 0 0

ε	

A1 A2 A1 A2

E0

E1

Condition E0 yes yes no no

Condition E1 yes no yes no

Action A1 X X

Action A2 X X

Multiple choice
quadrant

Boolean
cross product

10

How to Construct A Decision Table

1)  Elaborate decisions
2)  Elaborate actions
3)  Enter into table
4)  Construct a cross boolean product as upper right quadrant (set of

boolean vectors)
5)  Construct a multiple choice quadrant (lower right) by associating

actions to boolean vectors
6)  Consolidate

■  Coalesce yes/no to “doesn’t matter”
■  Introduce Else rule

TU Dresden, Prof. U. Aßmann Decision Analysis 11

What Students Should Do to Professors After Exams

TU Dresden, Prof. U. Aßmann Decision Analysis

Points <= 30 yes yes yes yes No No No no

50 < Points yes yes no no yes yes no no

St. Francophil? yes no yes no yes no yes No

Student pays a
Bordeaux

X X

Professor pays a
Bordeaux

X

Professor pays a
beer

X

Student pays a
beer

 X

Professor drinks a
beer

X X X

12

Common Columns Can Be Folded

TU Dresden, Prof. U. Aßmann Decision Analysis

Points <= 30 yes - yes no no no

50 < Points yes no no yes yes no

St. Francophil? - yes no yes no no

Student pays a
Bordeaux

X

Professor pays a
Bordeaux

X

Professor pays a
beer

X

Student pays a
beer

 X

Professor drinks a
beer

X X

13

Or Abbreviated to Else Action (Consolidated Decision Table)

TU Dresden, Prof. U. Aßmann Decision Analysis

Points <= 30 - yes No No Else

50 < Points no no yes yes

Francophil? yes no yes no

Student pays a
Bordeaux

X

Professor pays a
Bordeaux

X

Professor pays a
beer

X

Student pays a
beer

X

Professor drinks a
beer

X

14

Applications of Decision Tables and Trees

Ø  Requirements analysis:
•  Deciding (decision analysis, case analysis)
•  Complex case distinctions (more than 2 decisions)

Ø  Design:
•  Describing the behavior of methods
•  Describing business rules

Ø  Before programming if-cascades, better make first a nice decision tree or
table

Ø  Formal design methods
Ø  CASE tools can generate code automatically

Ø  Configuration management of product families:
Ø  Decisions correspond here to configuration variants
Ø  Processor=i486?
Ø  System=linux?
Ø  Same application as #ifdefs in C preprocessor

TU Dresden, Prof. U. Aßmann Decision Analysis 15

24.2 NORMALIZING
CONTROL FLOW WITH
NORMALIZED BDD

TU Dresden, Prof. U. Aßmann Decision Analysis 16

Truth Tables

►  With action = {true, false}, boolean decision tables are truth tables

TU Dresden, Prof. U. Aßmann Decision Analysis

E0 E1 F
Yes Yes 0
Yes No 1
No Yes 0
No No 1

Condition E0 Yes Yes No No
Condition E1 Yes No Yes No
Value of F = 0 X X
Value of F = 1 X X

17

BDDs (Binary Decision Diagrams)

►  BDD are dags that result by merging the same subtrees of a
decision tree into one (common subtree elimination)

TU Dresden, Prof. U. Aßmann Decision Analysis

0

000 001

01 10 11

1

00

0 1

1 1

1

0

0

0

ε	

A1 A2 A3

E0

E1

E2

E3

18

BDDs (Binary Decision Diagrams)

►  If the action is just a boolean value boolean functions f: lBn --> lB
can be represented

►  The decisions E[i] are regarded as boolean variables

TU Dresden, Prof. U. Aßmann Decision Analysis

0

000 001

01 10 11

1

00

0 1

1 1

1

0

0

0

ε	

0 1

E0

E1

E2

E3

19

OBDDs (Ordered Binary Decision Diagrams)

Ø  Problem: for one boolean function there are many BDD
Ø  Idea: introduce a standardized order for the variables
Ø  Result: orderd binary decision diagrams

Ø  In all OBDD holds
Ø  for all children u of parents v ord(u) > ord(v).

Ø  For one order of variables there is one normal form OBDD
(canonical OBDD)

Ø  Leads to an efficient BDD-based comparison algorithm of
boolean functions:

compareBooleanFunction() = {

Fix variable order for two BDD

Transform both BDD into OBDD

Compare both OBDD syntactically

}

TU Dresden, Prof. U. Aßmann Decision Analysis 20

Complex BDD

TU Dresden, Prof. U. Aßmann Decision Analysis 21

The Influence of Variable Ordering

TU Dresden, Prof. U. Aßmann Decision Analysis 22

If-cascades, BDD and OBDD

if A then
 if B then
 if C then true else false
 else

 if C then false else true
else
 if B then
 if C then false else true
 else

 if C then true else false

TU Dresden, Prof. U. Aßmann Decision Analysis

B

C C C

B

C

0 1

1 1

1

0

0

0

A

0 1

A
B

C
0

1
0 1 1 0 1 0

B

C C

B

0 1

1 1 0 0

A

0 1

A
B

C
1 1 0 0

Variable order is [A,B,C]

23

Normalizing Wild Procedures: Normalized If-Structures with OBDD

Ø  There is only one canonical OBDD for one order
Ø  Develop normalized and factorized if-structures with it:

1.  Elaborate arbitrary decision tree
2.  Choose a variable order
3.  Transform to OBDD
4.  Transform to If structure
5.  Factor out common subtrees by subprograms

TU Dresden, Prof. U. Aßmann Decision Analysis 24

Acyclic control flow can be represented canonically by an OBDD

Applications

Ø  Reengineering
Ø  Structuring of legacy procedures: read in control-flow; construct control-

flow graph
Ø  Produce a canonical OBDD for all acyclic parts of control-flow graph
Ø  Pretty-print again
Ø  Or: produce a statechart

Ø  Configuration management
Ø  Development of canonical versions of C preprocessor nestings

Ø  Help to master large systems

TU Dresden, Prof. U. Aßmann Decision Analysis 25

24.2.2 MODEL CHECKING
LARGE STATE SPACES

TU Dresden, Prof. U. Aßmann Decision Analysis 26

 Representation of Mathematical Structures in Decision Algebras
(BDD and OBDD)

Many mathematical data types can be represented with decision
algebras (most efficiently with BDD/OBDD):
►  Functions over finite domains of size n [Bryant86]

■  Associate to every element a vector from lBk, where k = ld n
■  Code sets with sets of such vectors
■  Map again to boolean algebra

►  Sets, partial orders and lattices (e.g., in Z, VDM, SETL)
■  Represent subsets of a set in the powerset lattice of the set
■  Map the powerset lattice to a boolean algebra (theorem of Stone)
■  Use a BDD to encode the sets
■  Uniform efficient representation in space and time

►  Relations and graphs
►  Interprete the elements of the relation (the edges) as sets of ordered k-

tuples
►  Represent as in the case of sets

►  State machines
►  Data-flow graphs

►  Propositional logic formulas

TU Dresden, Prof. U. Aßmann Decision Analysis 27

Model Checking on BDD

►  BDD and OBDD are very compact representation for state
machines, boolean functions, predicate logic, and modal logic

►  Build a basis for checking state transition systems with modal logic
(model checking)
■  System is modeled as a state transition system and encoded as OBDD
■  Features of the system (predicates, logic formulas) are encoded as OBDD,

too
■  Important: System and predicates to be checked are both encoded as OBDD

■  Model checking:
■  Then, a model checker compares the OBDDs and checks whether a feature

holds in a state
■  Effectively, the model checker only compares normalized representations of

boolean functions, the OBDD

TU Dresden, Prof. U. Aßmann Decision Analysis 28

The Use of Model Checking

►  State spaces up to 2**120 can be handled
►  Model checking checks whether features hold in states of large

state spaces
■  Used in hardware verification

♦  Proving circuits correct
■  Software verification

♦  Safety-critical systems
♦  Minimization of boolean circuits

►  Very important technique for verification of safety-critical hard- and
software

TU Dresden, Prof. U. Aßmann Decision Analysis 29

24.3 VARIABILITY OF CA
RULES

TU Dresden, Prof. U. Aßmann Decision Analysis 30

Variability

Ø  Variability means that actions are exchanged for boolean
combinations

TU Dresden, Prof. U. Aßmann Decision Analysis

Variability is simple in CA-Systems

31

24.4 EVENT-CONDITION-
ACTION BASED DESIGN
(ECA)

TU Dresden, Prof. U. Aßmann Decision Analysis 32

Event-Condition-Action Design

Ø  Decision analysis is invoked when events occur
Ø Event-condition-action (ECA) based design uses

•  ECA rules with condition-action analysis
•  Complex event processing (CEP) for recognition of complex events

TU Dresden, Prof. U. Aßmann Decision Analysis

Given some (complex) events, which conditions provoke which actions?

33

ECA with State-Based Specifications

►  An event-condition-action
(ECA) system listens on
channel(s) for events,
analyses a condition, and
executes an action
■  Statecharts (see course ST)
■  Petri Nets (see corr. Chapter)
■  ECA rules (Drools)
■  Condition analysis can

be done by BDD
■  Verification

by model
checking

■  Process:
■  Collect all ECA rules
■  Collect all states
■  Link states with ECA rules as

transitions

TU Dresden, Prof. U. Aßmann Decision Analysis

Tür

abgesperrt

verriegeln/
amp.rotesLicht

An()

entriegeln/
amp.grünesLi

chtAn()

geschlossen

schließen/
amp.gelbesLic

htAn()

öffnen()/
- öffnen(),

verriegeln(),
entriegeln()/

-

öffnen,
schließen

,
verriegeln

/
-

entriegeln(),
schließen()/

beep()

offen

öffnen()
schließen()
verriegeln()
entriegeln()

<<Steuerungsmachine>>

34

ECA with Petri Nets

►  In a Petri Net, an event-generating channel is a transition with
fan-in=0

►  Listening to the events, the Petri Net can do condition-action
analysis

TU Dresden, Prof. U. Aßmann
Decision Analysis

Tür

öffnen()
schließen()
verriegeln()
entriegeln()

<<Steuerungsmachine>>

35

Schließknopf
drücken offen

Öffne-Knopf
drücken

öffnen(),
verriegeln(),
entriegeln()

geschl
ossen

öffnen()

schließen

entriegeln(),
schließen()

Schließknopf drücken
Öffne-Knopf drücken

■  Process:
■  Collect all ECA

rules
■  Collect all states
■  Link states with

ECA rules as
subnets reacting
on event-
generating
channels

ECA-based Blackboard Style

Ø  The ECA-blackboard has two repositories: a fact/object base and a
rule base

Ø  The rule base is an active repository (i.e., an active component)
that coordinates all other components
Ø  It investigates the state of the repository. If an event has occured by

entering something in the repository (modify), components are fired/
triggered to work on or modify the repository

TU Dresden, Prof. U. Aßmann Development

C1
C3 C2

C4

Fire/trigger

36

Rule base
Repository
(fact base,
object base)

modify

JBOSS ECA Rule Engine

Ø  Drools (.drl-files) is an active repository with ECA rule processing
Ø  Ex. Fire Alarm Rules [JRules]:

TU Dresden, Prof. U. Aßmann Decision Analysis 37

rule "Status output when things are ok"
when
 not Alarm()
 not Sprinkler(on == true)
then
 System.out.println("Everything is ok");
end

rule "Raise the alarm when we have one or more fires"
when
 exists Fire() // tests whether a Fire object exists
then
 insert(new Alarm());
 System.out.println("Raise the alarm");
end

Ex. Fire Alarm

Ø  Create a blackboard and fill the object base

TU Dresden, Prof. U. Aßmann Decision Analysis 38

// make a new blackboard
KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();
// add a .drl-file to the rule base
kbuilder.add(ResourceFactory.newClassPathResource("fireAlarm.drl",
 getClass()), ResourceType.DRL);
if (kbuilder.hasErrors())
 System.err.println(kbuilder.getErrors().toString());
// open a session with the blackboard
StatefulKnowledgeSession ksession = kbase.newStatefulKnowledgeSession();

// allocate objects in the object/fact base
String[] names = new String[]{"kitchen","bedroom","office","livingroom"};
Map<String,Room> name2room = new HashMap<String,Room>();
for(String name: names) {
 Room room = new Room(name); name2room.put(name, room);
 ksession.insert(room);
 Sprinkler sprinkler = new Sprinkler(room); ksession.insert(sprinkler);
}
ksession.fireAllRules();

// output>> ”Everything is ok”

Ø  Raise fire by inserting a Fire object into the object base

TU Dresden, Prof. U. Aßmann Decision Analysis 39

Fire kitchenFire = new Fire(name2room.get("kitchen"));
Fire officeFire = new Fire(name2room.get("office"));

// insert into the session
FactHandle kitchenFireHandle = ksession.insert(kitchenFire);
FactHandle officeFireHandle = ksession.insert(officeFire);

// investigate:
ksession.fireAllRules();

// output>> “Raise the alarm"

24.5 EXTENSIBILITY OF
ECA RULES

TU Dresden, Prof. U. Aßmann Decision Analysis 40

Extensibility of ECA Rule Systems

Ø  Extensibility means to add more ECA rules
Ø  Rules are open constructs
Ø  Problem: new rules should be conflict-free with the old rules
Ø  Harmless extension is usually not provable
Ø  In general, contracts of the old system cannot be retained

TU Dresden, Prof. U. Aßmann Decision Analysis

ECA-Systems are extensible, but harmlessness of
extensions are hard to prove

41

The End: What Have We Learned

►  Decision analysis (Condition-Action analysis) is an important
analysis
■  to describe requirements,
■  to describe complex behavior of a procedure

■  Decision analysis must be encoded in a decision algebra
►  Boolean functions, decision trees, relations, graphs, automata can be

encoded in OBDD
►  The control-flow of a procedure can be normalized with a BDD and OBDD
►  Conditions in large state spaces can be encoded in OBDD and efficiently

checked
►  ECA-based design reacts on events and conditions with actions

TU Dresden, Prof. U. Aßmann Decision Analysis 42

