TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik, Institut fur Software- und Multimediatechnik, Lehrstuhl fir Softwaretechnologie

31) Feature Models and MDA for
Product Lines

1. Feature Models
2. Product Linie Configuration with Feature

Models
3. Multi-Stage Configuration

Prof. Dr. U. ABmann

Florian Heidenreich

Technische Universitat Dresden

Institut fur Software- und Multimediatechnik
Gruppe Softwaretechnologie

Version 12-0.2, January 23, 2013

él) Obligatory Literature

> Florian Heidenreich, Jan Kopcsek, and Christian Wende.
FeatureMapper: Mapping Features to Models. In Companion
Proceedings of the 30th International Conference on Software
Engineering (ICSE'08), Leipzig, Germany, May 2008.

e http://fheidenreich.de/work/files/ICSE08-FeatureMapper--Mapping-Features-to-
Models.pdf

CH|
1
A

D

>

>

[ABmMO03] U. ABmann. Invasive Software Composition. Springer, 2003.

[Cza05] K. Czarnecki and M. Antkiewicz. Mapping Features to Models: A

Template Approach Based on Superimposed Variants. In R. Gliick and M. Lowry,

editors, Proceedings of the 4th International Conference on Generative

Programmizg and Component Engineering (GPCE'05), volume 3676 of LNCS,

pages 422-437. Springer, 2005.

[Cza06] K. Czarnecki and K. Pietroszek. Verifying Feature-Based Model

Templates Against Well-Formedness OCL Constraints. In Proceedings of the 5th

International Conference on Generative Programming and Component
Engineering (GPCE'06), pages 211-220, New York, NY, USA, 2006. ACM.

[HeiO8a] F. Heidenreich, J. Kopcsek, and C. Wende. FeatureMapper: Mapping

Features to Models. In Companion Proceedings of the 30th International

Conference on Software Engineering (ICSE'Og), pages 943-944, New York, NY,

USA, May 2008. ACM.

[HeiO8b] Florian Heidenreich, Ilie Savga and Christian Wende. On Controlled
Visualisations in Software Product Line Engineering. In Proc. of the 2nd Int'l

Workshop on Visualisation in Software Product Line Engineering (ViSPLE

20083, collocated with the 12th Int'l Software Product Line Conference (SPLC

2008), Limerick, Ireland, September 2008.

[Hei09] Florian Heidenreich. Towards Systematic Ensuring Well-Formedness of

Software Product Lines. In Proceedings of the 1st Workshop on Feature-

Oriented Software Development (FOSD 2009) collocated with MODELS/GPCE/

SLE 2009. Denver, Colorado, USA, October 2009. ACM Press

References

Okt

CH|
1
A

@ Object-Oriented Analysis vs Object-Oriented Design

requirements
specification

textual
requirements
(stories)

context analysis
model model

domain
model

architectural design

detailed design

CH|
1
A

Extended to Model-Driven Architecture (MDA)

> Horizontal product line: one product idea in several markets

requirements
specification

textual
requirements
(stories)

context analysis
model model

(CIM)

domain
model

Platform
independent
model

Platform-1
specific model

Platform-(1,.., n)
specific model

CHNISCH
o-driven SP @ NIVERSITA
DR)

Product Lines (Product Families)

requirements
specification

Feature
textual Model
requirements (varability
(stories) model)

analysis
Mode

context
model

Product 2

Product 1

Product n

CH|
1
A

él) Adding Extensions to Abstract Models in the MDA

> In the following, we extend the MDA (below) with configuration

Platform independent
model (PIM)

'

Platform-1-specific
extension (PSE)

%

Model
weaving

]

~~

Platform-1 specific
model (PIM) extension (PSE)

Platform-2 specific

Sy @

Model
weaving

]

~~

Platform-(1+2) specific
model (PSM)

CH|
1
A

@ Configuration of Variabilities in Vertical Product Lines
(MDA for Vertical Product Lines)

» Vertical product line: several products in one or several markets
» The VIM (variant independent model) is the common model of the product family

[Domain Model)

[Analysis Model)

]

Product Line Model
(Framework, VIM)

Configuration
With >
FeatureModel Product Design
Variants

weaving

P
- Product PIM D]
PSM

Extensions

Configuration
With
FeatureModel

Model
weaving

CHNISCH
Product PSM)t

=

31.1 PRODUCT LINES
WITH FEATURE TREES
AND FEATURE MODELS

sl) Feature Models for Product configuration

» Feature models are used to express
variability in Product Lines

> alternative,

» mandatory,

» optional features, and
» their relations

» A variant model represents a concrete product (variant)
from the product line

» The variant model results from a selection of a subgraph of the feature
model

» The variant model can be used to parameterize and drive the product
instantiation process

CH|
1
A

D

Feature Models

> The Feature Tree Notation is derived from And-Or-Trees

Group of AND
Features

Group of '
Atematve (xoR) | | Mendatory || Optenal | | roupof
Features
FeatureA FeatureB FeatureC FeatureD

PhD Thesis, Czarnecki (1998)

based on FODA-Notation by Kang et al. (1990)

CHI

02

VERSITA

@ Example

> Al or A2 or A3
> B1; B2 xor B3
> B4; optional B5

> B1; B7
A1 A2 A3
_
O
B1 B2 B3 B4 B5 B6 B7

D

Ein Featuremodell for Computer-Aided
cognitive Rehabilitation

> [K. Lehmann-Siegemund, Diplomarbeit]

FM

%W .
k||3||e|ls CE cu NO NM
gE|lgz||1s|[tT|| T || A 1s||1T||gE|[gz|| T || A gellgzllis||T|| T || A | [gE|lgz||1S|[TT]|| T || A
[1-2] [1-2] [1-2] [1-2]
A/K
E S CE NO NM
[c1]
o] [c]
E Tllallislir| [s{T]] T A is||m|| T

[1-2]

[1-2]

CHI

02

VERSITA

@ Mapping Features to Model Fragments (Model Snippets)

» Bridging the gap between configuration and solution space

> Need for mapping of features from feature models to artefacts of
the solution space

» Possible artefacts
» Models defined in DSLs
» Model fragments (snippets)
» Architectural artefacts (components, connectors, aspects)

» Source code
> Files

» But how can we achieve the mapping... ?

% Plug-ins and Fragments

Plug-ins and Fragments

Select plug-ins and fragments that should be packaged in this feature.

Ex: Plugins have Features (in Eclipse)

Sorg.eclipse.core. filesystem.linux.ppc {1.0.100.v20030604-1400)
=3 orq.eclipse.core.filesystem. linux.x86 {1.2.0.v20080604-1400)
=3 orq.eclipse.core. filesystem. linux.x86_64 (1.0.100,v20030604-1400)
=3 orq.eclipse.core. filesystem.macosx {1.1.0.+20090112)

=3 orq.eclipse.core.filesystem,solaris.sparc (1.0.100,v20080604-1400)
=g org.eclipse.core. filesystem.win32.x86 (1.1.0.v20080604-1400)

=3 orq.eclipse.core.resources.win32.x36 (3.5.0.¥20081020)

=3 orq.eclipse.equinox.launcher.carbon.macosx (1.0.200,v20090520-1835)
=3 orq.eclipse.equinox.launcher .gtk.linux.ppc {1.0.200.v20090519)

=g org.eclipse.equinox.launcher.gtk.linux.x36 (1.0.200.+20090520)

=3 org.eclipse.equinox.launcher.gtk.linux.x86_64 (1.0.200,v20090519)
=g orq.eclipse.equinox.launcher.gtk.solaris.sparc (1.0.200,+20090519)
=3 orq.eclipse.equinox.launcher .win32.win32.x36 {1.0.200,v20090519)
=3 orq.eclipse.equinox.security.macosx {1.100.0,v20090520-1300)

=g org.eclipse.equinox.security. win32,x86 (1.0.100,v20090520-1800)
=3 org.eclipse.swt.carbon.macosx (3.5.0.+3550b)

=g orq.eclipse.swt.gtk.linux.ppc (3.5.0.v3550b)

=3 orq.eclipse.swt.gtk. linux.x36 (3.5.0.v3550b)

=3 orq.eclipse.swt.gtk.linux. x86_64 (3.5.0.v3550b)

=g org.eclipse.swt.gtk.solaris.sparc (3.5.0.v3550b)

=g org.eclipse.swt,win32.win32.x86 (3.5.0.+3550b)

=3 org.eclipse.ui.carbon (4.0.0,120090525-2000)

=g orqg.eclipse.ui.win32 (3.2.100,+v20090429-1800)

=3 orq.eclipse.update.core.linux {3.2.100,v20081008)

=3 org.eclipse.update.core.win32 (3.2.100,+20080107)

Add...

Versions...

Total: 25

Plug-in Details

Specify installation details for the selected plug-in.

MName: ‘

Version: | 1.0.100.v20080604-1400

|
|
Download Size (kB): { 0 }
|

Installation Size (kB): \ 0

[Junpack the plug-in archive after the installation

Specify environment combinations in which the selected plug-in can be installed. Leave blank if the plug-in
does not contain platform-specific code.

Operating Systems: | linux | |Browse... |
Window Systems: | | |Browse... |
Languages:] | |Browse... |
Architecture: | ppc | |Browse... |

Overview | Information | Plug-ins | Included Features | Dependencies | Installation | Build | Feature.xml | build. properties

Lt

31.2 PRODUCT-LINE
CONFIGURATION WITH
FEATURE MODELS

@ Irreren

» Map all features to model fragments (model snippets)
» Compose them with a core model based on the presence of the

feature in the variant model

> Pros:

pproaches or Variant Selection

Additive approach

Core _)

Core

» conflicting variants can be modelled correctly

» strong per-feature decomposition
» Cons:
» traceability problems

» increased overhead in linking the different fragments

CH|
1
A

@ Different Approaches of Variant Selection (2)
Subtractive approach

> Model all features in one model

> Remove elements based on absence of the feature in the variant

model

Core —

Core

» Pros:
» no need for redundant links between artifacts
» short cognitive distance

» Cons:
» conflicting variants can't be modelled correctly
» huge and inconcise models

CH|
1
A

D

The Mapping Problem between Features and Solution
Elements

Problem Space

FeatureA

N

FeatureB FeatureC

Solution Space

[

AN

FeatureD FeatureE

:EJ e

CH|
1
A

@ Mapping Features to Models

» FeatureMapper - a tool for mapping of feature models to modelling
artefacts developed at the ST Group

» Screencast and paper available at http://featuremapper.org

» Advantages:
» Explicit representation of mappings
» Configuration of large product lines from selection of variants in feature trees
» Customers understand
» Consistency of each product in the line is simple to check
» Model and code snippets can be traced to requirements

|
]
]
|
eatureiviap ¥
]
]
0o FeatureMapping - ContactManagement/solution/ClassDiagram.umldi - Eclipse - /Users/Florian/Documents/workspace2
g MappingView 2 =) (e T _ =g
B X ’ ® ‘ = %% T | | & ¥ ||/ContactManagement/solution/ClassDiagram.umldi)
ContactManagement/mapping/ContactManagementApp ContactList m
<> Constraint OWL !
¥ () Feature ContactManagement +source '
v E£8Group 0 1| +list |
() Feature Addresses * target '
+targe
() Feature Relationships * ¢ '
. +target Group '
® Feature ContactOpportunities ‘
® Feature Notes X
v ® Feature Groups
=}
Vi Group 0 +source
(®) Feature MultipleAssignment +contacts +relationships
® Feature ArbitraryDepth 1
v . . 1 -
®:eﬁature Synchronisation pr—
v E-Group 1 Addiass 1 Contact Relationship
() Feature GMail +role
() Feature Highrise = dress +contact +source
() Feature MobilePhone T +relationships
Person Company
+forename
+surname
Current Expression kg (= =) ~
Fexturs Raixtiesships (g Solution Space View | g Associated Elements View $3 s
Feature Element Resource
Assigned Feature Expression @ L o X ¥ Feature Refationships . m
Feature Relationships / <Association> Association6 #] ContactManagement/solution/ClassDiagram.uml|
Feature Addresses Feature Relationships ~/ <Association> Association7] ContactManagement/solution/ClassDiagram.uml
Feature Relationships Q <Class> Relationship G:] ContactManagement/solution/ClassDiagram.uml
Feature Relationships [=] <Property> role G:] ContactManagement/solution/ClassDiagram.uml ¢
- Y
b i HNISCHI

@ Mapping Features to Models

> We chose an explicit Mapping Representation in our tool
FeatureMapper

> Mappings are stored in a mapping model that is based on a
mapping metamodel

Feature Model Mapping Model Solution Models

|1 FeatureC » DO
FeatureA

A | Featurec | —» EQO
FeatureB FeatureC —» Q-
FeatureC | — ¥ F O\\M
FeatureD _ []

> |

y

D

From Feature Mappings to Model Transformations

Feature Model

FeatureA

O

FeatureB

FeatureC

1

Variant Model ‘

FeatureA

O

FeatureB

FeatureC

s

FeatureD

e

:

Mapping
FeatureC D O
FeatureC — | Q

/__’G‘

FeatureD

FeatureC

o

Solution Models

——

T
f

N

Transformation

—1.
— [Pt

[]
Variant

=N

=

e
[

@ Visualisation of Mappings (1)

> Visualisations play a crucial role in Software Engineering
e It’s hard to impossible to understand a complex system unless you look at it from
different points of view
> In many cases, developers are interested only in a particular
aspect of the connection between a feature model and realising
artefacts
e How a particular feature is realised?
e Which features communicate or interact in their realisation?
e Which artefacts may be effectively used in a variant?

> Solution of the FeatureMapper: MappingViews, a visualisation
technique that provides four basic visualisations
e Realisation View
e Variant View
e (Context View
e Property-Changes View

CH|
1
A

Realisation View

> For one Variant Model, the realisation in the solution space is

shown

Feature Model

System

AN

FeatureB Relationship

ContactL

ist

SOUrce

Mapping tar
— Group
Relationship | — o\\
Relationship —> N
|
get
Address ‘ Contact urce
Fname y
contact w +target
e ———————

Person
Fforename

Fsumame

Compan

[[7[“ ~ +relationships

1.*

1”1

Relationship
+role

+relationships

CH|
1
A

> The variant view shows different variant realisations (variant

models) in parallel

Feature Model

System

AN

Address Relationship

Mapping

Relationship

Relationship

ol

O-
O-

Address

|
|
- - .
|
arian IEW =
|
|
ContactList
+source .
1] +list
* Atarget
——Group.__ |
\
¢source
* +relationships
+taqu
1.7 Contact 1 +source 1.x Relationship
+name 1 +role
+address J +conNct +target 1.7
Person Company
+forename
+surname
@ INISCHI
DR

Context View

» The Context View draws the variants with different colors
Aspect-separation: each variant forms an aspect

Feature Model

System

Group 4 Group —>

Mapping

ContactList

+source

+arget

Group

Address

+target *
1 1 Contact
+name
+address +contact

*| +contacts

1 +source

1
+target

Person

+forename
+surname

Company

+relationships

1.*

1.

Relationship

+role

+relationships

)

Feature Model

System

Arbitrary
Depth

Property-Changes View

Recorded change-set of

Mapping changing the cardinality of the

reflexive association of Group to
itself from 1 to many

Arbitrary

Depth —> O

Name Expression
= H ownedEnd Property source
H uppervalue Literal Unlimited Natural
H lowervalue Literal Integer
= E ownedEnd Property target
= E uppervalue Literal Unlimited MNatural
= = Property value
|
= H lowervalue Literal Integer
= = Property value
- 0 Arbitrary Depth

4
o 4
.

Q <Class> Group
=/ <hssociation> Associationd

&

=

(=] <Property > source : Group

(&l <Property = target : Group [0..*]
01% <literal Unlimited Naturals *
-10, <Literal Integer> 0

él) Textual Languages Support (1)

> Unified handling of modelling languages and textual languages by
lifting textual languages to the modelling level with the help of
EMFText

> All >80 languages from the EMFText Syntax Zoo are supported,
including Java 5

> http://emftext.org

_emftext

concrete syntax mapper

) vk

CH|
1
A

]
|
|
]

extual Languages Suppor :
|
|
> Aspect-related color markup of the code
®NO FeatureMapping - ContactManagementjava/src/org/featuremapper/examples/contactmanagement/Contact.java - Eclipse Platform (D)
[Project Explor | g MappingView 53 = O[5 *Contact.java 2 7 = 0|8z ¥ =0
Ge X | ® |E &0 T I| o v package org.featuremapper.examples.contactmanagement; ¥ [J] Compilation Unit
- “= Classifier Import
ContactManagementjava/mapping/ContactManage import java.util.linkedHashSet; _ Classifier Import
< Constraint OWL import java.util.Set; v ® Class Contact
¥ () Feature ContactManagement > 2 Field
v £8Group 0 public class Contact { Ield nalme
: : " b & Field relationships
®Feature Addresses prvate String name; i _ P
. . private Set<Relationship> relationships; » @ Constructor Contact
() Feature Relationships) .
® Feature ContactOpportunities)) » @ Class Method addRelationship
public Contact(String name) { » @ Class Method toString
(® Feature Notes this.name = name;
¥ (£) Feature Groups his.relationships = new LinkedHashSet<Relationship>();
vE8Group 0 }
@ Feature MultipleAssignment
(®) Feature ArbitraryDepth public.void ad(liRela'.cionship(Rela{.:ionship relationship) {
v ® Feature Synchronisation this.relationships.add(relationship);
v £FGroup 1
(® Feature G.Mail‘ public String toString() {
() Feature Highrise final StringBuffer result = new StringBuffer();
() Feature MobilePhone result.append("Name: " 4+ name);
result.append("Relationships: " + relationships);
return result.toString();
}
_ 1
P Solution Space View ‘ (d Associated Elements View 53 . ©] Error Log =0
Feature Element Resource
Current Expression a4 ¥ Feature Relationships
F Relati bi Feature Relationships @ Class Method toString ContactManagementjava/s
eature Relationships Feature Relationships @ Class Method getTarget ContactManagementjava/s
Feature Relationships @ Class Method getSource ContactManagementjava/s
Assianed Feature Expression ‘ % Feature Relationships @ Class Method getRole ContactManagementjava/s
igne ure Ex io s Y
9 P et g Feature Relationships @ Constructor Relationship ContactManagementjava/s
Feature Relationships 4 Field role ContactManagementjava/s s
Feature Relationshins & Field source [T ContactManaaementlava/s |
(& o] 14>
g VE
A - eg e-d A D =) N RS

/I

Mapping-based Derivation of Transformations

> Transformations in the solution space build the product

Mapping Model
Feature Model / \ Solution Models

FeatureC » E ()/

FeatureB FeatureC i —> GO
>< FeatureC » F O‘
r K /
|
I .
Variant Model <<in>> Variant
—
FeatureA
e B|
HaH
<<in>> o <out>> —
FeatureB FeatureC SN Derivation SN
Of Transformations D H |
—
B
FeatureD \ j D

31.3 MULTI-STAGE
CONFIGURATION

@ FEASIPLE: A Multi-Stage Process Architecture for PLE

» Chose one variant on each level
» Feature Tree as input for the configuration of the model weavings

e 2

:_l
=t

Variants \®<

Platforms W

—

N
/% \ CTIM
& \@/ —/\7 —

VIM

VSM

PIM

PSM

Contexts
N J ¢

Product

@ FEASIPLE: A Multi-Stage Process Architecture for PLE

» Goal: a staged MDSD-framework for PLE where each stage

produces the software artefacts used for the next stage

g) !) VIM
VP1 —N
VP2 OO _
VP30 =
Variants —r_ VSM
VP10 PIM
VP2 ()
VP3O [
Platforms PSM
CTIM
VP1
VP2 QO 4,
VP3O
Contexts CTSM
_ Y, _ J

v

Product

CH|
1
A

@ Advantages of FEASIPLE

> Characteristic feature 1:

» Variability on each stage
4 N

~

VIM

VP1
V|>2QO
P3

/
VP3@
Variants —r_
= -
VP2
VPBO.
Platforms
VP1@ 3 CTIM
VP2
e \‘G)/ S
CTSM
_

VSM

PIM

PSM

Contexts
.) J,

Product

_/

D

> Characteristic feature 2:

Advantages of FEASIPLE

» Different modelling languages, component systems and
composition languages per stage

4 N\ 'z s
VP1
VP2 &)
VP3@
Variants \G>< - —
<<slot> PI M
V\F/)§1.O <<slot>>-oI ‘ >-.o-<<hool(>>
VP3O t'
Platforms I PSM
\ CTIM
VP1
VP2 o‘ TT’)
VP3@
Contexts CTSM
. J N

v

Product

CH|
1
A

@ Advantages of FEASIPLE

» Characteristic feature 3:
» Different composition mechanisms per stage

r D ¢ ~

VIM
VP1
a
VP3@
Variants e VSM

PIM

\F/>g1 O <<slot>><-<:I°‘»-.o-<<hook>>
VP3O tl
Platforms I PSM
\ CTIM
VP1
VP2 o‘ TV
VP3@ 4 k / \
\@/ CTSM

Contexts
_ J ¢ g /

Product

@ Advantages of FEASIPLE

» Characteristic feature 4:
» Composition mechanisms are driven by variant selection

e N e ~

VP1
V|>2QO
P3

VIM
b =
Variants \G')< _r— —

VP1 O <<slot>>—@ Pl M
VP2 @
VP3O

<<slot>>—@ o—<<hook>>
Platforms

I PSM
i 1

e !“ Tr’f CTIM

e \@/ CTSM

Contexts
.) J’ S y

Product

Multi-Staged Derivation of Transformations

> How do we compose transformations? Between different stages?

<

o e e e e —— ——— = - —

functional
Feature Model

context
Feature Model

platform
Feature Model

—— e = ===

v

v

Variant Independent Model

-

MZH#OS

Platform Independent Models

M2M Trafos

X7

Platform Specific Models

M2C G

7

D

nerators

Platform Specific Code

CH|
1
A

@ TraCo: A Framework for Safe Multi-Stage
Composition of Transformations

> TraCo encapsulates transformations into composable components

e Arranges them with composition programs of parallel and sequential transformation
steps (multi-threaded transformation

Functional variant

Platform variant

V1 Feature Selection
M1 Mapping

SA1 Solution Artefact
T1 Transformation

Context variant

Y

Steps in Multi-Staged Derivation of Transformations

Transformations are represented as composable components

Definition and Composition of Transformation Steps

e A Composition System is needed (course CBSE): Allows for reuse of arbitrary existing transformation

techniques
Validation of each transformation and composition step
e Type-checking
e Invariant- and constraint-checking
e Correctness of port and parameter binding
e Static and dynamic analysis
Execution of composition program

/

Component

[Adapter J

: references
v

Actual
Transformation
Code

Component instance

Connectors

T~

Constant value

IE

Multi-Staged Derivation of Transformations

> Implemented in our tool TraCo

L&) Library.traco 23 =08

) Resource Set

=] @ platform: fresourcefExampleApplicationfmodelfLibrary. traco

=4 Library
=] E Component Specification AssociationsToProperties
3 Port Specification inout model : UMLZ
4 Implementation de.tudresden.traco.components, AssociationsToProperties
[+ E Component Specification Load UMLZ
[+ E Component Specification Store Model
E Component Specification YariantInstantiation
@ E Component Specification Load Feature Model
[+ E Component Specification Load Feature Mapping Model
[+ E Component Specification PlatformInstantiation
@ E Component Specification Load Platform Model
= E Component Specification ClassZRelational {ATL)
=3 Port Specification in IN : UML2
3 Port Specification out OUT : Relational
=3 Port Specification in bl
= Implementation de.tudresden.traco.adapter. atl. Atladapter
@, Implementation Parameter AtlFile
E Component Specification Nested Inner
<+ Model Type Navigation
<4 Model Type UMLZ
<4 Metamodel UML
< Model Type Feature Mapping Model
< Model Type Feature Model
< Primitive Type String
<4 Model Type Relational

[+

[

=+

Selection | Parent | List | Tree | Table | Tree with Columns

<+ Load UML2

ouT

solutionModel

variantModel OUT]

<+ VariantInstantiation

=

<+ Load Feature Model

solutionModel

pim

(

mappingModel OUT]

4 Load Feature Mapping Model

< PlatformInstantiation

.

psm
IN

(

4 Load Platform Model

pirn ouT

< Store Model

IE

@ Composition Programs can be Configured
Metacomposition

+Anything you can do, I do meta" (Charles Simonyi)

» The composition program shown in the last slide can be subject to
transformation and composition

> If we build a product line with TraCo, platform variability can be
realised by different transformation steps

> A TraCo composition program can be used with FeatureMapper
e Multi-Staged transformation steps
e Even of composition programs

> More about metacomposition in CBSE course

CH|
1
A

= TN\
|
1 Loading Functional Platform
: Variability |-> Add EJB Semantics Variability
. 7,
!
- . . Domain Model to Attributes to
Domain Load Domain Model P VIM to VSM P UML — Properties —P UML to Java
C)v I O
Actions Model to
—»| Simplelmpl UML » UMLfo Java
Load Acti Model VIM to VSM
oad Actions Mode P (o] OAt- — O
| > ctions Model to
SimpleDelegateUML > UML to Java
Actions _|
¢ ¢ [> Add EJB
Persistence
& P Semantics \[3
Actions to EJB UML \b[.\ I UML to Java
/Add Local Memory
O Semantics O
Actions to EJB
> Delegate UML IJI > UML to Java
Application ApplicI;act)iaoiState VIM to VSM p| ApplicationState | o) Aftrbutesto | o}y 1o Java
Model to UML Properties
State Model
| Presentation
WT
L O s
Ensure Control IDs |——p»| SWT User Interface I:I JSpP
Load User Interface s I > Business Logic
User Interface Model VIM to VSM g
3 O Java
|J 4 JSP User Interface O EB
Persistence
] <> In-Memory
Load Plavigation VIM to VSM p-| Navigation Modelto &) EJBPersistence
Navigation Mixed
0 D EJB + In-Memory
Navigation Model to .
> JSP D EJB + EJB Persistence

UTU7

The final frontier: Ensuring Well-formedness of SPLs

Motivation: Make sure that well-formedness of all participating

models is ensured (3 MappingView, £, 1% Package Explorer] =

e Feature Model EeX easnTtdl®
® Mapping MOdE| |ContactManagement/solution/FOSD09.featuremapping

. < Constraint OWL
e SOIUt|0n MOdeIS v (®) Feature ContactManagement

v £° Group 0
(F) Feature Addresses
Well-formedness rules are descri © Feawre Relationships
® Feature ContactOpportunities
(£) Feature Notes
. . v (® Feature Groups
Constraints are enforced during 1 v &% Group 0
(£) Feature MultipleAssignmen
(F) Feature ArbitraryDepth
v (£) Feature Synchronisation

= Properties} o8 ==

annot be displayed. Your computer may not have enoug
er, and then open the file again. If the red x still appea

1 Solution Space View

Feature Element Re!
v Feature Flood
/4, Feature Flood !'=

—.

Feature Flood =] <Property> handicap : HandicapKind [1..*] #)
Feature Flood E/ <Association> A_<rescueMission>_<rope> #)
Feature Flood = <Enumeration Literal> MENTAL &)
Feature Flood = <Enumeration Literal> SURD #)
Feature Flood] <Class> HandicappedVictim #) org.featuremapper.example.!
£ Properties &3 E =
Property Value
Constrained Features (F) Feature MultipleAssignment, Feature Highrise
Expression I= conflicts
Language ‘= OWL

NE
e e-d o » de 4 @ \ RS
DR)

@ Case Studies with FeatureMapper, TraCo, and
FEASIPLE

> Simple Contact Management Application Software Product Line
e FeatureMapper used to map features to UML2 model elements
e Both static and dynamic modelling

> Simple Time Sheet Application Software Product Line
e FeatureMapper used to tailor ISC composition programs
e ISC used as a universal variability mechanism in SPLE
e Meta Transformation

> SalesScenario Software Product Line
e FeatureMapper used to tailor models expressed in Ecore-based DSLs
e was developed in project feasiPLe (http://www.feasiple.de)

> TAOSD AOM Crisis Management System

CH|
1
A

Y VYV

Summary

Configuration of product lines with mapping of feature models to

solution spaces

Mapping of Features to models in Ecore-based languages

using FeatureMapper

Visualisations of those mappings using MappingViews

e Realisation View

e Variant View

e (Context View

e Property-Changes View

Derivation of solution models based on variant selection’an

mapping
Multi-Staged derivation using TraCo
Ensuring well-formedness of SPLs

http:/ /featuremapper.org

Q <Class > Group
=/ <Association> Associationd
[#[=] <Property:> source : Group
== <Property: target : Group [0..%]
017 <literal Unlimited Natural> *
10, <Literal Integer= 0

+relationships

-* | _Relationship
+role

+relationships

CH|
1
A

The End

