Advertisement of PhD Positions in
Twente

PhD Projects

Prof. Uwe ABmann, Design Patterns and Frameworks

=

» 4 PhD positions in the Aselsan - University of Twente cooperation

framework

= The University of Twente (Enschede, the Netherlands) and Aselsan
(Ankara,Turkey) are seeking enthusiastic and creative Ph.D.
candidates of Turkish nationality, with an outstanding M.Sc. degree in
Computer Science (or an equivalent qualification) and/or Electrical
Engineering.

» Candidates should have thorough theoretical and practical

background in software engineering methods, software
architectures, programming languages and modeling techniques.
Depending on the projects (see the list below) applied to by the
candidate, knowledge in product line engineering, scheduling, event-
driven and service-oriented architectures, formal modeling
approaches and optimization techniques is favorable.

» See http://fmt.ewi.utwente.nl/projects/aselsan
» Please apply on or before 15 November 2013.

PhD Projects

2

Prof. Uwe ABmann, Design Patterns and Frameworks

=)

» Productline for Optimal Schedulers (PLOS): The project PLOS

proposes a productline architecture for designing optimal schedulers
for the digital receivers that takes care of application semantics in
scheduling, can cope with dynamically changing context, can deal
with variations in scheduling objectives, optimizes the scheduling
criteria and causes an acceptable overhead. The productline
approach enables to effectively reuse the basic building elements of
the scheduler asset base in different application settings.

Reuse of event-driven service-oriented architectures (RESA):
The project RESA aims at defining methods and techniques for
enhancing reuse of event-driven service-oriented signal processing
systems. To this aim, the project considers reuse with respect to new
software adaptation and evolution requirements together with time
performance requirements, since these two quality factors generally
conflict with each other. Also, optimization techniques will be
provided for the trade-off between these quality factors. Experiments
will be carried out using industrial examples.

Software Technology Group at the
University of Twente

Prof. Uwe ABmann, Design Patterns and Frameworks

&

Communication and verification of architecture design and its
rationale (CVAR): The project CVAR aims to define methods, techniques
and tools for specifying, communicating and verifying software systems
through the use of graphical notations. These notations have well-defined
semantics and can be analysed through simulating the dynamics of the
software models so that the software systems can be communicated easily
and the possible errors can be detected conveniently before extensive
programming effort is carried out. This project adopts design rationale
analysis and model checking techniques.

Runtime verification of protocols (RTVPRO): The RTVPRO projects
develops method, techniques and tools for the specification and verification
of dynamically configurable software systems (such as systems with
dynamically configured protocols) through the combined use of runtime
verification, runtime model-driven engineering, and model checking
techniques. In addition, this project develops techniques to check the
conformance of architecture models with respect to the actual execution of
software that it represents.

Prof. Uwe ABmann, Design Patterns and Frameworks

&

>

Prof. Dr. Mehmet Aksit, Chair Software Engineering, m.aksit@utwente.nl
= Mrs. Jeanette Rebel-de Boer, j.a.deboer@utwente.nl
= Ozgu Ozkése Erdogan, ASELSAN, REHIS Mission Software Manager,
ozkose@aselsan.com.tr.
Excellent research environment

Excellent carrier opportunity at Aselsan.

= The candidates will be employed by Aselsan and will be assigned to carry on the
Ph.D. program at University of Twente.

= After succesfully completing the Ph.D. degree, they will continue with working at
Aselsan.

Team work of Research & Industry. The faculty members, Aselsan and Ph.D.
candidates will cooperate to address complex industrial problems. Projects will be
carried out with Aselsan located in Ankara, Turkey. Frequent visits will be made to the
company to identify the relevant industrial issues and to validate the applicability of
the proposed solutions.

Turkish citizenship required

Applicants should mail an application letter indicating the project they are applying for
(see list above) with a clear motivation, a CV with a list of courses taken and projects
carried out previously, an electronic copy of the MSc thesis and of any publications,
and two references, to the above address.

Chapter 4
Simple Patterns for
Extensibility

)

Prof. Dr. U. ARmann

Chair for Software
Engineering

1)Recursive Extensibility
1)Object Recursion
2)Composite
3)Decorator
4)Chain of Responsibility
2)Flat Extension
1)Proxy
2)*-Bridge
3)Observer

Fakultat Informatik

Technische Universitat
Dresden

Version 13-1.2, 11/16/13

Design Patterns and Frameworks, © Prof. Uwe ABmann

Optional Literature

Literature (To Be Read)

Prof. Uwe ABmann, Design Patterns and Frameworks

=)

» On Composite, Visitor: T. Panas. Design Patterns, A
Quick Introduction. Paper in Design Pattern seminar, IDA,
2001. See home page of course.

» Gamma: Composite, Decorator, ChainOfResponsibility,
Bridge, Visitor, Observer, Proxy

» J. Smith, D. Stotts. Elemental Design Patterns. A Link
Between Architecture and Object Semantics. March 2002.
TRO02-011, Dpt. Of Computer Science, Univ. of North
Carolina at Chapel Hill, www.citeseer.org

Goal

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» Marko Rosenmiiller. Towards Flexible Feature
Composition: Static and Dynamic Binding in Software
Product Lines. PhD thesis, Fakultat fur Informatik, Otto-
von-Guericke-Universitat Magdeburg, June 2011.
http://wwwiti.cs.uni-
magdeburg.de/~rosenmue/publications/DissRosenmuell
er.pdf

» Marko Rosenmiiller, Norbert Siegmund, Sven Apel, and
Gunter Saake. Flexible Feature Binding in Software
Product Lines. Automated Software Engineering,
18(2):163-197, June 2011. http://wwwiti.cs.uni-
magdeburg.de/iti_db/publikationen/ps/auto/RSAS11.pdf

Prof. Uwe ABmann, Design Patterns and Frameworks

&

v

Understanding extensibility patterns

- ObjectRecursion vs TemplateMethod, Objectifier (and
Strategy)

- Decorator vs Proxy vs Composite vs ChainOfResponsibility
Parallel class hierarchies as implementation of facets

- Bridge

- Visitor

- Observer (EventBridge)
Understand facets as non-partitioned subset hierarchies

Layered frameworks as a means to structure large
systems, based on facets

v

v

v

] Static and Dynamic Extensibility

)

Design Patterns and Frameworks, © Prof. Uwe ABmann

Software Cocktail Mixers

11

Prof. Uwe ABmann, Design Patterns and Frameworks

&

Variability vs Extensibility

10

Qn Patterns and Frameworks

Prof. Uwe ABmal

=)

» Variability so far meant
- Static extensibility, e.g., new subclasses
- Often, dynamic exchangability (polymorphism)
- But not dynamic extensibility
» Now, we will turn to patterns that allow for dynamic
extensibility

- Most of these patterns contain a 1:n-aggregation that is
~qded at runtime

—

Binding a hook with
a hook value Extending a hook with o
another hook value

J 3.1 Recursive Extension

12

s) Design Patterns and Frameworks, © Prof. Uwe ABmann

] 3.1.1 Object Recursion Pattern

13

)

Design Patterns and Frameworks, © Prof. Uwe ABmann

Incentive

Object Recursion

14

Prof. Uwe ABmann, Design Patterns and Frameworks

=)

» Similar to the TemplateMethod, Objectifier and Strategy

» But now, we allow for recursion in the dependencies between the classes (going via
inheritance and aggregation)

» The aggregation can be 1:1 (lists, 1-Recursion) or 1:+ (trees, n-recursion), +:+ (dags or
graphs, n-recursion)

1or+
F > Handler <
childObject(s)
handleRequest()
preHandleRequest(Component)
postHandleRequest(Component)
|
1or+
Terminator Recurser
preHandleRequest()
handleRequest() handleRequest() 0--{----| for all g in childObject(s)
preHandleRequest(Component) g.handleRequest()
postHandleRequest(Component) postHandleRequest()

Object Recursion — Runtime Structure

15

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» ObjectRecursion is a simple (sub)pattern
- in which an abstract superclass specifies common
conditions for two kinds of subclasses, the Terminator and
the Recurser (a simple contract)
» Since both fulfil the common condition, they can be
treated uniformly under one interface of the abstract
superclass

16

Prof. Uwe ABmann, Design Patterns and Frameworks

» 1-ObjectRecursion creates » n-ObjectRecursion creates

lists trees, dags, and graphs
:Cons :Cons
\ :Cons
y
:Cons :Cons

<

<
(2]
o
7

/

The recursion allows for building up runtime nets

3.1.2 Composite

17

)

Design Patterns and Frameworks, © Prof. Uwe ABmann

Piece Lists in Production Data

Structure Composite

18

Prof. Uwe ABmann, Design Patterns and Frameworks

=)

» Composite can be seen as instance of n-ObjectRecursion

> Component

commonOperation()
preHandleRequest(Component)

postHandleRequest(Component) } Pseudo implementations

*

childObjects

add(Component)
remove(Component)

T

Composite

Leaf

commonOperation() ©-
add(Component)
remove(Component)
getType(int)

commonOperation() for all g in childObjects

g.commonOperation()

Purpose

19

Prof. Uwe ABmann, Design Patterns and Frameworks

&

abstract class CarPart {

int myCost;
abstract int calculateCost();

class ComposedCarPart extends CarPart {

int myCost = 5;

CarPart [] children; // here is the n-
recursion

int calculateCost() {
for (i = 0; i <= children.length; i++) {

curCost += children[i].calculateCost();

}

return curCost + myCost;
}
void addPart(CarPart c) {
children[children.length++] = ¢;

class Screw extends CarPart {
int myCost = 10;
int calculateCost() {
return myCost;
}
void addPart(CarPart c) {
/11 impossible, dont do anything

/1 application

int cost = carPart.calculateCost();

20

Prof. Uwe ABmann, Design Patterns and Frameworks

D)

» The Composite is older as ObjectRecursion, from GOF
- ObjectRecursion is a little more abstract
» As in ObjectRecursion, an abstract superclass specifies a
contract for two kinds of subclasses
- Since both fulfil the common condition, they can be treated
uniformly under one interface of the abstract superclass
» Good method for building up trees and iterating over them
- The iterator need not know whether it works on a leaf or
inner node. It can treat all nodes uniformly for
* |terator algorithms (map)
» Folding algorithms (folding a tree with a scalar function)
» The Composite's secret is whether a leaf or inner node is
worked on

» The Composite's secret is which subclass is worked on

Composite Run-Time Structure

Dynamic, Recursive Extensibility of
Composite

21

:Picture

e

:Picture

:Line

A

:Picture

:Line

:Rectangle

Prof. Uwe ABmann, Design Patterns and Frameworks

&

common operations: draw(), move(), delete(), scale()

<< intarface =

IComposable

<< intarfaca ==
ICompeeit 4 fCore)
]
I Composar)<J
1o Eition o ition
A'r’t\gﬂrﬂ :] Aumant
[Sore)

<< imarfaca ==
IComponant

CompositionE lemant

» Part/Whole hierarchies, e.g., nested graphic objects

:Rectangle

Camposar
[Sore)

Valua

(Core)

(L

Comp ’{;0 nElemant

Acle)

Compose

{LanguagaeFola)

alua
nguagaRcla)

RH
<
Cofmpesition
rgumant
nguagaAola) Q_\
=7 ’
Camposabla
% o

(Languagafola)

Box

[LanguageHala)

Hook
(Care)

CompesitionElema
[TimaRck)

nt

Compesition
Argumant
(TimeRale)

7

Composable

22

Prof. Uwe ABmann, Design Patterns and Frameworks

=)

» Due to the n-recursion, new children can always be added
into a composite node

» Whenever you have to program an extensible part of a
framework, consider Composite

» Problems:

- Pattern is hard to employ when it sits on top of a complex
inheritance hierarchy

* Then, use interfaces only or mixin-based inheritance (not
available in most languages)

Relations of Composite to Other
Programming Domains

24

Valua

]

;/

TimaAola

Box

Hock

Prof. Uwe ABmann, Design Patterns and Frameworks

Boxology AN
Box Hierarchy

» Composite pattern is the heart of functional
programming
- Because recursion is the heart of functional programming
- It has discovered many interesting algorithmic schemes
for the Composite:
* Functional skeletons (map, fold, partition, d&c, zip...)
» Barbed wire (homo- and other morphisms)
» The Composite is also the heart of attributed trees and
attribute grammars
- Ordered AG are constraint systems that generate
iterators and skeletons [CompilerConstruction]
» Adaptive Programming [Lieberherr] is a generalization of
Composite with Iterators [Component-Based Software
Engineering (CBSE)]

3.1.3 Decorator

25

...as a Variant of ObjectRecursion and
Composite

Decorator Pattern

26
» A Decorator is a skin (wrappers) of another object

= Core objects are in the end of a decorator chain
» Itis a 1-ObjectRecursion (i.e., a restricted Composite):

- Asubclass of a class that contains an object of the class as
child

- However, only one composite (i.e., a delegatee)
- Combines inheritance with aggregation

» Similar to ObjectRecursion and Composite, inheritance
from an abstract Handler class

mieed and the mimicin

Prof. Uwe ABmann, Design Patterns and Frameworks

Clent That defings.a.ggntract ferthremi
refe _class- . B:Decorator RealObject:
hidden ConcreteMimiced
hiddden] > Class

@ Design Patterns and Frameworks, © Prof. Uwe ABmann @

27 28

— 1 - 1
MimicedClass < Widget <
mimiced mimiced
mimicedOperation() draw()

w L

2 | g l |

2 | ConcreteMimicedClass Decorator S | 2 TextWidget WidgetDecorator o |

o o . mimicedOperation() o

§ mimicedOperation() preAction() % draw() draw()

8 postAction() | preAction(); 8

£ *| mimiced.mimicedOperation(); g mimiced.draw()

5 postAction(); £)

: : l

3 | | z I I

E’ ConcreteDecoratorA ConcreteDecoratorB g Frame Scrollbar

super.mimicedOperation(); super.draw(); . super.draw();
mimicedOperation() mimicedOperation(): additionalStuff(): drawFrame): *| - draw() draw(y drawScrollbar():
D gyreurreney
L)

Decorator for Persistent Objects

Purpose Decorator

Uwe ABmann, Design Patterns and Frameworks

rof

)

29 30 | » For extensible objects (i.e., decorating objects)
Record - 1 - Extension of new features at runtime
access() mimiced - Removal pOSSib'G
% » Instead of putting the extension into the inheritance
I l £ hierarchy
T ientR d PersistentD t g
kil e —— g - If that would become too complex
access) access(). . . . - If that is not possible since it is hidden in a library
mimiced.access() £
| t Library Library ~
| |] —y New Features =N
PersistentRead PersistentRecord £ Decorator with
OnlyRecord if (loaded()) load(); } New Feat
i (loaded()) load()f ~ — | access() AcCeSS() === - - super.access(); it ow realres
& super.access(); Iboc:jlx(e)an loaded() ggg:z:: Ir?m?)?jﬁide(c)j() if (modified()) dump(): 4
oa
load()
-
&
Variants of Decorators Decorator Layers
31 . . 32 :Client
» If only one extension is planned, the abstract superclass
Decorator can be saved; a concrete decorator is sufficient N
» Decorator family: If several decorators decorate a N ~_ —_—
P hierarchy, they can follow a common style and can be .
% exchan ge dto g ether % :DecoratorA1 :DecoratorA2 :DecoratorA3 :DecoratorA4
E ————————— New Features E v v ¥ ¥
g New Features g
k=) k=) :DecoratorB1 :DecoratorB2 :DecoratorB3 :DecoratorB4
S| o T el — — — — — — — T T New Features 8
E New Features E’
% ——————— New Features % Y ' Y .
. New Features & :Core1 :Core2 ::Core3 ::Core4

&

&

=)

Decorator Layers

3.1.3.1 Augmentor

g3 » Decorators can be arranged in layers
‘Layer and consistently exchanged from a
Management :Client LayerManagement [Rosenmuiller]
g :LayerA »(:DecoratorA1 :DecoratorA2 :DecoratorA3 »(:DecoratorA4
g
P
8 Y Y Y Y
& | ‘LayerB :DecoratorB1 :DecoratorB2 :DecoratorB3 »(:DecoratorB4
g
£
g l
[
3 y y 4 y
b
o
‘CoreLayer :Core1 :Core2 ::Core3 » :Core4

D
DI Augmentor - Structure Diagram

34

The Augmentor pattern is a Decorator
enriching the behavior of the recursive
method by assembling a return parameter, a
Collection.

Advantage: Collecting a collection, set, or
list of items from a carrier data structure can
be extended from outside

Design Patterns and Frameworks, © Prof. Uwe ARBmann

3.1.4 Chain of Responsibility

|| client
35 :
. 1
AugmentedClass B
augmentee
Collection augmentedOperation()
£ /\
o
3
o
£
<
w
2 I
g ConcreteAugmentedClass Augmentor
3
o
& | Collection Collection
7 . . ~ 1 - 1 .
& | augmentedOperation() augmentedOperation() [*+-._ | Collection newcol = preAction(); ,
= ~..] newcol += augmented.augmentedOperation();
] newcol += postAction();
5 return newcol;
<
: I I
2
E ConcreteAugmentorA ConcreteAugmentorB Collection newcol;
newcol += augmented.
Collection Collection . augn}entedo;tfr?tio?;);
. : . newcol += postAction();
@ augmentedOperation() augmentedOperation() return newcol:

36

Design Patterns and Frameworks, © Prof. Uwe ABmann

Chain of Responsibility

Structure for ChainOfResponsibility

)
7'l » Delegate an action to a list of delegatees that attemptto 38! » A Chain is recursing on the abstract super class, i.e.,
solve the problem one after the other - All classes in the inheritance tree know they hide some
- They delegate further on, down the chain (“daisy chain” other class (unlike the ObjectRecursion)
principle)
£ - No core object £ Successor
£ £ 1]
r g Y
§ % Client Worker
g g Work()
& ObjectStructure: g
: g '
g Client § | |
‘;; AWorker . A:ConcreteWorker B:ConcreteWorker % ConcreteWorker1 ConcreteWorker2
2 successor . & Work() Work()

&

Chains in Runtime Trees

successor

=)

Example ChainOfResponsibility
Help System for a GUI

39

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» Chains can also be parts of a tree
» Then, a chain is the path upward to the root of the tree

Text:Widget <

i

:Frame

:Frame

:Frame

f

:Scrollbar

:Scrollbar

:Scrollbar

40

nextWorker |\ loWorker ObjectStructure is a Tree of Help

Functions:
WorkOnHelpQuery()
P | :PrintButton :OKButton
5
3
E Application Widget nextWorke7 /,nextWorker
é [¥
& | :PrintDialog :StoreDialog
Z Dialog Button
S nextWorker nextWorker
8 WorkOnHelpQuery() by d
5 |
Ed showHelp()
o[] N yx
StoreDialog || PrintDialog | :Application
[1
OKButton PrintButton nextWorker

D)

Help System with Chain

ChainOfResponsibility - Applications

abstract class HelpWorker {

HelpWorker nextWorker; // here is the 1-
recursion

void workOnHelpQuery() {

if (nextWorker)
nextWorker.workOnHelpQuery();

} else {/* no help available */ }
}
class Widget extends HelpWorker {
// this class can contain fixing code
il
class Dialog extends Widget {
void workOnHelpQuery() {
help(); super.workOnHelpQuery();
}
}

class Application extends HelpWorker {}

class Button extends Widget {
bool haveHelpQuery;
void workOnHelpQuery() {
if (haveHelpQuery) {
help();
}else {
super.workOnHelpQuery();
}
}
}

/ application
button.workOnHelpQuery();

/ may end in the inheritance hierarchy up
in Widget, HelpWorker

/ dynamically in application object

Composite vs Decorator vs Chain

43
(A
mentor
ugmento Decorator
4 .
I but also different features
o
3
o
2 e)
g Common contract 1:1 successor relation
°
5 L ObjectRecursion runtime list
&
§
5 1:n successor relation
a runtime
g . tree/
£ | Composite graph
HIAN o
3
=}
i
& All methods in common Chain
- J

&

42

Prof. Uwe ABmann, Design Patterns and Frameworks

=)

» Realizes Dynamic Call.

- If the receiver of a message is not known compile-time, nor
at allocation time (polymorphism), but only dynamically

- Dynamic call is the key construct for service-oriented
architectures (SOA)

» Dynamic extensibility: if new receivers with new behavior
should be added at runtime

- Unforeseen dynamic extensions
- However, no mimiced object as in Decorator
» Anonymous communication
- If identity of receiver is unknown or not important
- If several receivers should work on a message

3.2. Flat Extensibility
3.2.1 Proxy

44

Design Patterns and Frameworks, © Prof. Uwe ABmann

Proxy

Proxy

45

Prof. Uwe ABmann, Design Patterns and Frameworks

» Hide the access to a real subject by a representant

> Subject

operation()

JAN

< ISubj 1

RealSubject reaioLblec Proxy
. . Oof---

operation() operation() .réaISub'ect.ogeration()

Object Structure:
:Client A:Proxy B:RealSubject
@ ref e— | realSubject— | ol successor
Proxy Variants

46

Prof. Uwe ABmann, Design Patterns and Frameworks

=)

» The proxy object is a representant of an object

- The Proxy is similar to Decorator, but it is not derived from
ObjectRecursion

- It extends flat: It has a direct pointer to the sister class, not
to the superclass

- It may collect all references to the represented object
(shadows it). Then, it is a facade object to the represented
object

» Consequence: chained proxies are not possible, a proxy
is one-and-only
» Clear difference to ChainOfResponsibility
- Decorator lies between Proxy and Chain.

Proxy — Other Implementations

47

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» Filter proxy (smart reference): executes additional actions,
when the object is accessed
- Protocol proxy: counts references (reference-counting garbage
collection
- or implements a synchronization protocol (e.g., reader/writer
protocols)
» Indirection proxy (facade proxy): assembles all references to
an object to make it replaceable
» Virtual proxy: creates expensive objects on demand
» Remote proxy: representant of a remote object
» Caching proxy: caches values which had been loaded from the
subject
- Remote
- Loading lazy on demand
» Protection proxy
- Firewall

48

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» Overloading of “->” access operation

- C++, Ada and other languages allow for overloading
access

- Then, a proxy can intervene, but is invisible
» Overloading access can be built in into the language
- There are languages that offer proxy objects
- Modula-3 offers SmartPointers
- Gilgul offers proxy objects

Proxy vs Decorator vs Chain

49
4 N\
Decorator
(2] (\
3
: s ~
g n sucessors
D Shadowing possible
© . . runtime list
g | 1:1 successor relation, 1:1 successor relation
2 |1 successor ’ Instance of ObjectRecursion
a _ Methods in common)
K- Aggregation to
a sister class
g | Proxy
PN J
B3
=}
B
o
Chain
_ J

&

Extensibility Pattern
m| "DimensionalClassHierarchies (*Bridge)

511 » A bridge with a collection

Template

h.hookMethod();

&

/I Implementation B :
foreach h in hookObjects
h.hookMethod();

hookObjects Hook
TemplateClass > HookClass
templateMethod() *
¢ add(hookObj) Of-_. hookMethod()
g remove(Obj) RIS
£ foreach h in hookObjects
E h.hookMethod()
§ Concrete
S MoreConcrete MoreConcrete Concrete HookClassB
5| TemplateA TemplateB HookClassA
g templateMethod(f° | | templateMethod(f hookMethod() hookMethod()
< T T
5 /I Implementation A i
£ | foreach h in hookObjects E

3.2.2 Star-Bridge (*-Bridge)

50

)

_

Design Patterns and Frameworks, © Prof. Uwe ARBmann

3.2.3 Observer — (Event

Bridge)

52

Design Patterns and Frameworks, © Prof. Uwe ABmann

Observer (Publisher/Subscriber,

Structure Observer

m| Event Bridge)
53 54 "I » Extension of Star-Bridge
Observer
Subject >| Observer
observers
register(Observer) update ()
% % unregister(Observey for all b in observers {
g % notify() O---1 b.update ()
g g ConcreteObserver
3 2 . Subject
e S | ConcreteSubject _].] ObserverState =
% § update () °© Subject.getState()
g 2 | getState() O, ObserverState
g > Notify on change 5 | setState() \
& i . SubjectState Difference to Star-Bridge: hierarchies are :
""" > Queries return SubjectState not completely independent; :
@ Subject @ Observer knows about Subject
Sequence Diagram Observer Observer Variants
)
55 ' » Update() does not transfer data, only an event s6 ‘| » Multiple subjects:

Prof. Uwe ABmann, Design Patterns and Frameworks

&

(anonymous communication possible)
» Observer pulls data out itself

- Due to pull of data, subject does not care nor know, which

aConcr ?%r\éjeeﬁ: are in

1

[=<

(<

[=<

oIveg subj ect |nd e den

oncre (10) ano oncre e
‘ register() JJ]

registen()

setState()

notif%)
=<

update 1()

getState() D

L3t

observer
server

Prof. Uwe ABmann, Design Patterns and Frameworks

&

- If there is more than one subject, send Subject as
Parameter of update(Subject s).

» Push model: subject sends data in notify()
* The default is the pull model: observer fetches data itself

» Change manager

Structure Data-Pushing-Observer

Sequence Diagram
Data-Push-Observer

57

Prof. Uwe ABmann, Design Patterns and Frameworks

» Subject pushes data or itself with update (Data)
» Pushing resembles Sink, if data is pushed iteratively
Subject >| PushObserver
observers
register(PushCallBack) update(Data)
unregister(PushCallBa] // push(Data)
Back) o1 for all b in observers {
notify(d:Data) b.update (d)
N
Concrete
PushObserver
ConcreteSubject update (Data) 0-4-{ do something with Daé‘
) SN ObserverState
— T --..] no permanent back link;
d:Data instead data is pushed

=

Observer - Applications

Prof. Uwe ABmann, Design Patterns and Frameworks

=)

» Update() transfers Data to Observer (push)

| :aConcreteSubject | | :aConcreteObserver | | :anotherConcreteObserver
1 < register()
< setState()

notif?)
<

update 1(d:Data)

update n(d:Data)

]

|

Observer with ChangeManager
(Mediator)

)
59 1 » Loose coupling in communication 60 "I » Mediator between subjects and observer:
» Dynamic change of communication S Subjoct e anager Observer | ooserver
. . . o register(Subject,Observer) update (Subject)
- Anonymous communication) Li‘i::;?gg:’gﬁ;‘fr?er); unregister(Subject,Observer
- Multi-cast and broadcast communication 2 | notify() o || manager MO0
. 5 L Subject-Observer-mappin
- Cascading communication if observers are chained & ; . s
(stacked) |
» Communication of core and observing aspect éjmanager.noﬁfyo | |
SimpleChangeManager DAGChangeManager

Prof. Uwe ABmann, Design Patterns and Frameworks

&

- Observers are a simple way to implement aspect-
orientation by hand

- If an abstraction has two aspects and one of them
depends on the other, the observer can implement the
aspect that listens and reacts on the core

manager.register(this,b)

Prof. Uwe ABmann, Desig

&

register(Subject,Observer)
unregister(Subject,Observer)

register(Subject,Observer)
unregister(Subject,Observer|

notify() Q

notify() o

for all s in Subjects
for all b in s.Observer
b.update (s)

mark all observers to be updated
update all marked observers

ChangeManager is also Called
Eventbus

Relations Extensibility Patterns

61

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» Basis of many interactive application frameworks
(Xwindows, Java AWT, Java InfoBus,)

Subject Subject Subject
 J \ l l J
EventBus (Mediator)
, ! Vo :
Observer Observer Observer
Summary

62

Unconstrained Patterns

Decorator

i

ObjectRecursion

Prof. Uwe ABmann, Design Patterns and Frame

DI

Composite

f
|

i

Proxy

Chain

\If XI

Visitor

l

Bridge 44—

$

unconsiraining

uncon<1;training

I
I
v

Recursive
T&H Pattern

The End

Framework Patterns
obeying T&H role
model

Dimensional
ClassHierarchies

Connection
T&H Pattern

'H"

63

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» Most often, extensibility patterns rely on ObjectRecursion
- An aggregation to the superclass
» This allows for constructing runtime nets: lists, sets, and
graphs
- And hence, for dynamic extension
- The common superclass ensures a common contract of all
objects in the runtime net
» Layered systems can be implemented with dimensional
class hierarchies (Bridges)
» Layered frameworks are product families for systems with
layered architectures

Prof. Uwe ABmann, Design Patterns and Frameworks

&

