\s\l) Obligatory Literature

> Florian Heidenreich, Jan Kopcsek, and Christian Wende.
FeatureMapper: Mapping Features to Models. In Companion
Proceedings of the 30th International Conference on Software
Engineering (ICSE'08), Leipzig, Germany, May 2008.

e http://fheidenreich.de/work/files/ICSE08-FeatureMapper--Mapping-Features-to-
Models.pdf

Fakultat Informatik, Institut fiir Software- und Multimediatechnik, Lehrstuhl fiir Softwaretechnologie

31) Feature Models and MDA for
Product Lines

1. Feature Models
2. Product Linie Configuration with Feature
Models
3. Multi-Stage Configuration
Prof. Dr. U. ABmann
Florian Heidenreich
Technische Universitidt Dresden
Institut fiir Software- und Multimediatechnik
Gruppe Softwaretechnologie

i
Prof. U. ABmann Feature-driven SPLE 2 DRESDEN

Version 12-0.2, January 23, 2013

@ References

» [ABmO03] U. ABmann. Invasive Software Composition. Springer, 2003.

@ Object-Oriented Analysis vs Object-Oriented Design

requirements
specification

> [Cza05] K. Czarnecki and M. Antkiewicz. Mapping Features to Models: A
Template Approach Based on Superimposed Variants. In R. Gliick and M. Lowry,
editors, Proceedings of the 4th International Conference on Generative
Programming and Component Engineering (GPCE'05), volume 3676 of LNCS,
pages 422-437. Springer, 2005.

textual
requirements
(stories)

» [Cza06] K. Czarnecki and K. Pietroszek. Verifying Feature-Based Model
Templates Against Well-Formedness OCL Constraints. In Proceedings of the 5th
International Conference on Generative Programmlng and Component
Engineering (GPCE'06), pages 211-220, New York, NY, USA, 2006. ACM.

context analysis
model model

» [Hei08a] F. Heidenreich, J. Kopcsek, and C. Wende. FeatureMapper: Mapping
Features to Models. In Companion Proceedings of the 30th International
Conference on Software Engineering (ICSE'08), pages 943-944, New York, NY,
USA, May 2008. ACM.

> [Hei08b] Florian Heidenreich, Ilie Savga and Christian Wende. On Controlled
Visualisations in Software Product Line Engineering. In Proc. of the 2nd Int'l
Workshop on Visualisation in Software Product Line Engineering (ViSPLE
2008}, collocated with the 12th Int'l Software Product Line Conference (SPLC
2008), Limerick, Ireland, September 2008.

architectural design

detailed design

» [Hei09] Florian Heidenreich. Towards Systematic Ensuring Well-Formedness of
Software Product Lines. In Proceedings of the 1st Workshop on Feature-
Oriented Software Development (FOSD 2009) collocated with MODELS/GPCE/
SLE 2009. Denver, Colorado, USA, October 2009. ACM Press

L) e s
DRESDEN Feature-driven SPLE A

Prof. U. ABmann Feature-driven SPLE

> Horizontal product line: one product idea in several markets

requirements
specification

textual
requirements
(stories)

context analysis
model model
(CIM)

domain
model

Platform
independent
model

Platform-1
specific model

Platform-(1,.., n)
specific model

Feature-driven SPLE 5

Adding Extensions to Abstract Models in the MD

Prof. U. ABmann

D

> In the following, we extend the MDA (below) with configuration

Platform-1-specific
extension (PSE)

NN

Model
weaving

Platform independent
model (PIM)

~~
Platform-1 specific Platform-2 specific
model (PIM) extension (PSE)

NN

Model
weaving

[]
=

Platform-(1+2) specific

model (PSM)
Prof. U. ABmann =

@ Extended to Model-Driven Architecture (MDA)

TECHNISCHE
UNIVERSITAT
DRESDEN

A

TECHNISCHE
UNIVERSITAT
DRESDEN

requirements
specification

Feature
Model
(varability

textual
requirements
(stories)

context
model

domain
model

Prof. U. ABmann Feature-driven SPLE

Configuration
With
FeatureModel

Product Design "

Variants

Product 1

Product Lines (Product Families)

‘

@ Configuration of Variabilities in Vertical Product Lines
(MDA for Vertical Product Lines)

» Vertical product line: several products in one or several markets
» The VIM (variant independent model) is the common model of the product family

TECHNISCHE
UNIVERSITAT
DRESDEN

[Domain Model

)

'

Analysis Model

¥

Product Line Model

(Framework, VIM)

Configuration
With

FeatureModel

TECHNISCHE
UNIVERSITAT

DRESDEN

él > Feature Models for Product configuration

» Feature models are used to express
variability in Product Lines
> alternative,
» mandatory,
» optional features, and
» their relations

» A variant model represents a concrete product (variant)
from the product line

3 1 - 1 P Ro D U CT LI N ES » The variant model results from a selection of a subgraph of the feature

model

WITH F EATU RE TRE ES > ?;Zia\/na}c?;?c?otnn;?—gscle;:n be used to parameterize and drive the product
AND FEATURE MODELS

él) Feature Models él) Example £
» The Feature Tree Notation is derived from And-Or-Trees > A1l or A2 or A3
> B1; B2 xor B3
Group of AND > B4; optional B5
Features > B1; B7
Crele & Mandatory Optional Group of
AIEITERTE SOIRY Feature Feature OR Features N ¥
Features Y Y u A1 A3

A2
FeatureA FeatureB FeatureC FeatureD)
B1 B2 B3 B4 B5 B6 B7

PhD Thesis, Czarnecki (1998)
based on FODA-Notation by Kang et al. (1990)

(W) g Q)i
Prof. U. ABmann Feature-driven SPLE DRESDEN Prof. U. ABmann Feature-driven SPLE Rl

Ein Featuremodell for Computer-Aided ¢

cognitive Rehabilitation

» [K. Lehmann-Siegemund, Diplomarbeit]

) A

[§1]

= org.eclipse.core. filesystem.macosx (1.1.0.v20090112)
= org.eclipse.core. filesystem. solaris.sparc (1.0.100.v20080604-1400) Installati (kB): |0

CcY cY
- e [e{]
[oe] [T (A] ss)] [o€][gz] 5] (][]]
[1-2] [1-2) [1-2] -2
TECHNISCHE
-dri INIVERSITAT
Feature-drive! 13 RESDEN
-
-
- - - -
L] -
Ex: Plugins have Features (in Eclipse) =
-
L
“ Plug-ins and Fragments & ®
Plug-ins and Fragments T‘z\ Plug-in Details
Select plug-ins and fragments that should be packaged in this feature. o Specify installation details for the selected plug-in.

S org.eclipse. core. flesystem.linux.ppe (1.0.100.v20080604-1400) Mame: \
=4 org.eclipse.core. filesystem. linux. x86 (1.2.0.v20080604-1400) Version: 1.0.100.v20080604-1400 ‘
=4 org.eclipse.core. filesystem.linux.x86_64 (1.0.100.v20080604-1400)

Downloa 0 |

=3 org.eclipse.core. filesystem.win32.x86 (1.1.0.v20080604-1400)

= org.eclipse.core.resources.win32.x86 (3.5.0.v20081020)

=3 org.eclipse.equinox.launcher. carbon.macosx (1.0.200.v20090520-1835)
=3 org.eclipse.equinox.launcher.gtk.linux.ppc (1.0.200.v20090519)

=¢= org.eclipse. equinox.launcher.gtk.linux.x86 {1.0.200.v20090520)

=¢org. eclipse. equinox.launcher.gtk.linux. x86_64 (1.0,200.¥20090519) Operating Syst:
=4 org.eclipse.equinox.launcher. gtk solaris.sparc (1.0.200,v20090519)
=0 org.eclipse.equinox.launcher.win32.win32.x86 (1.0.200.v20090519)

[[JUnpack the plug-in archive after the installation

Specify environment combinations in which the selected plug-in can be installed. Leave blank if the plug-in
does not contain platform-specific code.

s [linux | [Browse...

[| [Browse...
=4 org. eclipse. equinox.security. macosx (1,100,0,v20090520-1800) ‘ ‘ [aruwse..,
=4 org.eclipse.equinox.security win32.x86 {1.0,100,v20090520-1300)
=9 org.eclipse.swt.carbon.macosx (3.5.0,v3550b) Architecture: ‘ ppc ‘ Browse...
=3 org.eclipse. swt.gtk.linux.ppc (3.5.0.v3550b)
=3 org.eclipse. swt.gtk.linux.x86 (3.5.0.v3550b)
=3 org.eclipse.swt.gtk.linux.x86_64 (3.5.0.v3550b)
== org.eclipse. swt. gtk solaris.sparc (3.5.0.v3550b)
=t org.eclipse.swt.win32.win32.x86 (3.5.0.v3550b)
=t org.eclipse.ui.carbon {4,0.0,120090525-2000)
= org.eclipse.ui.win32 (3.2.100.v20090429-1800)
=g org.eclipse.update. core.linux (3.2, 100,+20081008)
=9 org.eclipse.update. core.win32 (3.2,100,v20080107)

Overview | Information | Plug-ins | Included Features | Dy denci flation | Build | feature.xml | build.properties

TECHNISCHE

E Mapping Features to Model Fragments (Model Snippets) E
> Bridging the gap between configuration and solution space
» Need for mapping of features from feature models to artefacts of
the solution space
> Possible artefacts
» Models defined in DSLs
» Model fragments (snippets)
» Architectural artefacts (components, connectors, aspects)
» Source code
» Files
» But how can we achieve the mapping... ?
TECHNISCHE
Prof. U. ABmann Feature-driven SPLE 14 gg'EVSEDRESNITAT
31.2 PRODUCT-LINE
ot U v TECHNISCHE
UNIVERSITAT

DRESDEN

Different Approaches of Variant Selection (2)

@ Different Approaches of Variant Selection
Subtractive approach

Additive approach

» Map all features to model fragments (model snippets) > Model all features in one model
» Compose them with a core model based on the presence of the > Remove elements based on absence of the feature in the variant
feature in the variant model model

[
®BO00— D=
[[

Core —_ Core

» Pros:
» conflicting variants can be modelled correctly
» strong per-feature decomposition
» Cons:
» traceability problems
» increased overhead in linking the different fragments

» Pros:
» no need for redundant links between artifacts
» short cognitive distance

» Cons:
» conflicting variants can't be modelled correctly
» huge and inconcise models

TECHNISCHE TECHNISCHE
Prof. U. ABmann Feature-driven SPLE 17 gglEstDREsr:TAT Prof. U. ABmann Feature-driven SPLE 18 ggIEVSEDRESNITAT
: e) The Mapping Problem between Features and Solution £ i : i
: pPIng : : Mapping Features to Models =
: Elements : : :
> FeatureMapper - a tool for mapping of feature models to modelling
artefacts developed at the ST Group
> Screencast and paper available at http://featuremapper.org
> Advantages:
» Explicit representation of mappings
» Configuration of large product lines from selection of variants in feature trees
Problem Space Solution Space > Customers understand
» Consistency of each product in the line is simple to check
8] » Model and code snippets can be traced to requirements
U [
FeatureB FeatureC —
— (D] I
]
O

(W) g ()i
Feature-driven SPLE Slide 19 DRESDEN Prof. U. ABmann Feature-driven SPLE Rl

- - - -
L) - - -
- - - . -
: FeatureMapg l= 5 Mapping Features to Models =
L L] L] L]
> We chose an explicit Mapping Representation in our tool
FeatureMapper
eno ing - C ion/ClassDiagram.umldi - Eclipse - /Users/Florian/Documents /workspace2 . . - -
@ vappingyiew 3 7O i Cusdugamana 15 <o > Mappings are stored in a mapping model that is based on a
S X|e[DaR = o | o, ClssDlagram.umi mapping metamodel
< Constraint OWL |
¥ (®) Feature ContactManagement |
vEGroup 0 |
(® Feature Addresses |
(® Feature Relationships |
(E) Feature ContactOpportunities }
(E) Feature Notes
v (® Feature Groups
v E7Group 0
(®) Feature MultipleAssignment < contacts +relationships
(® Feature ArbitraryDepth 1. 1
¥ () Feature Synchronisation 1
o,
e wemmemons T 1 reatonsips Feature Model Mapping Model Solution Models
—
- @ — b
all o , L] o | |00
Feature Relationships [:?Ms::‘.m Space View @A:::::\:d Elements View 52 - =0 FeatureB E—— I @] \\\\
Assigned Feature Expression @ & {» 3 || YFeature Relationships N | = |
e o ey | — ol fma 8L
T — e - [reaturee | O
A
a TECHNISCHE TECHNISCHE
Feature-driven SPLE gglEstDREsr:TAT Prof. U. ABmann Feature-driven SPLE Slide 22 ggIEVsEDRESNITAT
n - - -
= . . H H =
: From Feature Mappings to Model Transformations = £ Visualisation of Mappings (1) :
L) - - -
Mappin > Visualisations play a crucial role in Software Engineering
Feature Model Solution Models e It’s hard to impossible to understand a complex system unless you look at it from
— 0Q- different points of view
| > In many cases, developers are interested only in a particular
—>E Q\ aspect of the connection between a feature model and realising
FeatureB FeatureC r A artefacts
e How a particular feature is realised?
e Which features communicate or interact in their realisation?
e Which artefacts may be effectively used in a variant?
¥ > Solution of the FeatureMapper: MappingViews, a visualisation
technique that provides four basic visualisations
VariantModel § Variant o Realisation View
Fi A i i
E e Variant Vlgw
A0 e Context View
e Property-Changes View
FeatureB | (SRR Transformation O |
— El [
O
TECHNISCHE TECHNISCHE
Prof. U. ABmann Feature-driven SPLE UNIVERSITAT Prof. U. ABmann Feature-driven SPLE Slide 24 NIVERSITAT

- -

L) -

n . . . -

: Realisation View :

L L]

> For one Variant Model, the realisation in the solution space is
shown
“ ¥
Feature Model Mapping rget
Group
Relationship —
Relationship — ‘ +relationships
FeatureB Relationship m Relationship
1 +role
Person [_company |
orenam ; |

TECHNISCHE
Feature-drive! Slide 25 sIEVSEDREsr:TAT

-

H

Context View =

-

» The Context View draws the variants with different colors
e Aspect-separation: each variant forms an aspect
Feature Model Mapping
ContactList
©contacts +relationships
1 +source Relationship
+address +contact +arget 1. —
Person
+forename

TECHNISCHE

riven SPLE

: Variant View :
L] L]
» The variant view shows different variant realisations (variant
models) in parallel
Feature Model Mapping +source
Address Relationship : m roatonshps
M(* * "] _Relationship
\—mdum S — —
o ~—"
IR e =
TECHNISCHE
Prof ABmann Feature-driven SPLE gg'EVSEDRESNITAT
- -
H H
: Property-Changes View =

Recorded change-set of
changing the cardinality of the
reflexive association of Group to
itself from 1 to many

Feature Model

Mapping

Q <Class> Group
=/ <Association> Associationd
#-[=) <Property: source : Group
=& <Property> target : Group [0..%]
917 <literal Unlimited Natural *
10, <Literal Integer> 0

Arbitrary
Depth

i

Mame: Expression
= [ownedend Property source
E uppervalue Literal Unlimited Natural
B lowervalue Literal Integer
= H ownedend Property target
= H uppervalue Literal Unlimited Natural
= © Property value
-1
= H lowervalue Literal Integer
= = Property value
-0

Arbitrary Depth

TECHNISCH?r

Slide 28 UNIVERSI

DRESDEN

Textual Languages Support (1)

Textual Languages Support (2)

» Unified handling of modelling languages and textual languages by > Aspect-related color markup of the code
lifting textual languages to the modelling level with the help of
EMFText

®enNnon ing - C Jorg/ ontact.java - Eclipse Platform ="
[Project Explor | B Mappingview 53 = B|([a *Contactjava R = (82 outli v=g
> All >80 languages from the EMFText Syntax Zoo are supported SoXelmantll]s) o o ‘ T e
. . g g y pp 4 < import java.util.linkedHashSet;
|nc|ud|ng Java 5 <4 Constraint OWL import java.util.Set; v® Class Contact
¥ (©) Feature ContactManagement » & Field name
v £5Group 0 public class Contact {
© restore Addresses rivate String name; » & Field relationships
® Feature Relationships » @ Constructor Contact
. » © Class Method addRelationship
> http://emftext_org (® Feature ContactOpportunities public Contact(String name) { » © Class Method toString
® Feature Notes this.name - name;
¥ @ Feature Groups
v £ Group 0 }
(©) Feature MultipleAssignment.
© Feature ArbitraryDepth public void addRelationship(Relationship relationship) il
v ® Feature Synchronisation this. relationships.add(relationship);
v E8Group 1
@ Feature GMail public String toString() {
® Feature Highrise final StringBuffer result - new StringBuffer();
(®) Feature MobilePhone result.append("Name: " + name);
return result.toString();
}
_}
[%d Solution Space View | g Associated Elements View 53 . @] Error Log =0
Feature Element Resource
concrete syntax mapper e 15]|| v Feature Relationships
N Feature Relationships © Class Method toString [J) ContactManagementjava/
Feature Relationships Feature Relationships @ Class Method getTarget o Conta:lManagemenUava/sm
Feature Relationships © Class Method getSource [J] ContactManagementiava/s
R Feature Relationships © Class Method getRole [J] ContactManagementiava/s
Assigned Feature Expression o & x oo O o Ty . mc
Feature Relationships 4 Field role [J) ContactManagementjava/s *
[T] ContactManaaementiava/s
Bt

TECHNISCHE
-dri UNIVERSI
Feature-driven SPLE DRESDEN

Feature-driven SPLE Slide 29

Mapping-based Derivation of Transformations £
» Transformations in the solution space build the product
Mapping Model
Feature Model Solution Models
l FeatureB l | FeatureC |—’ \ . e —
¥
|
|
Variant Model ¥ <<in>> Variant
<<in>> L 31.3 MULTI-STAGE
FeatureB FeatureC of Tlgigf"/c;artrlggﬁons N FI U R TI N
= CO GURATIO
Feat-ureD D
TECHNISCHE ois U B TECHNISCHE
riven SPLE Slide 31 T UNIVERSITAT

DRESDEN

Feature-driven SPLE

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Prof. U. ABmann

Feature-driven SPLE

él) FEASIPLE: A Multi-Stage Process Architecture for PLE él) FEASIPLE: A Multi-Stage Process Architecture for PLE
> Chose one variant on each level > Goal: a staged MDSD-framework for PLE where each stage
> Feature Tree as input for the configuration of the model weavings produces the software artefacts used for the next stage
Y N)
B
== = -
. VSM
Variants \®< VSM Variants \<'D<
PIM V\é;b—oﬁ PIM
O— VP3C—— r_l
Platforms \M I PSM Flatiorms FsM
I\ 3 CTIM
CTIM V‘,ggEOf
/\ VP3O
Contexts \(-D/ CTSM Contexts \C‘D/ CTSM
- -
-
Product Product
Prof. U. ABmann Feature-driven SPLE 33 QE(I;‘;S‘EI}IE%?A% Prof. U. ABmann Feature-driven SPLE 34 QE?EQE,[:RIE%%E
\s\l) Advantages of FEASIPLE ¢ €|) Advantages of FEASIPLE ¢
» Characteristic feature 1: » Characteristic feature 2:
> Variability on each stage > Different modelling languages, component systems and
) /ﬁvm composition languages per stage
) S —
= o
- Y i e
ariants r_]
PIM Variants \G’>< -
VP1 <slot>>-® PIM
V\Iél;z Hi’ V\F/’;I O il <<slox>><-:lo @—<<hook>>
Platforms I PSM vpgo—.
| Platforms I PSM
CTIM 3
CTIM
A N o ey
Contexts \®/ CTSM VP3@— \C)/ S
Contexts + CTSM
-
Product
Product

TECHNISCHE
UNIVERSITAT
DRESDEN

él) Advantages of FEASIPLE ¢ sl) Advantages of FEASIPLE ¢
» Characteristic feature 3: » Characteristic feature 4:
» Different composition mechanisms per stage » Composition mechanisms are driven by variant selection
Y YN
() () VIM
VIM VP1O——
e - Y — i o=
Var — : [SM
Variants \®< [VSM Variants V
VP1 <<slot>>-® PIM V\lé;] O—i <<slol>><-<: |°l>>~0._«h“k» o
V\}{,gz .O <<slot>>—8 @—<<hook>> VP3 H r_\
Platforms W I PSM Platforms Y .-
= CTIM
vP1@ TT) CTIM P18 TT)
VP2 O— i ,/\ VP3@—— \()/ KSR
VP3@———
Contexts \G’)/ CTSM Contexts U CTSM
- J
Product Product
Prof. U. ABmann Feature-driven SPLE 37 éE‘I;\ZE:RIE%‘;I}A% Prof. U. ABmann Feature-driven SPLE 38 QE?E\Z%IE%CTﬁ
: . L . : i e > TraCo: A Framework for Safe Multi-Stage
: Multi-Staged Derivation of Transformations & s e : :
: @ 9 : : Composition of Transformations =

> How do we compose transformations? Between different stages? > TraCo encapsulates transformations into composable components

e Arranges them with composition programs of parallel and sequential transformation
steps (multi-threaded transformation

functional

Feature Model Variant Independent Model

Functional variant

[momTrafos |
g
! context L .
1 Feature Model Platform Independent Models Platform variant
N
[memTrafos |

Vi1 Feature Selection

|
i

i

H

E platform n M1 Ma }amg

! Feature Model | Platform Specific Models S A1 Solution ﬂrtefact
. /! T1 Transformation

M2C G fors

Context variant

| Platform Specific Code |

& vk et
Prof. U. ABmann Feature-driven SPLE Folie 39 DRESDEN Feature-driven SPLE Folie 40 DRESDEN

L) - - -
L) - - -
- - . - - . - - -
: Steps in Multi-Staged Derivation of Transformations = 5 Multi-Staged Derivation of Transformations =
L L] L] L]
1. Transformations are represented as composable components > Implemented in our tool TraCo
2. Definition and Composition of Transformation Steps
e A Composition System is needed (course CBSE): Allows for reuse of arbitrary existing transformation
techniques
3. Validation of each transformation and composition step
e Type-checking
e Invariant- and constraint-checking
& Ubrary.traco 53 =
e Correctness of port and parameter binding ﬁt;;m =
e Static and dynamic analysis = & ET————r—
- .an = 4 Library
2 Port Specification inout model : UML2 ouT
@ dend I pe
. [Component Specifcation Load UML2
Component instances—__ [e et vt soutonbiodel
@ | Component Specification Load Feature Model
@ [Component Specification Load Feature Mapping Model < VariantInstantiation
/ @ & Component Speciication PlatformInstantiation = ~
[Component Spedfcton Load ltforn tode solutionModal mappingModel O
Com ponent = [E Component Specification Class2Relational (ATL)
3 Port Specification in IN : UML2
5 Port Specifcation out OUT : Relational pim
3 Part Specification in bl
e e e R
@ [B Component Specification Nested Inner pim ol
4 Model Type Navigation psm
= 4 Model Type UML2
Adapter 4 Metamodel UM N
4 Model Type Feature Mapping Model
: bl store Model
E references & 4 Model Type Relational
Connecto rs Selection | Parent | List Tree Table Tree with Columns
Actual
Transformation Constant value
Code
TECHNISCHE TECHNISCHE
Feature-driven SPLE Slide 41 AT Prof. U. ABmann Feature-driven SPLE Slide 42 gy
Composition Programs can be Configured : . Loading) Pratorm :
. : Variability |-> Add EJB Semantics Variability :
Metacomposition) = | :
- Domain -

v v
> The composition program shown in the last slide can be subject to Actions Model o > UmLoe
transformation and composition Load Actons Wodel | P
] i oo

|
v

Load Domain Modell :I VIM to VSM I :I D°ma‘8,mf’de‘ to |——>| A;'r'(‘:;”eﬁise? |—>| UML to Java |

~Anything you can do, I do meta" (Charles Simonyi) | __ | |l ~ |_ |

i A

> If we build a product line with TraCo, platform variability can be Actions
realised by different transformation steps

Add EJB
Persistence
Semantics

> A TraCo composition program can be used with FeatureMapper

e Multi-Staged transformation steps > Delegate UNL I-' > WMbodaa
e Even of composition programs - - - -[ZA=EEIENLS sy o= e L L
Load
- O - o | ApplicationStat Attributes t
= - State | Model |¥ l Vi ovem l VI ,“;‘;ﬁ(‘snu,f,_e | ng“esfe: |_> R |
> More about metacomposition in CBSE course [I e -
Presentation
[swr
Ensure Control IDs |—> SWT User Interface | | ISP
User Interface Load Lser inerface i— ‘i VIM to VSM I:::,I_:T iness Logic
QO Java
I_l

—B| JsP Userinterface | | @ EJB

I (i E B |_ e _l I ey O In-Memory
Load igati » Navigation Model to .
| thei | | VIM to VSM | > e ‘ EJB Persistence
igati Mixed

[> EJB + In-Memory

| Navigation Model to .

> ISP D> B+ EsB Persistence BCHE

UNIVERSITAT BITAT

DRESDEN

i . . . : : Case Studies with FeatureMapper, TraCo, and =
H The final frontier: Ensuring Well-formedness of SPLs : H PPEr, ! :
. : : FEASIPLE :
> Motivation: Make sure that well-formedness of all participating » Simple Contact Management Application Software Product Line
models is ensured IR T Fackeg Expiore] = e FeatureMapper used to map features to UML2 model elements
e Feature Model PRI =T I e Both static and dynamic modelling
 Mapping Model (contectanagement/solition/FOSDO9S '
e Solution Models v %(F:::::I?:[o::"c.wanagemem > Simple Time Sheet Application Software Product Line
v &7 Group 0 e FeatureMapper used to tailor ISC composition programs
(®) Feature Addresses . o K i
» Well-formedness rules are descri © Feaure Relationships e ISC used as a universal variability mechanism in SPLE
(®) Feature ContactOpportunities ° Meta Transformation
(®) Feature Notes
. . v (® Feature Groups
> Constraints are enforced during r v £ Growp 0 - > SalesScenario Software Product Line
() Feature MultipleAssignmen
® Feature ArbitraryDepth e FeatureMapper used to tailor models expressed in Ecore-based DSLs
_ : e ure Synchetnisaton o was developed in project feasiPLe (http://www.feasiple.de)
[Solution Space View |] Associated Elements View &3\ = Properties ®
Feature Element Re! .
v Feature Flood - » TAOSD AOM Crisis Management System
/% Feature Flood =
Feature Flood =] <Property> handicap : HandicapKind [1..*] &)
Feature Flood « <Association> A_<rescueMission>_<rope> &)
Feature Flood =1 <Enumeration Literal> MENTAL &)
Feature Flood = <Enumeration Literal> SURD #)
Feature Flood =] <Class> HandicappedVictim #) org.featur .example.t
] Properties &3 B3 v =
Property Value
Constrained Features @ Feature MultipleAssignment, Feature Highrise
Expression = conflicts
Language = OwWL
TECHNISCHE TECHNISCHE
Prof. U. ABmann Feature-driven SPLE Slide 45 gglsvs%kssrrﬂ Prof. U. ABmann Feature-driven SPLE Slide 46 gg'EVSEDRES,F“
n - - -
H H = H
: Summary : £ The End =
> Configuration of product lines with mapping of feature models to
solution spaces
> Mapping of Features to models in Ecore-based languages
using FeatureMapper
> Visualisations of those mappings using MappingViews
e Realisation View
e Variant View wee 5
e Context View]
e Property-Changes View '
> Derivation of solution models based on variant selection‘an e
mapping ‘ [
> Multi-Staged derivation using TraCo
> Ensuring well-formedness of SPLs O«
lass > Group
=1/ <hssociation> Associationd
#[=] <Property> source : Group
http:/ /featuremapper.org =& <Property> target : Group [0..*]
017 <Literal Unlimited Matural=> *
10, <Literal Integer> 0
TECHNISCHE TECHNISCHE
Feature-driven SPLE Slide 47 . LA Prof. U. ABmann Feature-driven SPLE SR

