
Design Patterns and Frameworks, © Prof. Uwe Aßmann

1

5. Architectural Glue Patterns

Prof. Dr. U. Aßmann

Chair for Software Engineering

Faculty of Computer Science

Dresden University of
Technology

13-0.2, 11/16/13

1)Mismatch Problems

2)Adapter Pattern

3)Facade

4)Some variants of Adapter

5)Adapter Layers

6)Mediator

7)Repository Connector

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

2

Literature (To Be Read)

► D. Garlan, R. Allen, J. Ockerbloom. Architectural
mismatch – or why it is so hard to build systems out of
existing parts. Int. Conf. On Software Engineering (ICSE
95) http://citeseer.nj.nec.com/garland95architectural.html

► D. Garlan, R. Allen, J. Ockerbloom. Architectural
Mismatch: Why Reuse is Still So Hard. IEEE Software
26:4, July/August 2009, pp. 66-69. (! popular article,
reiterated..)

► GOF – Adapter, Mediator, Facade
► Non-mandatory:

– Mirko Stölzel. Entwurf und Implementierung der Integration
des Dresden OCL Toolkit in Fujaba. Großer Beleg. 2005.
Technische Universität Dresden, Fakultät Informatik,
Lehrstuhl für Softwaretechnologie

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

3

References

► The C++ main memory database OBST from Karlsruhe
– OBST Tutorial

http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.38.4966&rep=rep1&type=pdf

– OBST Overview

http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.38.2746&rep=rep1&type=pdf

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

4

Goal

► Understand architectural mismatch
► Understand design patterns that bridge architectural

mismatch

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

5

Architectural Mismatch

► Case study of Garlan, Allen, Ockerbloom 1995
► Building the architectural system Aesop

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

6

Architectural Mismatch

► Aesop was built out of 4 off-the-shelf components
– OBST: an object-oriented C++ database
– Interviews and Uniframe, a windowing toolkit
– Softbench, an event bus (event-based mediator)
– RPC interface generator of Mach (MIG)

► All subsystems written in C++ or C
► First version took 5 person years, and was still sluggish,

very large
► Problems can be characterized in terms of components

and connections

OBST

MIG Softbench

Interviews/Uniframe

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

7

Classification of
Different Assumptions of the COTS
► Different Assumptions about the component model

– Infrastructure
– Control model
– Data model

► Different assumptions about the connectors
– Protocols
– Data models

► Different assumptions about the global architectural
structure

► Different assumptions about the construction process

connectors

global architecture construction process

component model

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

8

Different Assumptions about the
Component Model
► A component model assembles information and

constraints about the nature of components
– Nature of interfaces
– Substitutability of components

► Here: Component Infrastructure, Control model, Data
model

► Different Assumptions about the Component
Infrastructure:

– Components assume that they should provide a certain
infrastructure, which the application does not need

– OBST provides many library functions for application
classes; Aesop needed only a fraction of those

► Components assume they have a certain infrastructure,
but it is not available

– Softbench assumed that all other components have access
to an X window server (for communication)

► More in “Component-Based Software Engineering”,
summer semester

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

9

Assumptions on Control Model

► COTS think differently in which components have the
main control

– Softbench, Interviews, and MIG have an ever-running
event loop inside

– They call applications with callbacks (observer pattern)

► However, they use different event loops:
– Softbench uses X window event loop
– MIG and Interviews have their own ones
– The event loops had to be reengineered, to fit to each

other

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

10

Assumptions on Data Model

► Different assumptions about the data
– Uniframe: hierarchical data model
– Manipulations only on a parent, never on a child
– However, the application needed that
– Decision: rebuild the data model from scratch, is cheaper

than modification

Design Patterns and Frameworks, © Prof. Uwe Aßmann

11

Assumptions about the
Connectors

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

12

Protocol Mismatch

► Softbench works asynchronously; which superimposes
concurrency to tools

– Softbench is a mediator between tools

► 2 kinds of interaction protocols
– Request/Reply (callback, observer): tool requests a

service, registers a callback routine, is called back by
Softbench

– Notify via Softbench

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

13

Protocol Mismatch

► Softbench works asynchronously; which superimposes
concurrency to tools, when messages of different tools
are crossing

SoftbenchTool 1 Tool 2 Tool 3

Request A

Reply A

Notify B

Notify B

Concurrency

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

14

Data Format Mismatch

► Components also have different assumptions what comes
over a channel (a connection).

– Softbench: Strings
– MIG: C data
– OBST: C++ data

► Requires translation components
– When accessing OBST, data must be translated all the

time
– This became a performance bottleneck

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

15

Assumptions about the Global
Architecture

► OBST
– Assumes a database-centered architecture (Repository

Style)
– Assumes independence of client tools
– And provides a transaction protocol per single tool, not per

combination of tools
– Doesn't help when tools have interactions

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

16

Assumptions about the Building
Process
► Assumptions about the library infrastructure
► Assumptions about a generic language (C++)
► Assumptions about a tool specific language
► Combination is fatal:

– Some component A may have other expectations on the
generated code of another component B as B itself

– Then, the developer has to patch the generated code of A
with patch scripts (another translation component)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

17

Proposed Solutions of [Garlan]

► Make all architectural assumptions explicit
– Problem: how to document or specify them?
– Many of the aforementioned problems are not formalized
– Implicit assumptions are a violation of the information

hiding principle, and hamper variability

► Make components more independent of each other
► Provide bridging technology

– For building language translation components (compiler
construction, compiler generators, XML technology)

► Distinguish architectural styles (architectural patterns)
explicitly

– Distinguish connectors explicitly

► Solution: design patterns serve all of these purposes

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

18

Usability of Extensibility Patterns

► All extensibility patterns can be used to treat architectural
mismatch

► Behavior adaptation
– ChainOfResponsibility as filter for objects, to adapt

behavior
– Proxy for translation between data formats
– Observer for additional behavior extension, listening to the

events of the subject
– Visitor for extension of a data structure hierarchy with new

algorithms

► Bridging data mismatch
– Decorator for wrapping, to adapt behavior, and to bridge

data mismatch, not for protocol mismatch
– Bridge for factoring designs on different platforms (making

abstraction and implementation components independent)

Design Patterns and Frameworks, © Prof. Uwe Aßmann

19

5.2 Adapter

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

20

Object Adapter

► An object adapter is a proxy that maps one interface to
another

– Or a protocol
– Or a data format

► An adapter cannot easily map control flow to each other
– Since it is passed once when entering the adapted class

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

21

Object Adapter

Goal

operation()

Client

AdaptedClass

specificOperation()

Adapter

operation()

adaptedObject.specificOperation()

adapted
Object

Decorator-like
inheritance

Adapted class does
not inherit from goal

► Object adapters use delegation

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

22

Example: Use of Legacy Systems:
Using External Class Library For Texts

GraficObject

frame()
createManipulator()

DrawingEditor

TextDisplay

largeness()

return text.largeness()

Linie

frame()
createManipulator()

Text

frame()
createManipulator()

return new TextManipulator

External Library

*

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

23

Adapters for COTS

► Adapters are often used to adapt components-off-the-
shelf (COTS) to applications

► For instance, an EJB-adapter allows for reuse of an
Enterprise Java Bean in an application

Serialization

EJBHome

Packaging

Metadata

HTML-Doku

EJBObject Handle

EJB-references

SessionBean

SessionContext

EntityBean
MessageBean

NamingContext

Transaction
Context

Client interface

Container-
component-
interface

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

24

.. contact EJBHome for EJB...

.. if not there, create EJBObject

EJB Adapter

EJBHome MetadataEJBObject Handle

Client interface

Bill

addItem(Item)
calculateSum()

BillingApplication
EJBHome

getBean()

OtherBill

addItem(Item)
calculateSum()

EJBBill

fetchBean()
addItem(Item)
calculateSum()

*

.. EJBObject = fetchBean();

.. addItem(EJBObject, Item)

.. EJBObject = fetchBean();

.. sum up (EJBObject)

EJBObject

EJBMetaData

EJBHandle

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

25

A Remark to Adapters in Component
Systems
► Component models define standard, unspecific interfaces

– E.g., EJBHome / EJBObject

► Classes usually define application-specific interfaces
► To increase reuse of classes, the Adapter pattern(s) can

be used to map the application-specific class interfaces to
the unspecific component interfaces

► Example:
– In the UNIX shell, all components obey to the pipe-filter

interfaces stdin, stdout, stderr (untyped channels or
streams of bytes)

– The functional parts of the components have to be mapped
by some adapter to the unspecific component interfaces.

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

26

Adapters and Decorators

► Similar to a decorator, an adapter inherits its interface
from the goal class

– but adapts the interface

► Hence, adapters can be inserted into inheritance
hierarchies later on

Library

New
Extensions

Library

Adapter with
New Features

Adapted
Class

Design Patterns and Frameworks, © Prof. Uwe Aßmann

27

5.3 Facade

● A facade is an object adapter that
hides a complete set of objects
(subsystem)

● Or: a proxy that hides a subsystem
● The facade has to map its own interface to

the interfaces of the hidden objects

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

28

Facade Hides a Subsystem

Abstract
Facade

operation()

Client

HiddenClass2

specificOperation()

Concrete
Facade

operation()

....
adaptedObject.specificOperation()
adaptedObject2.specificOperation()
....

adapted
Object2

HiddenClass1

specificOperation()

adapted
Object1

HiddenClass3

specificOperation()

adapted
Object3

....
adaptedObject.specificOperation()
adaptedObject2.specificOperation()
....

HiddenSubsystem

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

29

5.4 Class Adapter (Integrated
Adapter)

GoalClass

operation()

Client AdaptedClass

specificOperation()

Adapter

operation()

(Implementation)

specificOperation()

Can also be
interface

► Instead of delegation, class adapters use multiple
inheritance

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

30

2-Way Class Adapter
(Role Mediator)

GoalClass

operation()

Client AdaptedClass

specificOperation1()
specificOperation2()

Adapter

operation()
operation2()

(Implementation)

specificOperation1()
specificOperation2()

More than one goal class may exist.
Every goal class plays a role of the concrete object (see later).

GoalClass2

operation2()

specificOperation2()
specificOperation1()

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

31

2-Way Adapter for Coupling of Class
Hierarchies

SuperClass B

GoalClassB

operation2()

SubClass B

SuperClass A

SubClassA GoalClass A

operation()

Adapter

operation()
operation2()

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

32

2-Way Decorator and Adapter for
Coupling of Class Hierarchies

SuperClass B

GoalClassB

operation2()

SubClass B

SuperClass A

SubClassA GoalClass A

operation()

2WayAdapterDecorator

operation()
operation2()

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

33

Ex.: 2-Way Decorator and Adapter for
Coupling of Class Hierarchies

GenerationStrategy

StrategyAdapter

operation2()

Exhaustive

DataGenerator

TestDataGenerator GeneratorAdapter

operation()

GeneratorStrategy

operation()
operation2()

GeneratorStrategy can be
used to have several
strategies in a chain
of decorators

Design Patterns and Frameworks, © Prof. Uwe Aßmann

34

5.5 Adapter Layers
P

ro
f.

U
w

e
A

ß
m

a
n

n,
 D

e
si

g
n

P
a

tte
rn

s
an

d
 F

ra
m

ew
or

k s

35

Adapter Layer

► An Adapter Layer is a set of adapters hiding a sublayer
– Every layer has different interfaces (services) that are

mapped

► Similar to Decorator Layer, but with different interfaces or
protocols on each layer

Repository

AL2

AL1

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

36

Object Skin Layers

► An Object Skin Layer is a stack of adapter layers in
which the adapters vertically form a subject (complex
object)

– Every layer has different interfaces (services) that are
mapped, but within the object

Repository

AL2

AL1

Design Patterns and Frameworks, © Prof. Uwe Aßmann

37

5.6 Mediator (Broker)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

38

Mediator (Broker)

► A mediator is an n-way proxy for communication
– Combined with a Bridge

► A mediator serves for
– Anonymous communication
– Dynamic communication nets

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

39

Mediator

ColleagueMediator
mediator

ConcreteMediator ConcreteColleague1 ConcreteColleague2

AColleague

Mediator

AConcreteMediator AColleague

 Mediator

Typical Object Structure:

AColleague

 Mediator

AColleague

Mediator

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

40

Mediator As n-Proxy and Bridge

Colleague MediatorMediator

ConcreteMediatorConcreteColleague1 ConcreteColleague2

AColleague

Mediator

AConcreteMediator AColleague

 Mediator

Proxy Object

AColleague

 Mediator

AColleague

Mediator

Proxy Class

Abstraction
of Service

Realization of
Service

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

41

Intent of Mediator

► Proxy object hides all communication partners
– Every partner uses the mediator object as proxy
– Clear: real partner is hidden

► Bridge links both communication partners
– Both mediator and partner hierarchies can be varied

► ObserverWithChangeManager combines Observer with
Mediator

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

42

Web Service Brokers

WebServiceWebServiceMediator
mediator

Google HotelBooking

buy()
query(WebService)

ConcreteServiceMediator

buy()
query(Widget)

search()

query() mediator.query(this)

google

hotel

search()
reserve()
buy()

► Communication between Web services can be mediated
via a broker object (aka object request broker, ORB)

Design Patterns and Frameworks, © Prof. Uwe Aßmann

43

5.7 Coupling Tools with
the Repository Connector Pattern

A recent answer...

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

44

Coupling of Tools via Repositories

► How can two tools collaborate that did not know of each
other?

► Answer: by coupling their repositories
– Choose a master and a slave tool
– Choose a master repository
– Shadow the master repository in the slave repository

► Consequence: all data lies in slave repository, and can be
worked on by slave and master

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

45

MasterRepository

Coupling of Repositories with
“RepositoryConnector”
► [Stölzel 2005] connects two repositories of tools with lazy

indirection proxies

RealClass

getRefdObj()

ShadowClass

refdObj

if (refdObj == null) {
 allocate refdObj in
 slave repository;
}
return refdObj;

SlaveRepository

0..1

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

46

MasterRepository

Coupling of Repositories with
“RepositoryConnector”
► On demand, objects of real classes in the master

repository are created in the slave repository
► Service demands on the master repository are always

delegated to the slave repository

a':RealA

getRefdObj()

a:ShadowA
refdObj

SlaveRepository

getRefdObj()

b:ShadowB b':RealB<<create-on-demand>>

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

47

Summary

► Architectural mismatch between components and tools
consists of different assumptions about components,
connections, architecture, and building procedure

► Design patterns, such as extensibility patterns or
communication patterns, can bridge architectural
mismatches

– Data mismatch
– Interface mismatch
– Protocol mismatch

► Coupling two tools that had not been foreseen for each
other is possible with lazy indirection proxies
(RepositoryConnector)

► With Glue Patterns, reuse of COTS becomes much better

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

48

The End

