
Fakultät Informatik, Institut für Software- und Multimediatechnik, Lehrstuhl für Softwaretechnologie

25) Functional, Action-, Data-Flow,
ECA-Based Design

Illustrated by Example

Ø Prof. Dr. U. Aßmann
Ø Technische Universität Dresden
Ø Institut für Software- und Multimediatechnik
Ø http://st.inf.tu-dresden.de
Ø Version 12-1.0 15.12.12

1.   The KWIC Case Study

Obligatory Readings

Ø  Ghezzi Chapter 3, Chapter 4, esp. 4.2
Ø  Pfleeger Chapter 5, esp. 5.7
Ø  David Garlan and Mary Shaw. An Introduction to Software

Architecture. In: Advances in Software Engineering and Knowledge
Engineering, Volume I, edited by V.Ambriola and G.Tortora, World
Scientific Publishing Company, New Jersey, 1993.
Ø  Also appears as CMU Software Engineering Institute Technical Report

CMU/SEI-94-TR-21, ESC-TR-94-21.
Ø  http://www-2.cs.cmu.edu/afs/cs/project/able/ftp/intro_softarch/

intro_softarch.pdf
Ø  http://www.stormingmedia.us/65/6538/A653882.html

Ø  [Parnas] David Parnas. On the Criteria To Be Used in Decomposing
Systems into Modules. Communications of the ACM Dec. 1972 (15)
12.

Prof. U. Aßmann Comparison of Architectural Styles 2

Literature

Ø  [Shaw/Garlan96] Software Architecture. 1996. Prentice-Hall.

Prof. U. Aßmann Comparison of Architectural Styles 3

25. THE KWIC EXAMPLE
PROBLEM

Pfleeger 5.7, Shaw/Garlan 1996

Prof. U. Aßmann Comparison of Architectural Styles 4

The KWIC Problem

Ø  "Keyword in Context" problem (KWIC) is one of the 10 model
problems of architecture systems [Shaw-ModelProblems,
www.cmu.edu] [Shaw/Garlan96, Pfleeger 5.7]

Ø  Originally proposed by Parnas to illustrate advantages of different
designs [Parnas72]

Ø  For a text, a KWIC algorithm produces a permuted index
Ø  Every sentence is replicated and permuted in its words, i.e., the words

are shifted from left to right.
Ø  Every first word of a permutation is entered into an alphabetical index,

the permuted index.

Prof. U. Aßmann Comparison of Architectural Styles 5

KWIC

Ø  The KWIC index system accepts an ordered set of lines
•  Each line is an ordered set of words,
•  and each word is an ordered set of characters.

Ø  Any line may be "circularly shifted" by repeatedly removing the
first word and appending it at the end of the line.

Ø  The output of the KWIC index system is a listing of all circular
shifts of all lines in alphabetical order

 [Parnas]

Prof. U. Aßmann Comparison of Architectural Styles 6

A KWIC Index

 every sentence is replicated and permuted
..
 every sentence is replicated and permuted
..
 every sentence is replicated and permuted
..
every sentence is replicated and permuted
..
 every sentence is replicated and permuted
..
 every sentence is replicated and permuted

Prof. U. Aßmann Comparison of Architectural Styles 7

Modules in The KWIC Problem and Some of Their Secrets

Ø  Input: reads the sentences
Ø  Input formats
Ø  Are all lines stored in memory? (bad for large texts)
Ø  Packed or unpacked character storage
Ø  Store the index?
Ø  Distributed or non-distributed memory?

Ø  Output: outputs the KWIC index
Ø  Highlighting of keywords?
Ø  Text or PS, or PDF-output

Ø  Circular Shifter: permutes the generated sentences
Ø  Sorter: sorts the shifted sentences so that they form a keyword-

in-context index
Ø  Sort all the index or look entries up?
Ø  Complete or partial sorting

Ø  Caps: replicates the sentences as necessary
Ø  Lazy or eager replication

Prof. U. Aßmann Comparison of Architectural Styles 8

Problem?

Ø  KWIC are very important for technical documents
Ø  Examples

•  "Beitrag zur Populationsgenetik der sauren Erythrocytenphosphatase-
acP-EC3.1.3.2 unter besonderer Berücksichtigung des reinerbigen
Typus C" (1980)

•  "Lepton-Hadron-Korrelationen in (2+1)-Jet-Produktion in tief-
inelastischer Elektron-Proton-Streuung zur O(alpha2 s)"(1992)

•  "Die molekulare Wirkung von 2,4,5-und 2,4,6-Trichlorphenol auf
Eukaryontenzellen" (1990)

•  "Aufklärung, Vernunft, Religion – Kant und Feuerbach" (2005)

Prof. U. Aßmann Comparison of Architectural Styles 9

KWIC Flexibility Requirements

1.   Variability: Changes of implementations of components
1.  When does the circular shifter work?
2.  When does the sorting work?

2.   Variability: Changes of data representations
1.  Representation of sentences, words, lines
2.  Use of indices?
3.  How to avoid reduncancy?

3.   Extension with new functionality
1.  E.g., insertion of fill words

4.   Speed
5.   Reusability of components

Prof. U. Aßmann Comparison of Architectural Styles 10

 The KWIC Problem in Action-Based Design: Call-
Based Style with Shared Repository

Prof. U. Aßmann Comparison of Architectural Styles

Repository

Control

output input
Circular
Shifter

Sorter

CALL-REP

Input

Output

Index

Characters

Alphabetized
Index

Call

11

The KWIC Problem in Call-Based Repository Style

Ø  Bad:
Ø  State of the repository visible to several callers
Ø  A change in the data affects all modules
Ø  High costs if algorithm have to be changed
Ø  The modules are not reusable
Ø  Bad encapsulation of module secrets!

Ø  Good:
Ø  Fast, due to shared memory access
Ø  Easy to code

Ø  Shared memory is a fast concept, but provides few information
hiding.

Prof. U. Aßmann Comparison of Architectural Styles 12

 The KWIC Problem in Function-Based Design:
 (Abstract Data Types with Private Decentralized Memory)

Prof. U. Aßmann Comparison of Architectural Styles

Control

 output

input

CALL-DEC

Input

Output

CircularShift
- setup()
- setchar()
- char()
- word()

Characters
- setchar
- char()
- word()

Alphabetized

Index
- alph()
- ith()

Call

Char
Representation

Sentence
Representation

Index
Representation

13

The KWIC Problem in Decentralized Memory

Ø  Good:
Ø  Data and algorithm are easier to change (e.g., packing and storing the

whole character) since
Ø Data representation is hidden in functions
Ø Algorithm partly hidden
Ø The control flow works "on demand" from the Control through the

Output backwards to the Input
Ø  More module secrets: char, sentence, and index representation
Ø  Layering

Ø  Bad:
Ø  Adding new functions may be hard, since control flow intertwines the

modules tightly

Prof. U. Aßmann Comparison of Architectural Styles 14

 The KWIC Problem in Event-Condition-Action Design (Implicit
Invocation Style)

Prof. U. Aßmann Comparison of Architectural Styles 15

Control

output input

ECA

Input

Output

Lines
- insert()
- delete()
- ith()

Circular
Shift

Lines
- insert()
- delete()
- ith()

Sorter

Call Event (implicit invocation)

Sentence
Representation

Sentence
Representation

<event>

<event>

 The KWIC Problem in Implicit Invocation Style (ECA
Style)

Ø  Good:
Ø  Data and algorithm are easy to change

Ø they are hidden in functions
Ø  The control flow works forward by "implicit invocation", i.e., sending an

event, from the Input/Lines through the Shifter and the Sorter
Ø  The listeners test conditions and execute an action

Ø  Layering
Ø  Event-based style simplifies the addition of new functions, since they

may additionally listen to the events; event sources need not be
changed (even more module secrets)

Ø  Bad:
Ø  Flow of control is hard to predict
Ø  Hard to analyze statically; unusable for safety-critical systems

Prof. U. Aßmann Comparison of Architectural Styles 16

 The KWIC Problem in Action-Based Design (Pipe-
and-Filter Data-flow Style, SA)

Prof. U. Aßmann Comparison of Architectural Styles

output

input

DATAFLOW

Input

Output

Circular
Shift

Sorter

pipe

Data
Representation

Data
Representation

Data
Representation

Data
Representation

17

The KWIC Problem in Pipe-And-Filter Data-Flow Style

Ø  Good:
Ø  Data and algorithm are easy to change (by filter exchange)
Ø  Adding new functions is easy (new filters)
Ø  Flow of control is easy to say
Ø  Data representation is completely hidden in the filters
Ø  Highly reusable filter modules

Ø  Bad:
Ø  No evolution to interactive system

Prof. U. Aßmann Comparison of Architectural Styles 18

Comparison of KWIC Designs

Ø  [Shaw/Garlan 1996] Comparison can be improved with weighted
priorities.

Prof. U. Aßmann Comparison of Architectural Styles

Easy to use CALL-
REP

CALL-
DEC

ECA DATA-
FLOW

Algorithm - - + +
Data representation - + - +
Function - - + +
Good performance + + - -
Easy reuse - + + +

19

What Have We Learned?

Ø  When designing with functions, use function trees and subfunction
decomposition

Ø  When grouping to modules, fix module secrets
Ø  The more module secrets, the better the exchange and the

reuseability
Ø  Change-oriented design means to encapsulate module secrets

Ø  Functional and modular design are still very important in areas with
hard requirements (safety, speed, low memory)

Prof. U. Aßmann Comparison of Architectural Styles 20

