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> Horizontal product line: one product idea in several markets

requirements
specification

textual
requirements
(stories)

context analysis
model model
(CIM)

domain
model

Platform
independent
model

Platform-1
specific model

Platform-(1,.., n)
specific model
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Adding Extensions to Abstract Models in the MD

Prof. U. ABmann

D

> In the following, we extend the MDA (below) with configuration

Platform-1-specific
extension (PSE)

NN

Model
weaving

Platform independent
model (PIM)

~~
Platform-1 specific Platform-2 specific
model (PIM) extension (PSE)

NN

Model
weaving

[]
=

Platform-(1+2) specific

model (PSM)
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@ Extended to Model-Driven Architecture (MDA)
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Configuration
With
FeatureModel

Product Design "

Variants

Product 1

Product Lines (Product Families)

‘

@ Configuration of Variabilities in Vertical Product Lines
(MDA for Vertical Product Lines)

» Vertical product line: several products in one or several markets
» The VIM (variant independent model) is the common model of the product family
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Analysis Model
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él > Feature Models for Product configuration

» Feature models are used to express
variability in Product Lines
> alternative,
» mandatory,
» optional features, and
» their relations

» A variant model represents a concrete product (variant)
from the product line

3 1 - 1 P Ro D U CT LI N ES » The variant model results from a selection of a subgraph of the feature

model

WITH F EATU RE TRE ES > ?;Zia\/na}c?;?c?otnn;?—gscle;:n be used to parameterize and drive the product
AND FEATURE MODELS

él ) Feature Models él ) Example £
» The Feature Tree Notation is derived from And-Or-Trees > A1l or A2 or A3
> B1; B2 xor B3
Group of AND > B4; optional B5
Features > B1; B7
Crele & Mandatory Optional Group of
AIEITERTE SOIRY Feature Feature OR Features N ¥
Features Y Y u A1 A3

A2
FeatureA FeatureB FeatureC FeatureD )
B1 B2 B3 B4 B5 B6 B7

PhD Thesis, Czarnecki (1998)
based on FODA-Notation by Kang et al. (1990)
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Ein Featuremodell for Computer-Aided ¢

cognitive Rehabilitation

» [K. Lehmann-Siegemund, Diplomarbeit]

) A

[§1]

= org.eclipse.core. filesystem.macosx (1.1.0.v20090112)
= org.eclipse.core. filesystem. solaris.sparc (1.0.100.v20080604-1400) Installati (kB): |0

CcY cY
- e [e{]
[oe] [T (A ] ss )] [o€][gz] 5] (][ ] ]
[1-2] [1-2) [1-2] -2
TECHNISCHE
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- - - -
L] -
Ex: Plugins have Features (in Eclipse) =
-
L
“ Plug-ins and Fragments & ®
Plug-ins and Fragments T‘z\ Plug-in Details
Select plug-ins and fragments that should be packaged in this feature. o Specify installation details for the selected plug-in.

S org.eclipse. core. flesystem.linux.ppe (1.0.100.v20080604-1400) Mame: \
=4 org.eclipse.core. filesystem. linux. x86 (1.2.0.v20080604-1400) Version: 1.0.100.v20080604-1400 ‘
=4 org.eclipse.core. filesystem.linux.x86_64 (1.0.100.v20080604-1400)

Downloa 0 |

=3 org.eclipse.core. filesystem.win32.x86 (1.1.0.v20080604-1400)

= org.eclipse.core.resources.win32.x86 (3.5.0.v20081020)

=3 org.eclipse.equinox.launcher. carbon.macosx (1.0.200.v20090520-1835)
=3 org.eclipse.equinox.launcher.gtk.linux.ppc (1.0.200.v20090519)

=¢= org.eclipse. equinox.launcher.gtk.linux.x86 {1.0.200.v20090520)

=¢org. eclipse. equinox.launcher.gtk.linux. x86_64 (1.0,200.¥20090519) Operating Syst:
=4 org.eclipse.equinox.launcher. gtk solaris.sparc (1.0.200,v20090519)
=0 org.eclipse.equinox.launcher.win32.win32.x86 (1.0.200.v20090519)

[[JUnpack the plug-in archive after the installation

Specify environment combinations in which the selected plug-in can be installed. Leave blank if the plug-in
does not contain platform-specific code.

s [linux | [Browse...

[ | [Browse...
=4 org. eclipse. equinox.security. macosx (1,100,0,v20090520-1800) ‘ ‘ [aruwse..,
=4 org.eclipse.equinox.security win32.x86 {1.0,100,v20090520-1300)
=9 org.eclipse.swt.carbon.macosx (3.5.0,v3550b) Architecture: ‘ ppc ‘ Browse...
=3 org.eclipse. swt.gtk.linux.ppc (3.5.0.v3550b)
=3 org.eclipse. swt.gtk.linux.x86 (3.5.0.v3550b)
=3 org.eclipse.swt.gtk.linux.x86_64 (3.5.0.v3550b)
== org.eclipse. swt. gtk solaris.sparc (3.5.0.v3550b)
=t org.eclipse.swt.win32.win32.x86 (3.5.0.v3550b)
=t org.eclipse.ui.carbon {4,0.0,120090525-2000)
= org.eclipse.ui.win32 (3.2.100.v20090429-1800)
=g org.eclipse.update. core.linux (3.2, 100,+20081008)
=9 org.eclipse.update. core.win32 (3.2,100,v20080107)

Overview | Information | Plug-ins | Included Features | Dy denci flation | Build | feature.xml | build.properties

TECHNISCHE

E Mapping Features to Model Fragments (Model Snippets) E
> Bridging the gap between configuration and solution space
» Need for mapping of features from feature models to artefacts of
the solution space
> Possible artefacts
» Models defined in DSLs
» Model fragments (snippets)
» Architectural artefacts (components, connectors, aspects)
» Source code
» Files
» But how can we achieve the mapping... ?
TECHNISCHE
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Different Approaches of Variant Selection (2)

@ Different Approaches of Variant Selection
Subtractive approach

Additive approach

» Map all features to model fragments (model snippets) > Model all features in one model
» Compose them with a core model based on the presence of the > Remove elements based on absence of the feature in the variant
feature in the variant model model

[
®BO00— D=
[ [

Core —_ Core

» Pros:
» conflicting variants can be modelled correctly
» strong per-feature decomposition
» Cons:
» traceability problems
» increased overhead in linking the different fragments

» Pros:
» no need for redundant links between artifacts
» short cognitive distance

» Cons:
» conflicting variants can't be modelled correctly
» huge and inconcise models

TECHNISCHE TECHNISCHE
Prof. U. ABmann Feature-driven SPLE 17 gglEstDREsr:TAT Prof. U. ABmann Feature-driven SPLE 18 ggIEVSEDRESNITAT
: e ) The Mapping Problem between Features and Solution £ i : i
: pPIng : : Mapping Features to Models =
: Elements : : :
> FeatureMapper - a tool for mapping of feature models to modelling
artefacts developed at the ST Group
> Screencast and paper available at http://featuremapper.org
> Advantages:
» Explicit representation of mappings
» Configuration of large product lines from selection of variants in feature trees
Problem Space Solution Space > Customers understand
» Consistency of each product in the line is simple to check
8] » Model and code snippets can be traced to requirements
U [
FeatureB FeatureC —
— (D] I
]
O

(W) g ()i
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- - - -
L) - - -
- - - . -
: FeatureMapg l= 5 Mapping Features to Models =
L L] L] L]
> We chose an explicit Mapping Representation in our tool
FeatureMapper
eno ing - C ion/ClassDiagram.umldi - Eclipse - /Users/Florian/Documents /workspace2 . . - -
@ vappingyiew 3 7O i Cusdugamana 15 <o > Mappings are stored in a mapping model that is based on a
S X|e[DaR = o | o, ClssDlagram.umi mapping metamodel
< Constraint OWL |
¥ (®) Feature ContactManagement |
vEGroup 0 |
(® Feature Addresses |
(® Feature Relationships |
(E) Feature ContactOpportunities }
(E) Feature Notes
v (® Feature Groups
v E7Group 0
(®) Feature MultipleAssignment < contacts +relationships
(® Feature ArbitraryDepth 1. 1
¥ () Feature Synchronisation 1
o,
e wemmemons T 1 reatonsips Feature Model Mapping Model Solution Models
—
- @ — b
all o , L ] o | |00
Feature Relationships [:?Ms::‘.m Space View @A:::::\:d Elements View 52 - =0 FeatureB E—— I @] \\\\
Assigned Feature Expression @ & {» 3 || YFeature Relationships N | = |
e o ey | — ol fma 8L
T — e - [ reaturee | O
A
a TECHNISCHE TECHNISCHE
Feature-driven SPLE gglEstDREsr:TAT Prof. U. ABmann Feature-driven SPLE Slide 22 ggIEVsEDRESNITAT
n - - -
= . . H H . . . . =
: From Feature Mappings to Model Transformations = £ Visualisation of Mappings (1) :
L) - - -
Mappin > Visualisations play a crucial role in Software Engineering
Feature Model Solution Models e It’s hard to impossible to understand a complex system unless you look at it from
— 0Q- different points of view
| > In many cases, developers are interested only in a particular
—>E Q\ aspect of the connection between a feature model and realising
FeatureB FeatureC r A artefacts
e How a particular feature is realised?
e Which features communicate or interact in their realisation?
e Which artefacts may be effectively used in a variant?
¥ > Solution of the FeatureMapper: MappingViews, a visualisation
technique that provides four basic visualisations
VariantModel § Variant o Realisation View
Fi A i i
E e Variant Vlgw
A0 e Context View
e Property-Changes View
FeatureB | (SRR Transformation O |
— El [
O
TECHNISCHE TECHNISCHE
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- -

L) -

n . . . -

: Realisation View :

L L]

> For one Variant Model, the realisation in the solution space is
shown
“ ¥
Feature Model Mapping rget
Group
Relationship —
Relationship — ‘ +relationships
FeatureB Relationship m Relationship
1 +role
Person [_company |
orenam ; |

TECHNISCHE
Feature-drive! Slide 25 sIEVSEDREsr:TAT

-

H

Context View =

-

» The Context View draws the variants with different colors
e Aspect-separation: each variant forms an aspect
Feature Model Mapping
ContactList
©contacts +relationships
1 +source Relationship
+address  +contact +arget 1. —
Person
+forename

TECHNISCHE

riven SPLE

: Variant View :
L] L]
» The variant view shows different variant realisations (variant
models) in parallel
Feature Model Mapping +source
Address Relationship : m roatonshps
M(* * "] _Relationship
\—mdum S — —
o ~—"
IR e =
TECHNISCHE
Prof ABmann Feature-driven SPLE gg'EVSEDRESNITAT
- -
H H
: Property-Changes View =

Recorded change-set of
changing the cardinality of the
reflexive association of Group to
itself from 1 to many

Feature Model

Mapping

Q <Class> Group
=/ <Association> Associationd
#-[=) <Property: source : Group
=& <Property> target : Group [0..%]
917 <literal Unlimited Natural *
10, <Literal Integer> 0

Arbitrary
Depth

i

Mame: Expression
= [ ownedend Property source
E uppervalue Literal Unlimited Natural
B lowervalue Literal Integer
= H ownedend Property target
= H uppervalue Literal Unlimited Natural
= © Property value
-1
= H lowervalue Literal Integer
= = Property value
-0

Arbitrary Depth

TECHNISCH?r
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Textual Languages Support (1)

Textual Languages Support (2)

» Unified handling of modelling languages and textual languages by > Aspect-related color markup of the code
lifting textual languages to the modelling level with the help of
EMFText

®enNnon ing - C Jorg/ ontact.java - Eclipse Platform ="
[ Project Explor | B Mappingview 53 = B|([a *Contactjava R = (82 outli v=g
> All >80 languages from the EMFText Syntax Zoo are supported SoXelmantll]s) o o ‘ T e
. . g g y pp 4 < import java.util.linkedHashSet;
|nc|ud|ng Java 5 <4 Constraint OWL import java.util.Set; v® Class Contact
¥ (©) Feature ContactManagement » & Field name
v £5Group 0 public class Contact {
© restore Addresses rivate String name; » & Field relationships
® Feature Relationships » @ Constructor Contact
. » © Class Method addRelationship
> http://emftext_org (® Feature ContactOpportunities public Contact(String name) { » © Class Method toString
® Feature Notes this.name - name;
¥ @ Feature Groups
v £ Group 0 }
(©) Feature MultipleAssignment.
© Feature ArbitraryDepth public void addRelationship(Relationship relationship) il
v ® Feature Synchronisation this. relationships.add(relationship);
v E8Group 1
@ Feature GMail public String toString() {
® Feature Highrise final StringBuffer result - new StringBuffer();
(®) Feature MobilePhone result.append("Name: " + name);
return result.toString();
}
_}
[%d Solution Space View | g Associated Elements View 53 . @] Error Log =0
Feature Element Resource
concrete syntax mapper e 15]|| v Feature Relationships
N Feature Relationships © Class Method toString [J) ContactManagementjava/
Feature Relationships Feature Relationships @ Class Method getTarget o Conta:lManagemenUava/sm
Feature Relationships © Class Method getSource [J] ContactManagementiava/s
R Feature Relationships © Class Method getRole [J] ContactManagementiava/s
Assigned Feature Expression o & x oo O o Ty . mc
Feature Relationships 4 Field role [J) ContactManagementjava/s *
[T] ContactManaaementiava/s
Bt

TECHNISCHE
-dri UNIVERSI
Feature-driven SPLE DRESDEN

Feature-driven SPLE Slide 29

Mapping-based Derivation of Transformations £
» Transformations in the solution space build the product
Mapping Model
Feature Model Solution Models
l FeatureB l | FeatureC |—’ \ . e —
¥
|
|
Variant Model ¥ <<in>> Variant
<<in>> L 31.3 MULTI-STAGE
FeatureB FeatureC of Tlgigf"/c;artrlggﬁons N FI U R TI N
= CO GURATIO
Feat-ureD D
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él ) FEASIPLE: A Multi-Stage Process Architecture for PLE él ) FEASIPLE: A Multi-Stage Process Architecture for PLE
> Chose one variant on each level > Goal: a staged MDSD-framework for PLE where each stage
> Feature Tree as input for the configuration of the model weavings produces the software artefacts used for the next stage
Y N )
B
== = -
. VSM
Variants \®< VSM Variants \<'D<
PIM V\é;b—oﬁ PIM
O— VP3C—— r_l
Platforms \M I PSM Flatiorms FsM
I\ 3 CTIM
CTIM V‘,ggEOf
/\ VP3O
Contexts \(-D/ CTSM Contexts \C‘D/ CTSM
- -
-
Product Product
Prof. U. ABmann Feature-driven SPLE 33 QE(I;‘;S‘EI}IE%?A% Prof. U. ABmann Feature-driven SPLE 34 QE?EQE,[:RIE%%E
\s\l ) Advantages of FEASIPLE ¢ €| ) Advantages of FEASIPLE ¢
» Characteristic feature 1: » Characteristic feature 2:
> Variability on each stage > Different modelling languages, component systems and
) /ﬁvm composition languages per stage
) S —
= o
- Y i e
ariants r_]
PIM Variants \G’>< -
VP1 <slot>>-® PIM
V\Iél;z Hi’ V\F/’;I O il <<slox>><-:lo @—<<hook>>
Platforms I PSM vpgo—.
| Platforms I PSM
CTIM 3
CTIM
A N o ey
Contexts \®/ CTSM VP3@— \C)/ S
Contexts + CTSM
-
Product
Product
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él ) Advantages of FEASIPLE ¢ sl ) Advantages of FEASIPLE ¢
» Characteristic feature 3: » Characteristic feature 4:
» Different composition mechanisms per stage » Composition mechanisms are driven by variant selection
Y YN
( ) ( ) VIM
VIM VP1O——
e - Y — i o=
Var — : [ SM
Variants \®< [ VSM Variants V
VP1 <<slot>>-® PIM V\lé;] O—i <<slol>><-<: |°l>>~0._«h“k» o
V\}{,gz .O <<slot>>—8 @—<<hook>> VP3 H r_\
Platforms W I PSM Platforms Y .-
= CTIM
vP1@ TT) CTIM P18 TT)
VP2 O— i ,/\ VP3@—— \()/ KSR
VP3@———
Contexts \G’)/ CTSM Contexts U CTSM
- J
Product Product
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: . L . : i e > TraCo: A Framework for Safe Multi-Stage
: Multi-Staged Derivation of Transformations & s e : :
: @ 9 : : Composition of Transformations =

> How do we compose transformations? Between different stages? > TraCo encapsulates transformations into composable components

e Arranges them with composition programs of parallel and sequential transformation
steps (multi-threaded transformation

functional

Feature Model Variant Independent Model

Functional variant

[ momTrafos |
g
! context L .
1 Feature Model Platform Independent Models Platform variant
N
[ memTrafos |

Vi1 Feature Selection

|
i

i

H

E platform n M1 Ma }amg

! Feature Model | Platform Specific Models S A1 Solution ﬂrtefact
. /! T1 Transformation

M2C G fors

Context variant

| Platform Specific Code |

& vk et
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L) - - -
L) - - -
- - . - - . - - . . . . -
: Steps in Multi-Staged Derivation of Transformations = 5 Multi-Staged Derivation of Transformations =
L L] L] L]
1. Transformations are represented as composable components > Implemented in our tool TraCo
2. Definition and Composition of Transformation Steps
e A Composition System is needed (course CBSE): Allows for reuse of arbitrary existing transformation
techniques
3. Validation of each transformation and composition step
e Type-checking
e Invariant- and constraint-checking
& Ubrary.traco 53 =
e Correctness of port and parameter binding ﬁt;;m =
e Static and dynamic analysis = & ET————r—
- .an = 4 Library
2 Port Specification inout model : UML2 ouT
@ dend I pe
. [ Component Specifcation Load UML2
Component instances—__ [ e et vt soutonbiodel
@ | Component Specification Load Feature Model
@ [ Component Specification Load Feature Mapping Model < VariantInstantiation
/ @ & Component Speciication PlatformInstantiation = ~
[ Component Spedfcton Load ltforn tode solutionModal mappingModel O
Com ponent = [E Component Specification Class2Relational (ATL)
3 Port Specification in IN : UML2
5 Port Specifcation out OUT : Relational pim
3 Part Specification in bl
e e e R
@ [ B Component Specification Nested Inner pim ol
4 Model Type Navigation psm
= 4 Model Type UML2
Adapter 4 Metamodel UM N
4 Model Type Feature Mapping Model
: bl  store Model
E references & 4 Model Type Relational
Connecto rs Selection | Parent | List Tree Table Tree with Columns
Actual
Transformation Constant value
Code
TECHNISCHE TECHNISCHE
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Composition Programs can be Configured : . Loading ) Pratorm :
. : Variability |-> Add EJB Semantics Variability :
Metacomposition) = | :
- Domain -

v v
> The composition program shown in the last slide can be subject to Actions Model o > UmLoe
transformation and composition Load Actons Wodel | P
] i oo

|
v

Load Domain Modell :I VIM to VSM I :I D°ma‘8,mf’de‘ to |——>| A;'r'(‘:;”eﬁise? |—>| UML to Java |

~Anything you can do, I do meta" (Charles Simonyi) | __ | |l ~ |_ |

i A

> If we build a product line with TraCo, platform variability can be Actions
realised by different transformation steps

Add EJB
Persistence
Semantics

> A TraCo composition program can be used with FeatureMapper

e Multi-Staged transformation steps > Delegate UNL I-' > WMbodaa
e Even of composition programs - - - -[ZA=EEIENLS sy o= e L L
Load
- O - o | ApplicationStat Attributes t
= - State | Model |¥ l Vi ovem l VI ,“;‘;ﬁ(‘snu,f,_e | ng“esfe: |_> R |
> More about metacomposition in CBSE course [ I e -
Presentation
[ swr
Ensure Control IDs |—> SWT User Interface | | ISP
User Interface Load Lser inerface i— ‘i VIM to VSM I:::,I_:T iness Logic
QO Java
I_l

—B| JsP Userinterface | | @ EJB

I (i E B |_ e _l I ey O In-Memory
Load igati » Navigation Model to .
| thei | | VIM to VSM | > e ‘ EJB Persistence
igati Mixed

[> EJB + In-Memory

| Navigation Model to .

> ISP D> B+ EsB Persistence BCHE
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i . . . : : Case Studies with FeatureMapper, TraCo, and =
H The final frontier: Ensuring Well-formedness of SPLs : H PPEr, ! :
. : : FEASIPLE :
> Motivation: Make sure that well-formedness of all participating » Simple Contact Management Application Software Product Line
models is ensured IR T Fackeg Expiore] = e FeatureMapper used to map features to UML2 model elements
e Feature Model PRI =T I e Both static and dynamic modelling
 Mapping Model (contectanagement/solition/FOSDO9S '
e Solution Models v %(F:::::I?:[o::"c.wanagemem > Simple Time Sheet Application Software Product Line
v &7 Group 0 e FeatureMapper used to tailor ISC composition programs
(®) Feature Addresses . o K i
» Well-formedness rules are descri © Feaure Relationships e ISC used as a universal variability mechanism in SPLE
(®) Feature ContactOpportunities ° Meta Transformation
(®) Feature Notes
. . v (® Feature Groups
> Constraints are enforced during r v £ Growp 0 - > SalesScenario Software Product Line
() Feature MultipleAssignmen
® Feature ArbitraryDepth e FeatureMapper used to tailor models expressed in Ecore-based DSLs
_ : e ure Synchetnisaton o was developed in project feasiPLe (http://www.feasiple.de)
[ Solution Space View | ] Associated Elements View &3\ = Properties ®
Feature Element Re! .
v Feature Flood - » TAOSD AOM Crisis Management System
/% Feature Flood =
Feature Flood =] <Property> handicap : HandicapKind [1..*] &)
Feature Flood « <Association> A_<rescueMission>_<rope> &)
Feature Flood =1 <Enumeration Literal> MENTAL &)
Feature Flood = <Enumeration Literal> SURD #)
Feature Flood =] <Class> HandicappedVictim #) org.featur .example.t
] Properties &3 B3 v =
Property Value
Constrained Features @ Feature MultipleAssignment, Feature Highrise
Expression = conflicts
Language = OwWL
TECHNISCHE TECHNISCHE
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n - - -
H H = H
: Summary : £ The End =
> Configuration of product lines with mapping of feature models to
solution spaces
> Mapping of Features to models in Ecore-based languages
using FeatureMapper
> Visualisations of those mappings using MappingViews
e Realisation View
e Variant View wee 5
e Context View ]
e Property-Changes View '
> Derivation of solution models based on variant selection‘an e
mapping ‘ [
> Multi-Staged derivation using TraCo
> Ensuring well-formedness of SPLs O«
lass > Group
=1/ <hssociation> Associationd
#[=] <Property> source : Group
http:/ /featuremapper.org =& <Property> target : Group [0..*]
017 <Literal Unlimited Matural=> *
10, <Literal Integer> 0
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