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@ Object-Oriented Analysis vs Object-Oriented Design

requirements
specification

textual
requirements
(stories)

context analysis
model model

domain
model

architectural design

detailed design
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Extended to Model-Driven Architecture (MDA)

> Horizontal product line: one product idea in several markets

requirements
specification

textual
requirements
(stories)

context analysis
model model

(CIM)

domain
model

Platform
independent
model

Platform-1
specific model

Platform-(1,.., n)
specific model
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Product Lines (Product Families)

requirements
specification

Feature
textual Model
requirements (varability
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él ) Adding Extensions to Abstract Models in the MDA

> In the following, we extend the MDA (below) with configuration

Platform independent
model (PIM)

'

Platform-1-specific
extension (PSE)

%

Model
weaving

]

~~

Platform-1 specific
model (PIM) extension (PSE)

Platform-2 specific

Sy @

Model
weaving

]

~~

Platform-(1+2) specific
model (PSM)
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@ Configuration of Variabilities in Vertical Product Lines
(MDA for Vertical Product Lines)

» Vertical product line: several products in one or several markets
» The VIM (variant independent model) is the common model of the product family

[ Domain Model )

[ Analysis Model )

]

Product Line Model
(Framework, VIM)

Configuration
With >
FeatureModel Product Design
Variants

weaving
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- Product PIM D]
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Configuration
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31.1 PRODUCT LINES
WITH FEATURE TREES
AND FEATURE MODELS




sl ) Feature Models for Product configuration

» Feature models are used to express
variability in Product Lines

> alternative,

» mandatory,

» optional features, and
» their relations

» A variant model represents a concrete product (variant)
from the product line

» The variant model results from a selection of a subgraph of the feature
model

» The variant model can be used to parameterize and drive the product
instantiation process
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Feature Models

> The Feature Tree Notation is derived from And-Or-Trees

Group of AND
Features

Group of '
Atematve (xoR) | | Mendatory || Optenal | | roupof
Features
FeatureA FeatureB FeatureC FeatureD

PhD Thesis, Czarnecki (1998)

based on FODA-Notation by Kang et al. (1990)
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@ Example

> Al or A2 or A3
> B1; B2 xor B3
> B4; optional B5

> B1; B7
A1 A2 A3
_
O
B1 B2 B3 B4 B5 B6 B7
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Ein Featuremodell for Computer-Aided
cognitive Rehabilitation

> [K. Lehmann-Siegemund, Diplomarbeit]
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@ Mapping Features to Model Fragments (Model Snippets)

» Bridging the gap between configuration and solution space

> Need for mapping of features from feature models to artefacts of
the solution space

» Possible artefacts
» Models defined in DSLs
» Model fragments (snippets)
» Architectural artefacts (components, connectors, aspects)

» Source code
> Files

» But how can we achieve the mapping... ?




% Plug-ins and Fragments

Plug-ins and Fragments

Select plug-ins and fragments that should be packaged in this feature.

Ex: Plugins have Features (in Eclipse)

Sorg.eclipse.core. filesystem.linux.ppc {1.0.100.v20030604-1400)
=3 orq.eclipse.core.filesystem. linux.x86 {1.2.0.v20080604-1400)
=3 orq.eclipse.core. filesystem. linux.x86_64 (1.0.100,v20030604-1400)
=3 orq.eclipse.core. filesystem.macosx {1.1.0.+20090112)

=3 orq.eclipse.core.filesystem,solaris.sparc (1.0.100,v20080604-1400)
=g org.eclipse.core. filesystem.win32.x86 (1.1.0.v20080604-1400)

=3 orq.eclipse.core.resources.win32.x36 (3.5.0.¥20081020)

=3 orq.eclipse.equinox.launcher.carbon.macosx (1.0.200,v20090520-1835)
=3 orq.eclipse.equinox.launcher .gtk.linux.ppc {1.0.200.v20090519)

=g org.eclipse.equinox.launcher.gtk.linux.x36 (1.0.200.+20090520)

=3 org.eclipse.equinox.launcher.gtk.linux.x86_64 (1.0.200,v20090519)
=g orq.eclipse.equinox.launcher.gtk.solaris.sparc (1.0.200,+20090519)
=3 orq.eclipse.equinox.launcher .win32.win32.x36 {1.0.200,v20090519)
=3 orq.eclipse.equinox.security.macosx {1.100.0,v20090520-1300)

=g org.eclipse.equinox.security. win32,x86 (1.0.100,v20090520-1800)
=3 org.eclipse.swt.carbon.macosx (3.5.0.+3550b)

=g orq.eclipse.swt.gtk.linux.ppc (3.5.0.v3550b)

=3 orq.eclipse.swt.gtk. linux.x36 (3.5.0.v3550b)

=3 orq.eclipse.swt.gtk.linux. x86_64 (3.5.0.v3550b)

=g org.eclipse.swt.gtk.solaris.sparc (3.5.0.v3550b)

=g org.eclipse.swt,win32.win32.x86 (3.5.0.+3550b)

=3 org.eclipse.ui.carbon (4.0.0,120090525-2000)

=g orqg.eclipse.ui.win32 (3.2.100,+v20090429-1800)

=3 orq.eclipse.update.core.linux {3.2.100,v20081008)

=3 org.eclipse.update.core.win32 (3.2.100,+20080107)

Add...

Versions...

Total: 25

Plug-in Details

Specify installation details for the selected plug-in.

MName: ‘

Version: | 1.0.100.v20080604-1400

|
|
Download Size (kB): { 0 }
|

Installation Size (kB): \ 0

[Junpack the plug-in archive after the installation

Specify environment combinations in which the selected plug-in can be installed. Leave blank if the plug-in
does not contain platform-specific code.

Operating Systems: | linux | |Browse... |
Window Systems: | | |Browse... |
Languages: ] | |Browse... |
Architecture: | ppc | |Browse... |

Overview | Information | Plug-ins | Included Features | Dependencies | Installation | Build | Feature.xml | build. properties

Lt




31.2 PRODUCT-LINE
CONFIGURATION WITH
FEATURE MODELS




@ Irreren

» Map all features to model fragments (model snippets)
» Compose them with a core model based on the presence of the

feature in the variant model

> Pros:

pproaches or Variant Selection

Additive approach

Core _)

Core

» conflicting variants can be modelled correctly

» strong per-feature decomposition
» Cons:
» traceability problems

» increased overhead in linking the different fragments
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@ Different Approaches of Variant Selection (2)
Subtractive approach

> Model all features in one model

> Remove elements based on absence of the feature in the variant

model

Core —

Core

» Pros:
» no need for redundant links between artifacts
» short cognitive distance

» Cons:
» conflicting variants can't be modelled correctly
» huge and inconcise models
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The Mapping Problem between Features and Solution
Elements

Problem Space

FeatureA

N

FeatureB FeatureC

Solution Space

[

AN

FeatureD FeatureE

:EJ e
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@ Mapping Features to Models

» FeatureMapper - a tool for mapping of feature models to modelling
artefacts developed at the ST Group

» Screencast and paper available at http://featuremapper.org

» Advantages:
» Explicit representation of mappings
» Configuration of large product lines from selection of variants in feature trees
» Customers understand
» Consistency of each product in the line is simple to check
» Model and code snippets can be traced to requirements




|
]
]
|
eatureiviap ¥
]
]
0o FeatureMapping - ContactManagement/solution/ClassDiagram.umldi - Eclipse - /Users/Florian/Documents/workspace2
g MappingView 2 = ) (e T _ =g
B X ’ ® ‘ = %% T | | & ¥ ||/ContactManagement/solution/ClassDiagram.umldi )
ContactManagement/mapping/ContactManagementApp ContactList m
<> Constraint OWL !
¥ () Feature ContactManagement +source '
v E£8Group 0 1| +list |
() Feature Addresses * target '
+targe
() Feature Relationships * ¢ '
. +target Group '
® Feature ContactOpportunities ‘
® Feature Notes X
v ® Feature Groups
=}
Vi Group 0 +source
(®) Feature MultipleAssignment +contacts +relationships
® Feature ArbitraryDepth 1
v . . 1 -
®:eﬁature Synchronisation pr—
v E-Group 1 Addiass 1 Contact Relationship
() Feature GMail +role
() Feature Highrise = dress +contact +source
() Feature MobilePhone T +relationships
Person Company
+forename
+surname
Current Expression kg (= =) ~
Fexturs Raixtiesships (g Solution Space View | g Associated Elements View $3 s
Feature Element Resource
Assigned Feature Expression @ L o X ¥ Feature Refationships . m
Feature Relationships / <Association> Association6 # ] ContactManagement/solution/ClassDiagram.uml|
Feature Addresses Feature Relationships ~/ <Association> Association7 ] ContactManagement/solution/ClassDiagram.uml
Feature Relationships Q <Class> Relationship G:] ContactManagement/solution/ClassDiagram.uml
Feature Relationships [=] <Property> role G:] ContactManagement/solution/ClassDiagram.uml ¢
- Y
b i HNISCHI




@ Mapping Features to Models

> We chose an explicit Mapping Representation in our tool
FeatureMapper

> Mappings are stored in a mapping model that is based on a
mapping metamodel

Feature Model Mapping Model Solution Models

|1 FeatureC » DO
FeatureA

A | Featurec | —» EQO
FeatureB FeatureC —» Q-
FeatureC | — ¥ F O\\M
FeatureD _ []

> |

y
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From Feature Mappings to Model Transformations

Feature Model

FeatureA

O

FeatureB

FeatureC

1

Variant Model ‘

FeatureA

O

FeatureB

FeatureC

s

FeatureD

e

:

Mapping
FeatureC D O
FeatureC — | Q

/__’G‘

FeatureD

FeatureC

o

Solution Models

——

T
f

N

Transformation

—1.
— [Pt

[]
Variant

=N

=

e
[




@ Visualisation of Mappings (1)

> Visualisations play a crucial role in Software Engineering
e It’s hard to impossible to understand a complex system unless you look at it from
different points of view
> In many cases, developers are interested only in a particular
aspect of the connection between a feature model and realising
artefacts
e How a particular feature is realised?
e Which features communicate or interact in their realisation?
e Which artefacts may be effectively used in a variant?

> Solution of the FeatureMapper: MappingViews, a visualisation
technique that provides four basic visualisations
e Realisation View
e Variant View
e (Context View
e Property-Changes View
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Realisation View

> For one Variant Model, the realisation in the solution space is

shown

Feature Model

System

AN

FeatureB Relationship

ContactL

ist

SOUrce

Mapping tar
— Group
Relationship | — o\\
Relationship —> N
|
get
Address ‘ Contact urce
Fname y
contact w +target
e ———————

Person
Fforename

Fsumame

Compan

[ [7[“ ~ +relationships

1.*

1”1

Relationship
+role

+relationships
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> The variant view shows different variant realisations (variant

models) in parallel

Feature Model

System

AN

Address Relationship

Mapping

Relationship

Relationship

ol

O-
O-

Address

|
|
- - .
|
arian IEW =
|
|
ContactList
+source .
1] +list
* Atarget
——Group.__ |
\
¢source
* +relationships
+taqu
1.7 Contact 1 +source 1.x Relationship
+name 1 +role
+address J +conNct +target 1.7
Person Company
+forename
+surname
@ INISCHI
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Context View

» The Context View draws the variants with different colors
Aspect-separation: each variant forms an aspect

Feature Model

System

Group 4 Group —>

Mapping

ContactList

+source

+arget

Group

Address

+target *
1 1 Contact
+name
+address  +contact

*| +contacts

1 +source

1
+target

Person

+forename
+surname

Company

+relationships

1.*

1.

Relationship

+role

+relationships

)




Feature Model

System

Arbitrary
Depth

Property-Changes View

Recorded change-set of

Mapping changing the cardinality of the

reflexive association of Group to
itself from 1 to many

Arbitrary

Depth —> O

Name Expression
= H ownedEnd Property source
H uppervalue Literal Unlimited Natural
H lowervalue Literal Integer
= E ownedEnd Property target
= E uppervalue Literal Unlimited MNatural
= = Property value
|
= H lowervalue Literal Integer
= = Property value
- 0 Arbitrary Depth

4
o 4
.

Q <Class> Group
=/ <hssociation> Associationd

&

=

(=] <Property > source : Group

(&l <Property = target : Group [0..*]
01% <literal Unlimited Naturals *
-10, <Literal Integer> 0




él ) Textual Languages Support (1)

> Unified handling of modelling languages and textual languages by
lifting textual languages to the modelling level with the help of
EMFText

> All >80 languages from the EMFText Syntax Zoo are supported,
including Java 5

> http://emftext.org

_emftext

concrete syntax mapper

) vk

CH|
1
A




]
|
|
]

extual Languages Suppor :
|
|
> Aspect-related color markup of the code
®NO FeatureMapping - ContactManagementjava/src/org/featuremapper/examples/contactmanagement/Contact.java - Eclipse Platform (D)
[ Project Explor | g MappingView 53 = O[5 *Contact.java 2 7 = 0|8z ¥ =0
Ge X | ® |E &0 T I| o v package org.featuremapper.examples.contactmanagement; ¥ [J] Compilation Unit
- “= Classifier Import
ContactManagementjava/mapping/ContactManage import java.util.linkedHashSet; _ Classifier Import
< Constraint OWL import java.util.Set; v ® Class Contact
¥ () Feature ContactManagement > 2 Field
v £8Group 0 public class Contact { Ield nalme
: : " b & Field relationships
®Feature Addresses prvate String name; i _ P
. . private Set<Relationship> relationships; » @ Constructor Contact
() Feature Relationships ) .
® Feature ContactOpportunities ) ) » @ Class Method addRelationship
public Contact(String name) { » @ Class Method toString
(® Feature Notes this.name = name;
¥ (£) Feature Groups his.relationships = new LinkedHashSet<Relationship>();
vE8Group 0 }
@ Feature MultipleAssignment
(®) Feature ArbitraryDepth public.void ad(liRela'.cionship(Rela{.:ionship relationship) {
v ® Feature Synchronisation this.relationships.add(relationship);
v £FGroup 1
(® Feature G.Mail‘ public String toString() {
() Feature Highrise final StringBuffer result = new StringBuffer();
() Feature MobilePhone result.append("Name: " 4+ name);
result.append("Relationships: " + relationships);
return result.toString();
}
_ 1
P Solution Space View ‘ (d Associated Elements View 53 . ©] Error Log =0
Feature Element Resource
Current Expression a4 ¥ Feature Relationships
F Relati bi Feature Relationships @ Class Method toString ContactManagementjava/s
eature Relationships Feature Relationships @ Class Method getTarget ContactManagementjava/s
Feature Relationships @ Class Method getSource ContactManagementjava/s
Assianed Feature Expression ‘ % Feature Relationships @ Class Method getRole ContactManagementjava/s
igne ure Ex io s Y
9 P et g Feature Relationships @ Constructor Relationship ContactManagementjava/s
Feature Relationships 4 Field role ContactManagementjava/s s
Feature Relationshins & Field source [T ContactManaaementlava/s |
(& o ] 14>
g VE
A - eg e-d A D = ) N RS
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Mapping-based Derivation of Transformations

> Transformations in the solution space build the product

Mapping Model
Feature Model / \ Solution Models

FeatureC » E ()/

FeatureB FeatureC i —> GO
>< FeatureC » F O‘
r K /
|
I .
Variant Model <<in>> Variant
—
FeatureA
e B|
HaH
<<in>> o <out>> —
FeatureB FeatureC SN Derivation SN
Of Transformations D H |
—
B
FeatureD \ j D




31.3 MULTI-STAGE
CONFIGURATION




@ FEASIPLE: A Multi-Stage Process Architecture for PLE

» Chose one variant on each level
» Feature Tree as input for the configuration of the model weavings

e 2

:_l
=t

Variants \®<

Platforms W

—

N
/% \ CTIM
& \@/ —/\7 —

VIM

VSM

PIM

PSM

Contexts
N J ¢

Product




@ FEASIPLE: A Multi-Stage Process Architecture for PLE

» Goal: a staged MDSD-framework for PLE where each stage

produces the software artefacts used for the next stage

g ) ! ) VIM
VP1 —N
VP2 OO _
VP30 =
Variants —r_ VSM
VP10 PIM
VP2 ()
VP3O [
Platforms PSM
CTIM
VP1
VP2 QO 4,
VP3O
Contexts CTSM
_ Y, \_ J

v

Product
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@ Advantages of FEASIPLE

> Characteristic feature 1:

» Variability on each stage
4 N

~

VIM

VP1
V|>2QO
P3

/
VP3@
Variants —r_
= -
VP2
VPBO.
Platforms
VP1@ 3 CTIM
VP2
e \‘G)/ S
CTSM
\_

VSM

PIM

PSM

Contexts
. ) J,

Product

_/
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> Characteristic feature 2:

Advantages of FEASIPLE

» Different modelling languages, component systems and
composition languages per stage

4 N\ 'z s
VP1
VP2 &)
VP3@
Variants \G>< - —
<<slot> PI M
V\F/)§1.O <<slot>>-oI ‘ >-.o-<<hool(>>
VP3O t'
Platforms I PSM
\ CTIM
VP1
VP2 o‘ TT’)
VP3@
Contexts CTSM
. J N

v

Product
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@ Advantages of FEASIPLE

» Characteristic feature 3:
» Different composition mechanisms per stage

r D ¢ ~

VIM
VP1
a
VP3@
Variants e VSM

PIM

\F/>g1 O <<slot>><-<:I°‘»-.o-<<hook>>
VP3O tl
Platforms I PSM
\ CTIM
VP1
VP2 o‘ TV
VP3@ 4 k / \
\@/ CTSM

Contexts
\_ J ¢ g /

Product




@ Advantages of FEASIPLE

» Characteristic feature 4:
» Composition mechanisms are driven by variant selection

e N e ~

VP1
V|>2QO
P3

VIM
b =
Variants \G')< _r— —

VP1 O <<slot>>—@ Pl M
VP2 @
VP3O

<<slot>>—@ o—<<hook>>
Platforms

I PSM
i 1

e !“ Tr’f CTIM

e \@/ CTSM

Contexts
. ) J’ S y

Product




Multi-Staged Derivation of Transformations

> How do we compose transformations? Between different stages?

<

o e e e e —— ——— = - —

_____________________

functional
Feature Model

_____________________

context
Feature Model

_____________________

platform
Feature Model

—— e = ===

v

v

Variant Independent Model

-

MZH#OS

Platform Independent Models

M2M Trafos

X7

Platform Specific Models

M2C G

7

D

nerators

Platform Specific Code
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@ TraCo: A Framework for Safe Multi-Stage
Composition of Transformations

> TraCo encapsulates transformations into composable components

e Arranges them with composition programs of parallel and sequential transformation
steps (multi-threaded transformation

Functional variant

Platform variant

V1 Feature Selection
M1 Mapping

SA1 Solution Artefact
T1 Transformation

Context variant
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Steps in Multi-Staged Derivation of Transformations

Transformations are represented as composable components

Definition and Composition of Transformation Steps

e A Composition System is needed (course CBSE): Allows for reuse of arbitrary existing transformation

techniques
Validation of each transformation and composition step
e Type-checking
e Invariant- and constraint-checking
e Correctness of port and parameter binding
e Static and dynamic analysis
Execution of composition program

/

Component

[ Adapter J

: references
v

Actual
Transformation
Code

Component instance

Connectors

T~

Constant value

IE




Multi-Staged Derivation of Transformations

> Implemented in our tool TraCo

L&) Library.traco 23 =08

) Resource Set

=] @ platform: fresourcefExampleApplicationfmodelfLibrary. traco

=4 Library
=] E Component Specification AssociationsToProperties
3 Port Specification inout model : UMLZ
4 Implementation de.tudresden.traco.components, AssociationsToProperties
[+ E Component Specification Load UMLZ
[+ E Component Specification Store Model
# E Component Specification YariantInstantiation
@ E Component Specification Load Feature Model
[+ E Component Specification Load Feature Mapping Model
[+ E Component Specification PlatformInstantiation
@ E Component Specification Load Platform Model
= E Component Specification ClassZRelational {ATL)
=3 Port Specification in IN : UML2
3 Port Specification out OUT : Relational
=3 Port Specification in bl
= Implementation de.tudresden.traco.adapter. atl. Atladapter
@, Implementation Parameter AtlFile
E Component Specification Nested Inner
<+ Model Type Navigation
<4 Model Type UMLZ
<4 Metamodel UML
< Model Type Feature Mapping Model
< Model Type Feature Model
< Primitive Type String
<4 Model Type Relational

[+

[

=+

Selection | Parent | List | Tree | Table | Tree with Columns

<+ Load UML2

ouT

solutionModel

variantModel  OUT]

<+ VariantInstantiation

=

<+ Load Feature Model

solutionModel

pim

(

mappingModel OUT]

4 Load Feature Mapping Model

< PlatformInstantiation

.

psm
IN

(

4 Load Platform Model

pirn ouT

< Store Model

IE




@ Composition Programs can be Configured
Metacomposition

+Anything you can do, I do meta" (Charles Simonyi)

» The composition program shown in the last slide can be subject to
transformation and composition

> If we build a product line with TraCo, platform variability can be
realised by different transformation steps

> A TraCo composition program can be used with FeatureMapper
e Multi-Staged transformation steps
e Even of composition programs

> More about metacomposition in CBSE course
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= TN\
|
1 Loading Functional Platform
: Variability |-> Add EJB Semantics Variability
. 7,
!
- . . Domain Model to Attributes to
Domain Load Domain Model P VIM to VSM P UML — Properties —P UML to Java
C)v I O
Actions Model to
—»|  Simplelmpl UML »  UMLfo Java
Load Acti Model VIM to VSM
oad Actions Mode P (o] OAt- — O
| > ctions Model to
SimpleDelegateUML > UML to Java
Actions _|
¢ ¢ [> Add EJB
Persistence
& P Semantics \[3
Actions to EJB UML \b[.\ I UML to Java
/Add Local Memory
O Semantics O
Actions to EJB
> Delegate UML IJI > UML to Java
Application ApplicI;act)iaoiState VIM to VSM p| ApplicationState | o) Aftrbutesto | o}y 1o Java
Model to UML Properties
State Model
| Presentation
WT
L O s
Ensure Control IDs |——p»| SWT User Interface I:I JSpP
Load User Interface s I > Business Logic
User Interface Model VIM to VSM g
3 O Java
|J 4 JSP User Interface O EB
Persistence
] <> In-Memory
Load Plavigation VIM to VSM p-| Navigation Modelto &) EJBPersistence
Navigation Mixed
0 D EJB + In-Memory
Navigation Model to .
> JSP D EJB + EJB Persistence
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The final frontier: Ensuring Well-formedness of SPLs

Motivation: Make sure that well-formedness of all participating

models is ensured (3 MappingView, £, 1% Package Explorer] =

e Feature Model EeX easnTtdl®
® Mapping MOdE| |ContactManagement/solution/FOSD09.featuremapping

. < Constraint OWL
e SOIUt|0n MOdeIS v (®) Feature ContactManagement

v £° Group 0
(F) Feature Addresses
Well-formedness rules are descri © Feawre Relationships
® Feature ContactOpportunities
(£) Feature Notes
. . v (® Feature Groups
Constraints are enforced during 1 v &% Group 0
(£) Feature MultipleAssignmen
(F) Feature ArbitraryDepth
v (£) Feature Synchronisation

= Properties} o8 ==

annot be displayed. Your computer may not have enoug
er, and then open the file again. If the red x still appea

1 Solution Space View

Feature Element Re!
v Feature Flood
/4, Feature Flood !'=

—.

Feature Flood =] <Property> handicap : HandicapKind [1..*] #)
Feature Flood E/ <Association> A_<rescueMission>_<rope> #)
Feature Flood = <Enumeration Literal> MENTAL &)
Feature Flood = <Enumeration Literal> SURD #)
Feature Flood ] <Class> HandicappedVictim #) org.featuremapper.example.!
£ Properties &3 E =
Property Value
Constrained Features (F) Feature MultipleAssignment, Feature Highrise
Expression I= conflicts
Language ‘= OWL
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@ Case Studies with FeatureMapper, TraCo, and
FEASIPLE

> Simple Contact Management Application Software Product Line
e FeatureMapper used to map features to UML2 model elements
e Both static and dynamic modelling

> Simple Time Sheet Application Software Product Line
e FeatureMapper used to tailor ISC composition programs
e ISC used as a universal variability mechanism in SPLE
e Meta Transformation

> SalesScenario Software Product Line
e FeatureMapper used to tailor models expressed in Ecore-based DSLs
e was developed in project feasiPLe (http://www.feasiple.de)

> TAOSD AOM Crisis Management System
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Summary

Configuration of product lines with mapping of feature models to

solution spaces

Mapping of Features to models in Ecore-based languages

using FeatureMapper

Visualisations of those mappings using MappingViews

e Realisation View

e Variant View

e (Context View

e Property-Changes View

Derivation of solution models based on variant selection’an

mapping
Multi-Staged derivation using TraCo
Ensuring well-formedness of SPLs

http:/ /featuremapper.org

Q <Class > Group
=/ <Association> Associationd
[#[=] <Property:> source : Group
== <Property: target : Group [0..%]
017 <literal Unlimited Natural> *
10, <Literal Integer= 0

+relationships

-* | _Relationship
+role

+relationships
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The End




