
P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

1

Advertisement of PhD Positions in 
Twente

► 4 PhD positions in the Aselsan - University of Twente cooperation 
framework

■ The University of Twente (Enschede, the Netherlands) and Aselsan 
(Ankara,Turkey) are seeking enthusiastic and creative Ph.D. 
candidates of Turkish nationality, with an outstanding M.Sc. degree in 
Computer Science (or an equivalent qualification) and/or Electrical 
Engineering.

► Candidates should have thorough theoretical and practical 
background in software engineering methods, software 
architectures, programming languages and modeling techniques. 
Depending on the projects (see the list below) applied to by the 
candidate, knowledge in product line engineering, scheduling, event-
driven and service-oriented architectures, formal modeling 
approaches and optimization techniques is favorable.

► See http://fmt.ewi.utwente.nl/projects/aselsan 
► Please apply on or before 15 November 2013.

P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

2

PhD Projects

► Productline for Optimal Schedulers (PLOS): The project PLOS 
proposes a productline architecture for designing optimal schedulers 
for the digital receivers that takes care of application semantics in 
scheduling, can cope  with dynamically changing context, can deal 
with variations in scheduling objectives, optimizes the scheduling 
criteria and causes an acceptable overhead. The productline 
approach enables to effectively reuse the basic building elements of 
the scheduler asset base in different application settings.

► Reuse of event-driven service-oriented architectures (RESA): 
The project RESA aims at defining methods and techniques for 
enhancing reuse of event-driven service-oriented signal processing 
systems. To this aim, the project considers reuse with respect to new 
software adaptation and evolution requirements together with time 
performance requirements, since these two quality factors generally 
conflict with each other. Also,    optimization techniques will be 
provided for the trade-off between these quality factors. Experiments 
will be carried out using industrial examples.

P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

3

PhD Projects

► Communication and verification of architecture design and its 
rationale (CVAR): The project CVAR aims to define methods, techniques 
and tools for specifying, communicating and verifying software systems 
through the use of graphical notations. These notations have well-defined 
semantics and can be analysed through simulating the dynamics of the 
software models so that the software systems can be communicated easily 
and the possible errors can be detected conveniently before extensive 
programming effort is carried    out. This project adopts design rationale 
analysis and model checking techniques.

► Runtime verification of protocols (RTVPRO): The RTVPRO projects 
develops method, techniques and tools for the specification and verification 
of dynamically configurable software systems (such as systems with 
dynamically   configured protocols) through the combined use of runtime 
verification, runtime model-driven engineering, and model checking 
techniques. In addition, this project develops techniques to check the 
conformance of architecture models with respect to the actual execution of 
software that it   represents. P

ro
f. 

U
w

e 
A

ß
m

a
n

n,
 D

e
si

g
n  

P
a

tte
rn

s 
an

d
 F

ra
m

ew
or

k s

4

Software Technology Group at the 
University of Twente 

► Prof. Dr. Mehmet Akşit, Chair Software Engineering, m.aksit@utwente.nl
■ Mrs. Jeanette Rebel-de Boer, j.a.deboer@utwente.nl
■ Özgü Özköse Erdoğan, ASELSAN, REHİS Mission Software Manager, 

ozkose@aselsan.com.tr.

► Excellent research environment 

► Excellent carrier opportunity at Aselsan. 
■ The candidates will be employed by Aselsan and will be assigned to carry on the 

Ph.D. program at University  of Twente. 
■ After succesfully completing the Ph.D. degree, they will continue with working at 

Aselsan.

► Team work of Research & Industry. The faculty members, Aselsan and  Ph.D. 
candidates will cooperate to address complex industrial problems. Projects will be 
carried out with Aselsan located in Ankara,  Turkey. Frequent visits will be made to the 
company to identify the relevant industrial issues and to validate the applicability of 
the proposed   solutions.

► Turkish citizenship required

► Applicants should mail an application letter indicating the project they are applying for 
(see list above) with a clear motivation, a CV with a list of courses taken and projects 
carried out previously, an electronic copy of the MSc thesis and of any publications, 
and two references, to the above address.



Design Patterns and Frameworks, © Prof. Uwe Aßmann

5

Chapter 4
Simple Patterns for 
Extensibility  

Prof. Dr. U. Aßmann

Chair for Software 
Engineering

Fakultät Informatik

Technische Universität 
Dresden 

Version 13-1.2, 11/16/13

1)Recursive Extensibility

1)Object Recursion

2)Composite

3)Decorator

4)Chain of Responsibility

2)Flat Extension

1)Proxy

2)*-Bridge

3)Observer P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

6

Literature (To Be Read)

► On Composite, Visitor: T. Panas. Design Patterns, A 
Quick Introduction. Paper in Design Pattern seminar, IDA, 
2001. See home page of course. 

► Gamma: Composite, Decorator, ChainOfResponsibility, 
Bridge, Visitor, Observer, Proxy

► J. Smith, D. Stotts. Elemental Design Patterns. A Link 
Between Architecture and Object Semantics. March 2002. 
TR02-011, Dpt. Of Computer Science, Univ. of North 
Carolina at Chapel Hill, www.citeseer.org

P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

7

Optional Literature

► Marko Rosenmüller. Towards Flexible Feature 
Composition: Static and Dynamic Binding in Software 
Product Lines. PhD thesis, Fakultät für Informatik, Otto-
von-Guericke-Universität Magdeburg, June 2011. 
http://wwwiti.cs.uni-
magdeburg.de/~rosenmue/publications/DissRosenmuell
er.pdf

► Marko Rosenmüller, Norbert Siegmund, Sven Apel, and 
Gunter Saake. Flexible Feature Binding in Software 
Product Lines. Automated Software Engineering, 
18(2):163-197, June 2011. http://wwwiti.cs.uni-
magdeburg.de/iti_db/publikationen/ps/auto/RSAS11.pdf

P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

8

Goal

► Understanding extensibility patterns
– ObjectRecursion vs TemplateMethod, Objectifier (and 

Strategy)
– Decorator vs Proxy vs Composite vs ChainOfResponsibility

► Parallel class hierarchies as implementation of facets
– Bridge
– Visitor
– Observer (EventBridge)

► Understand facets as non-partitioned subset hierarchies
► Layered frameworks as a means to structure large 

systems, based on facets



Design Patterns and Frameworks, © Prof. Uwe Aßmann

9

Static and Dynamic Extensibility

P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

10

Variability vs Extensibility

► Variability so far meant 
– Static extensibility, e.g., new subclasses
– Often, dynamic exchangability (polymorphism)
– But not dynamic extensibility

► Now, we will turn to patterns that allow for dynamic 
extensibility

– Most of these patterns contain a 1:n-aggregation that is 
extended at runtime

Binding a hook with
a hook value Extending a hook with

another hook value

P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

11

Software Cocktail Mixers

Design Patterns and Frameworks, © Prof. Uwe Aßmann

12

3.1 Recursive Extension



Design Patterns and Frameworks, © Prof. Uwe Aßmann

13

3.1.1 Object Recursion Pattern

P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

14

Object Recursion

► Similar to the TemplateMethod, Objectifier and Strategy

► But now, we allow for recursion in the dependencies between the classes (going via 
inheritance and aggregation)

► The aggregation can be 1:1 (lists, 1-Recursion) or 1:+ (trees, n-recursion), +:+ (dags or 
graphs, n-recursion)

Handler

handleRequest()
preHandleRequest(Component)
postHandleRequest(Component)

Recurser

handleRequest()
preHandleRequest(Component)
postHandleRequest(Component)

Terminator

handleRequest()

Client
childObject(s)

preHandleRequest()
for all g in childObject(s)
    g.handleRequest()
postHandleRequest()

1 or +

1 or +

P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

15

Incentive

► ObjectRecursion is a simple (sub)pattern 
– in which an abstract superclass specifies common 

conditions for two kinds of subclasses, the Terminator and 
the Recurser (a simple contract)

► Since both fulfil the common condition, they can be 
treated uniformly under one interface of the abstract 
superclass

P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

16

Object Recursion – Runtime Structure

► 1-ObjectRecursion creates 
lists

:Cons

:Cons

:Nil

► n-ObjectRecursion creates 
trees, dags, and graphs

:Cons

:Cons

:Nil

:Cons

:Cons

:Nil

The recursion allows for building up runtime nets



Design Patterns and Frameworks, © Prof. Uwe Aßmann

17

3.1.2 Composite

P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

18

Structure Composite

Component

commonOperation()
preHandleRequest(Component)
postHandleRequest(Component)
add(Component)
remove(Component)

Composite

commonOperation()
add(Component)
remove(Component)
getType(int)

Leaf

commonOperation()

Client
childObjects

for all g in childObjects
    g.commonOperation()

} Pseudo implementations

*

► Composite can be seen as instance of n-ObjectRecursion

P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

19

Piece Lists in Production Data

abstract class CarPart {

    int myCost;     

    abstract int calculateCost();

}

class ComposedCarPart extends CarPart {

    int myCost = 5;

    CarPart [] children;  // here is the n-
recursion

    int calculateCost() {

       for (i = 0; i <= children.length; i++) {

         curCost += children[i].calculateCost();

      }

      return curCost + myCost;

    }

    void addPart(CarPart c) {

         children[children.length++] = c;

    }    

class Screw extends CarPart {

     int myCost = 10;

     int calculateCost() {

         return  myCost;

     }

    void addPart(CarPart c) {

          /// impossible, dont do anything

    }

}

// application

int cost = carPart.calculateCost();

P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

20

Purpose

► The Composite is older as ObjectRecursion, from GOF
– ObjectRecursion is a little more abstract

► As in ObjectRecursion, an abstract superclass specifies a 
contract for two kinds of subclasses

– Since both fulfil the common condition, they can be treated 
uniformly under one interface of the abstract superclass

► Good method for building up trees and iterating over them
– The iterator need not know whether it works on a  leaf or 

inner node. It can treat all nodes uniformly for
● Iterator algorithms (map)
● Folding algorithms (folding a tree with a scalar function)

► The Composite's secret is whether a leaf or inner node is 
worked on 

► The Composite's secret is which subclass is worked on 



P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

21

Composite Run-Time Structure

► Part/Whole hierarchies, e.g., nested graphic objects

:Picture

:Picture :Rectangle:Line

:Picture :Rectangle:Line

common operations: draw(), move(), delete(), scale()

P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

22

Dynamic, Recursive Extensibility of 
Composite
► Due to the n-recursion, new children can always be added 

into a composite node
► Whenever you have to program an extensible part of a 

framework, consider Composite
► Problems:

– Pattern is hard to employ when it sits on top of a complex 
inheritance hierarchy

● Then, use interfaces only or mixin-based inheritance (not 
available in most languages)

P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

23

P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

24

Relations of Composite to Other 
Programming Domains

► Composite pattern is the heart of functional 
programming

– Because recursion is the heart of functional programming
– It has discovered many interesting algorithmic schemes 

for the Composite:
● Functional skeletons (map, fold, partition, d&c, zip...)
● Barbed wire (homo- and other morphisms)

► The Composite is also the heart of attributed trees and 
attribute grammars

– Ordered AG are constraint systems that generate 
iterators and skeletons [CompilerConstruction]

► Adaptive Programming [Lieberherr] is a generalization of 
Composite with Iterators [Component-Based Software 
Engineering (CBSE)]



Design Patterns and Frameworks, © Prof. Uwe Aßmann

25

3.1.3 Decorator 

...as a Variant of ObjectRecursion and 
Composite

P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

26

Decorator Pattern

► A Decorator is a skin (wrappers) of another object
■ Core objects are in the end of a decorator chain

► It is a 1-ObjectRecursion (i.e., a restricted Composite):
– A subclass of a class that contains an object of the class as 

child
– However, only one composite (i.e., a delegatee)
– Combines inheritance with aggregation

► Similar to ObjectRecursion and Composite, inheritance 
from an abstract Handler class

– That defines a contract for the mimiced and the mimicing 
class

:Client

ref
A:Decorator

hidden
B:Decorator

hiddden

RealObject:
ConcreteMimiced
Class

P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

27

Decorator – Structure Diagram

MimicedClass

mimicedOperation()

ConcreteMimicedClass

mimicedOperation()

Decorator

mimicedOperation()
preAction()
postAction() preAction();

mimiced.mimicedOperation();
postAction();

mimiced

ConcreteDecoratorA

mimicedOperation()

ConcreteDecoratorB

mimicedOperation()

super.mimicedOperation();
additionalStuff():

1

P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

28

Decorator for Widgets

Widget

draw()

TextWidget WidgetDecorator

mimiced.draw()

mimiced

Frame

draw()

Scrollbar

draw()

draw()

draw()

super.draw();
drawScrollbar():super.draw();

drawFrame():

1



P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

29

Decorator for Persistent Objects

Record

access()

TransientRecord PersistentDecorator

mimiced.access()

mimiced

PersistentRead
OnlyRecord

PersistentRecord

access()

access()
boolean loaded()
boolean modified()
load()
dump()

access()

if (!loaded())  load();
super.access();
if (modified()) dump():

access()
boolean loaded()
load()

if (!loaded()) load();
super.access();

1

P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

30

Purpose Decorator

► For extensible objects (i.e., decorating objects)
– Extension of new features at runtime
– Removal possible

► Instead of putting the extension into the inheritance 
hierarchy

– If that would become too complex
– If that is not possible since it is hidden in a library

Library

New Features

Library

Decorator with 
New Features

P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

31

Variants of Decorators

► If only one extension is  planned, the abstract  superclass 
Decorator can be saved; a concrete decorator is sufficient

► Decorator family: If several decorators decorate a 
hierarchy, they can follow a common style and can be 
exchanged together

New Features

New Features

New Features

New Features

New Features

New Features

P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

32

Decorator Layers

:DecoratorA1 :DecoratorA2 :DecoratorA3 :DecoratorA4

:DecoratorB1 :DecoratorB2 :DecoratorB3 :DecoratorB4

:Core1 :Core2 ::Core3 ::Core4

:Client



P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

33

Decorator Layers

► Decorators can be arranged in layers 
and consistently exchanged from a 
LayerManagement [Rosenmüller]

:DecoratorA1 :DecoratorA2 :DecoratorA3 :DecoratorA4

:DecoratorB1 :DecoratorB2 :DecoratorB3 :DecoratorB4

:Core1 :Core2 ::Core3 ::Core4

:Client

:CoreLayer

:Layer
Management

:LayerA

:LayerB

Design Patterns and Frameworks, © Prof. Uwe Aßmann

34

3.1.3.1 Augmentor

The Augmentor pattern is a Decorator 
enriching the behavior of the recursive 
method by assembling a return parameter, a 
Collection.

Advantage: Collecting a collection, set, or 
list of items from a carrier data structure can 
be extended from outside 

P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

35

Augmentor – Structure Diagram

AugmentedClass

Collection augmentedOperation()

ConcreteAugmentedClass

Collection 
augmentedOperation()

Augmentor

Collection 
augmentedOperation() Collection newcol = preAction();

newcol += augmented.augmentedOperation();
newcol += postAction();
return newcol;

augmentee

ConcreteAugmentorA

Collection
augmentedOperation()

ConcreteAugmentorB

Collection
augmentedOperation()

1

Collection newcol;
newcol += augmented.
  augmentedOperation();
newcol += postAction();
return newcol;

Client

Design Patterns and Frameworks, © Prof. Uwe Aßmann

36

3.1.4 Chain of Responsibility



P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

37

Chain of Responsibility

► Delegate an action to a list of delegatees that attempt to 
solve the problem one after the other

– They delegate further on, down the chain (“daisy chain” 
principle)

– No core object

:Client

aWorker
A:ConcreteWorker

successor
B:ConcreteWorker

successor

ObjectStructure:

...

P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

38

Structure for ChainOfResponsibility

WorkerClient

Successor

ConcreteWorker1 ConcreteWorker2

Work() Work()

Work()

1

► A Chain is recursing on the abstract super class, i.e., 
– All classes in the inheritance tree know they hide some 

other class (unlike the ObjectRecursion)

P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

39

Chains in Runtime Trees

► Chains can also be parts of a tree
► Then, a chain is the path upward to the root of the tree

Text:Widget

:Frame :Frame:Frame

:Scrollbar :Scrollbar:Scrollbar

P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

40

Example ChainOfResponsibility
Help System for a GUI

HelpWorker
nextWorker

Application Widget

:PrintButton

nextWorker

:StoreDialog

nextWorker

:Application

nextWorker

ObjectStructure is a Tree of Help
Functions:

WorkOnHelpQuery()

Dialog Button

WorkOnHelpQuery()
showHelp()

:PrintDialog

nextWorker

:OKButton

nextWorker

OKButton PrintButton

StoreDialog PrintDialog



P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

41

Help System with Chain

abstract class HelpWorker {

    HelpWorker nextWorker;  // here is the 1-
recursion

     void workOnHelpQuery() {

     if (nextWorker)    
nextWorker.workOnHelpQuery();

     }  else { /* no help available */ }

}

class Widget extends HelpWorker {

     // this class can contain fixing code

}    

class Dialog extends Widget {

     void  workOnHelpQuery() {

       help(); super.workOnHelpQuery();

      }

}

class Application extends HelpWorker { ....}   

class Button extends Widget {

     bool haveHelpQuery;

     void workOnHelpQuery() {

       if (haveHelpQuery) {

           help();

      } else {

          super.workOnHelpQuery();

      }

    }

}

// application

button.workOnHelpQuery();

// may end in the inheritance hierarchy up 
in Widget, HelpWorker

// dynamically in application object

P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

42

ChainOfResponsibility - Applications

► Realizes Dynamic Call:
– If the receiver of a message is not known compile-time, nor 

at allocation time (polymorphism), but only dynamically
– Dynamic call is the key construct for service-oriented 

architectures (SOA)

► Dynamic extensibility: if new receivers with new behavior 
should be added at runtime

– Unforeseen dynamic extensions
– However, no mimiced object as in Decorator

► Anonymous communication
– If identity of receiver is unknown or not important
– If several receivers should work on a message

P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

43

Composite vs Decorator vs Chain

Common contract

 but also different features

All methods in common

1:n successor relation

1:1 successor relation

Decorator

Chain

Composite

runtime 
tree/
graph

runtime listObjectRecursion

Augmentor

Design Patterns and Frameworks, © Prof. Uwe Aßmann

44

3.2. Flat Extensibility
3.2.1 Proxy



P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

45

Proxy

Subject

operation()

Client

...
realSubject.operation()

RealSubject

operation()

Proxy

operation()

realSubject

► Hide the access to a real subject by a representant

:Client

ref

A:Proxy

realSubject

B:RealSubject

successor

Object Structure: 

P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

46

Proxy

► The proxy object is a representant of an object
– The Proxy is similar to Decorator, but it is not derived from 

ObjectRecursion
– It extends flat: It has a direct pointer to the sister class, not 

to the superclass
– It may collect all references to the represented object 

(shadows it). Then, it is a facade object to the represented 
object

► Consequence: chained proxies are not possible, a proxy 
is one-and-only

► Clear difference to ChainOfResponsibility
– Decorator lies between Proxy and Chain.

P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

47

Proxy Variants

► Filter proxy (smart reference): executes additional actions, 
when the object is accessed

– Protocol proxy: counts references (reference-counting garbage 
collection 

– or implements a synchronization protocol (e.g., reader/writer 
protocols)

► Indirection proxy (facade proxy):  assembles all references to 
an object to make it replaceable

► Virtual proxy: creates expensive objects on demand
► Remote proxy: representant of a remote object
► Caching proxy: caches values which had been loaded from the 

subject
– Remote
– Loading lazy on demand

► Protection proxy 
– Firewall

P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

48

Proxy – Other Implementations

► Overloading of “->” access operation
– C++, Ada and other languages allow for overloading 

access
– Then, a proxy can intervene, but is invisible

► Overloading access can be built in into the language
– There are languages that offer proxy objects
– Modula-3 offers SmartPointers
– Gilgul offers proxy objects



P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

49

Proxy vs Decorator vs Chain

Shadowing

Methods in common

1:1 successor relation,
1 successor

1:1 successor relation

Decorator

Chain

Proxy

runtime list

n sucessors 
possible

Instance of ObjectRecursion

Aggregation to 
sister class

Design Patterns and Frameworks, © Prof. Uwe Aßmann

50

3.2.2 Star-Bridge (*-Bridge)

P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

51

templateMethod()
add(hookObj)
remove(Obj)

Extensibility Pattern
*DimensionalClassHierarchies (*Bridge)

HookClass

hookMethod()

Concrete
HookClassA

hookMethod()

Concrete
HookClassB

hookMethod()

TemplateClass
hookObjects

MoreConcrete
TemplateA

templateMethod()

MoreConcrete
TemplateB

templateMethod()

// Implementation A
foreach h in hookObjects
  h.hookMethod();

// Implementation B
foreach h in hookObjects
  h.hookMethod();

Template Hook

► A bridge with a collection

*

foreach h in hookObjects 
   h.hookMethod()

Design Patterns and Frameworks, © Prof. Uwe Aßmann

52

3.2.3 Observer – (Event 
Bridge)



P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

53

Observer (Publisher/Subscriber, 
Event Bridge)

a=50%
b=30%
c=20%

Window

  a
 30
 30

 10
 20
 10

  b   c

 10

 60
 50
 80

  x
  y
  z

WindowWindow

 a  b  c

Subject

Observer

Notify on change

Queries 

P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

54

Structure Observer

Subject

register(Observer)
unregister(Observer)
notify()

Observer
observers

ConcreteSubject

getState()
setState()

update ()

ConcreteObserver

update ()

ObserverState

for all b in observers {
    b.update ()
} 

Subject
ObserverState =
     Subject.getState()

return SubjectState 
SubjectState Difference to Star-Bridge: hierarchies are 

not completely independent; 
Observer knows about Subject

*

► Extension of Star-Bridge

P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

55

Sequence Diagram Observer

aConcreteSubject aConcreteObserver anotherConcreteObserver

setState()

notify()

update n()

getState()

update 1()

getState()

register()

► Update() does not transfer data, only an event 
(anonymous communication possible)

► Observer pulls data out itself
– Due to pull of data, subject does not care nor know, which 

observers are involved: subject independent of observer

register()

P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

56

Observer Variants

► Multiple subjects:
– If there is more than one subject, send Subject as 

Parameter of update(Subject s).

► Push model: subject sends data in notify()
● The default is the pull model: observer fetches data itself

► Change manager



P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

57

Structure Data-Pushing-Observer

Subject

register(PushCallBack)
unregister(PushCallBack
  Back)
notify(d:Data)

PushObserver
observers

ConcreteSubject

update(Data)
// push(Data)

Concrete
PushObserver

update (Data)

ObserverState

for all b in observers {
    b.update (d)
} 

do something with Data

d:Data

*

► Subject pushes data or itself with update(Data)

► Pushing resembles Sink, if data is pushed iteratively

no permanent back link; 
instead data is pushed

P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

58 ► Update() transfers Data to Observer (push)

Sequence Diagram 
Data-Push-Observer

:aConcreteSubject :aConcreteObserver :anotherConcreteObserver

setState()

notify()

update n(d:Data)

update 1(d:Data)

register()

...

...

P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

59

Observer - Applications

► Loose coupling in communication
– Observers decide what happens

► Dynamic change of communication
– Anonymous communication
– Multi-cast and broadcast communication
– Cascading communication if observers are chained 

(stacked)

► Communication of core and observing aspect
– Observers are a simple way to implement aspect-

orientation by hand
– If an abstraction has two aspects and one of them 

depends on the other, the observer can implement the 
aspect that listens and reacts on the core

P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

60

Observer with ChangeManager 
(Mediator)

Subject

register(Observer)
unregister(Observer)
notify()

Observer
Observer

ChangeManager

register(Subject,Observer)
unregister(Subject,Observer)
notify()

Subject-Observer-mapping

update (Subject)

for all s in Subjects
    for all b in s.Observer
        b.update (s)

mark all observers to be updated
update  all marked observers 

manager.notify()

manager

Subjects

manager.register(this,b)

SimpleChangeManager

register(Subject,Observer)
unregister(Subject,Observer)
notify()

DAGChangeManager

register(Subject,Observer)
unregister(Subject,Observer)
notify()

* *

► Mediator between subjects and observer:
● May filter events, stop cascaded propagations



P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

61

ChangeManager is also Called 
Eventbus
► Basis of many interactive application frameworks 

(Xwindows, Java AWT, Java InfoBus, ....)

EventBus (Mediator)

Subject Subject Subject

Observer Observer Observer

P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

62

Relations Extensibility Patterns

ObjectRecursion

Composite

Dimensional
ClassHierarchies

Bridge
Decorator

unconstraining

Unconstrained Patterns

Framework Patterns
obeying T&H role
model

Chain

Proxy

Recursive
T&H Pattern

Connection
T&H Pattern

unconstraining

Visitor

Observer

*-Bridge

P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

63

Summary

► Most often, extensibility patterns rely on ObjectRecursion
– An aggregation to the superclass

► This allows for constructing runtime nets: lists, sets, and 
graphs

– And hence, for dynamic extension
– The common superclass ensures a common contract of all 

objects in the runtime net

► Layered systems can be implemented with dimensional 
class hierarchies (Bridges)

► Layered frameworks are product families for systems with 
layered architectures

P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

64

The End


