
Design Patterns and Frameworks, © Prof. Uwe Aßmann

1

11. Design Patterns as Role
Models

Prof. Dr. U. Aßmann

Chair for Software
Engineering

Faculty of Informatics

Dresden University of
Technology

Version 13-1.1 12/2/13

1) Design Patterns as Role Models

2) Composition of Design Patterns
with Role Models

3) Effects of Role Modeling in
Frameworks

4) Optimization of Design Patterns

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

2

Literature (To Be Read)

► D. Riehle, T. Gross. Role Model Based Framework Design and
Integration. Proc. 1998 Conf. On Object-oriented Programing
Systems, Languages, and Applications (OOPSLA 98) ACM
Press, 1998. http://citeseer.ist.psu.edu/riehle98role.html

► Dirk Riehle. Bureaucracy. In Robert Martin, Dirk Riehle, and
Frank Buschmann, editors, Pattern Languages of Program
Design 3, pages 163-185. Addison Wesley, 1998.

■ http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.33.2034

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

3

Other Literature

► Walter Zimmer. Relationships Between Design Patterns.
Pattern Languages of Program Design 1 (PLOP), Addison-
Wesley 1994

► T. Reenskaug, P. Wold, O. A. Lehne. Working with objects.
Manning publishers.

– The OOram Method, introducing role-based design, role
models and many other things. A wisdom book for design. Out
of print. Preversion available on the internet at
http://heim.ifi.uio.no/~trygver/documents/book11d.pdf

– Same age as Gamma, but much farer..

► H. Allert, P. Dolog, W. Nejdl, W. Siberski, F. Steimann. Role-
Oriented Models for Hypermedia Construction – Conceptual
Modelling for the Semantic Web. citeseer.org.

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

4

Other Literature

► B. Woolf. The Object Recursion Pattern. In N. Harrison, B.
Foote, H. Rohnert (ed.), Pattern Languages of Program Design
4 (PLOP), Addison-Wesley 1998.

► Walter Zimmer. Relationships Between Design Patterns.
Pattern Languages of Program Design 1 (PLOP), Addison-
Wesley 1994

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

5

Goal

► Understand design patterns as role models, merged into class
models

► Understand composite design patterns
– Understand how to mine composite design patterns

► Understand role types as semantically non-rigid founded types
► Understand layered frameworks as role models
► Understand how to optimize layered frameworks and design

patterns

Design Patterns and Frameworks, © Prof. Uwe Aßmann

6

11.1 Design Patterns as Role
Diagrams

... more info...

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

7

Design Patterns have Role Models

► Observer role model

Subject
(FigureObserver)

0..*Observer
(FigureObserver) 0..*

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

8

Structure Diagrams of DP are Role
Diagrams

► The “participant” section of a GOF pattern is a role model
► Roles of Chain of Responsibility:

– Chain: (successor, predecessor)
– ChainUse: (Handler, HandlerClient, Tail, TailClient)

Handler
(ChainUse)

Tail
(ChainUse)

Predecessor
(Chain)

Successor
(Chain)

HandlerClient
(ChainUse)

TailClient
(ChainUse)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

9

Role Diagram of Composite

► Root role is not in the standard pattern description
► Attention: role models are not standardized – it depends on the

designer what she wants to model! (many variants of a role
model for a design pattern may exist). Here: Root, Terminator,
clients optional

Node

Root

ChildParent

NodeClient

RootClient

 *
children

parent

Terminator P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

10

Composing (Overlaying) Role Models

► Overlaying the FigureHierarchy with the FigureObserver role
model by role biimplication

Figure
(FigureHierarchy)

Root
(FigureHierarchy)

Child
(Figure Hierarchy)

Parent
(Figure Hierarchy)

0..*

FigureClient
(FigureHierarchy)

RootClient
(FigureHierarchy)

Subject
(FigureObserver)

0..*Observer
(FigureObserver) 0..*

 *
children

parent

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

11

Core Role Diagrams of Several Patterns

► Many of them are quite similar

Colleague

ObserverSubject

Mediator

observers

mediator

colleague

subject

ProxyRealSubject
realSubject

DecoratorDecorated
decorated

*

*

AdapterAdapted

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

12

What does Role-Type Merging Mean?

► Merging of attribute set
► Merging of method set

Design Patterns and Frameworks, © Prof. Uwe Aßmann

13

11.2 Composite Design Patterns
with Role Model Composition

.. how to create bigger design patterns as
composed role models..

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

14

11.2.1 Example: Bureaucracy

► A pattern to model organizations that have a tree-like structure
(as opposed to matrix organizations)

– composed of the role models of Composite, Mediator, Chain,
Observer

Clerk

Director

SubordinateManager

ClerkClient

DirectorClient

 *
subordinate

manager

Composite

Mediator

Chain

Observer

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

15

Example: Bureaucracy

► The Composite defines the organizational hierarchy of
managers

► The Mediator is used to let talk children talk to their siblings
(colleague roles) via a parent (mediator role)

► The Chain handles requests of clients
– Every node may handle requests
– If a node cannot handle a request, it is passed up in the

hierarchy (on the path to the root)

► The Observer is used to listen to actions of a parent node
– If a parent node (subject) changes something, its child (observer)

listens and distributes the information accordingly

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

16

Class-Ability Model of Bureaucracy

Clerk
(Composite)

Director
(Composite)

Subordinate
(Composite)

Manager
(Composite)

ClerkClient
(Composite)

DirectorClient
(Composite)

subordinate

manager

Colleague
(Mediator)

Observer
(Observer)

Subject
(Observer)

Mediator
(Mediator)

observers

mediator

colleague

subject

Handler
(Chain)

Tail
(Chain)

Predecessor
(Chain)

Sucessor
(Chain)

HandlerClient
(Chain)

TailClient
(Chain)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

17

Bureaucracy
Class-Ability Model of Figures

Clerk
(Composite)

Director
(Composite)

Subordinate
(Composite)

Manager
(Composite)

ClerkClient
(Composite)

DirectorClient
(Composite)

subordinate

Colleague
(Mediator)

Observer
(Observer)

Subject
(Observer)

Mediator
(Mediator)

observers

mediator

colleague

subject

Handler
(Chain)

Tail
(Chain)

Predecessor
(Chain)

Sucessor
(Chain)

HandlerClient
(Chain)

TailClient
(Chain)

DrawingEditor FigureItem

Group Circle

FigureWindow

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

18

Application of Bureaucracy

► For all hierarchies
– Figures in graphic and interactive applications
– Widgets in GUIs
– Documents in office systems
– Piece lists in production management and CAD systems
– Hierarchical tools in TAM (see later)
– Modelling organizations in domain models: companies,

governments, clubs

Design Patterns and Frameworks, © Prof. Uwe Aßmann

19

11.2.2 Model-View-Controller
(MVC)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

20

Class-Ability Model of MVC

Component
(Composite)

Root
(Composite)

Leaf
(Composite)

Composed
(Composite)

ClerkClient
(Composite)

DirectorClient
(Composite)

Strategy
(Strategy)

Observer
(Observer)

subject

Controller ViewModel

observers

LeafViewComposed
View

Root
View

Subject
(Observer)

StategyClient
(Strategy)

► From Tyngre Reenskaug and Adele Goldberg
► MVC role model can be composed from the role models of

Observer, Strategy, Composite

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

21

This Closes a Big Loop

► Remember, Reenskaug developed MVC 1978 with Goldberg,
while working on Smalltalk-78 port for Norway

► Starting from his MVC pattern, Reenskaug has invented role-
based design

► 1998, Riehle/Gross transferred role-based models to design
patterns

► Today, MVC can be explained as composed role models of
other design patterns

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

22

Riehle-Gross Law On Composite Design
Patterns

► Concequences
– Complex patterns can be easily split into simpler ones

(decomposition)
– Variants of patterns can more easily be related to each other

(variability of patterns)
● e.g., ClassAdapter and ObjectAdapter

– Template&Hook conceptual pattern can be explained as role
model (see next chapter)

The role model of a composite design patterns is composed of the
role models of their component design patterns

The role model of a composite design patterns is composed of the
role models of their component design patterns

Design Patterns and Frameworks, © Prof. Uwe Aßmann

23

11.2.3 Composition of Simple
Variability Patterns

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

24

Warning

► The following is an attempt to build up the basic GOF patterns
from simple role models

► The compositions of patterns depend on the concrete form of
their role models

► It explains why Strategy is different from Bridge and
TemplateClass, etc.

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

25

Derived Method

► In a class,
– A kernel method

implements the feature
directly on the attributes of
the class, calling no other
method

– A derived method is
implemented by calling only
kernel methods

CalleeCaller
callee

DerivedMethod

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

26

Derived Method and TemplateMethod

► TemplateMethod is a
DerivedMethod that has

– an additional
TemplateMethod/HookMeth
od role model

– Inheritance hierarchy on
right side (implied by role-
class inheritance
constraint)

– The template role implies
no hierarchy on left side

CalleeCaller
callee

DerivedMethod

CalleeCaller
hookObject

HookMTemplateM

TemplateMethod

CalleeDescendant

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

27

Objectifier and Strategy

► Objectifier has
– An additional exclusion

constraint on Caller and
Callee

– An aggregation
– An algorithm role
– A subclassing constraint

(right hierarchy)
– No template role

► Strategy is an Objectifier with
– Client role
– Algorithm role
– Hierarchy on right side
– No template role

Descendant

CalleeCaller
algo

Objectifier

Descendant

CalleeCaller
algo

AlgorithmClient

Algorithm

Strategy

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

28

TemplateClass

► TemplateClass is an
Objectifier with

– An additional
TemplateMethod/
HookMethod role model

– TemplateMethod role
implies no hierarchy on left
side

– HookMethod role implies
inheritance hierarchy on
right side

– No client or algorithm role,
otherwise like Strategy

CalledCaller
hookObject

CalleeDescendant

HookMTemplateM

TemplateClass

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

29

DimensionalClassHierarchies

► DimensionalClassHierarchies
is a TemplateClass

– Without template-hook
constraint, but still
TemplateMethod/Template
Hook constraint

– With left hierarchy
constraint

DimensionalHierarchies

CalledCaller
hookObject

CalleeDescendantCallerDescendant

HookMTemplateM

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

30

Bridge

► Bridge is a
DimensionalHierarchies with

– An additional
abstraction/implementation
role model

– No template/hook role
CalledCaller

imp

CalleeDescendant

ImplementationAbstraction

Bridge

CallerDescendant

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

31

Creational Patterns

► Add more roles with
semantics about creation

► E.g., FactoryMethod is a
TemplateMethod with a
creational role model

CalleeCaller
hookObject

HookMTemplateM

FactoryMethod

CalleeDescendant

Constructor
P

ro
f.

U
w

e
A

ß
m

a
n

n,
 D

e
si

g
n

P
a

tte
rn

s
an

d
 F

ra
m

ew
or

k s

32

Remember: Relation TemplateMethod,
TemplateClass, Strategy, Observer

TemplateMethod TemplateClass

Strategy

Dimensional
ClassHierarchies

Bridge

T&H Metapatterns

Objectifier

concretizing

Different
forces

concretizingabstracting

More specific patterns (with more intent, more pragmatics, specific role denotations)

Framework Patterns (with TemplateM/HookM role model)

Design Patterns and Frameworks, © Prof. Uwe Aßmann

33

11.2.4 Composition of Simple
Extensibility Patterns

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

34

Object Recursion

► The aggregation can be 1:1 or 1:n (1-Recursion, n-Recursion)

Handler

handleRequest()
preHandleRequest(Component)
postHandleRequest(Component)

Recurser

handleRequest()
preHandleRequest(Component)
postHandleRequest(Component)

Terminator

handleRequest()

Client
childObject(s)

preHandleRequest()
for all g in childObject(s)
 g.handleRequest()
postHandleRequest()

1 or +

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

35

ObjectRecursion

► Essential roles are Handler, Recurser, Child
► Root, Terminator can, but need not be modeled
► Clients are optional, parent is optional

Handler

Root

ChildRecurser

NodeClient

RootClient
children

{ 1 or * }

Terminator

parent

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

36

Composite

► n-ObjectRecursion
► Other role pragmatics, similar pattern
► Perhaps with additional parent relation

Node

Root

ChildParent

NodeClient

RootClient

*

parent

children

Terminator

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

37

Decorator

► 1-ObjectRecursion
► other role pragmatics, similar pattern

Node

RootOfList

DecoratedDecorator

NodeClient

RootClient

1
hidden

Mimiced P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

38

Chain of Responsibility

► No real ObjectRecursion

Handler
(ChainUse)

Tail
(ChainUse)

Predecessor
(Chain)

Sucessor
(Chain)

HandlerClient
(ChainUse)

TailClient
(ChainUse)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

39

Remember:
Relations Extensibility Patterns

ObjectRecursion

Composite

Dimensional
ClassHierarchies

Bridge
Decorator

abstracting

Specific Patterns

Framework Patterns

Chain

Proxy

Recursive
T&H Pattern

Connection
T&H Pattern

abstracting

Visitor

Observer

n-Brigde

Still something to discover...

Design Patterns and Frameworks, © Prof. Uwe Aßmann

40

11.2.5 Consequences of the
Riehle/Gross Law

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

41

Zimmer's Classification and the Riehle-
Gross Law

► Zimmer's hierarchy [Zimmer, PLOP 1] lists use-relationships
between design patterns

– But actually, he means composition of role models of design
patterns

– but Zimmer could not express it conceptually

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

42

Relations between Patterns [Zimmer,
PLOP 1]

Prototype

Observer
Abstract Factory

Builder Strategy Layers

ChainOf
Responsibility

Visitor

Iterator

Command

Bridge

SingletonTemplate
Method

Objectifier

AdapterMediator Decorator

Compositum

Memento

Proxy

Flyweight

Data patternsBasic patterns

Facade

Creation patterns Coupling patterns Control flow patterns
Interpreter

FactoryMethod

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

43

Consequence for Pattern-Based Design

► With different role models, the fine semantic differences
between several patterns can be expressed syntactically

– A role model can capture intent (pragmatics) of a pattern
– While patterns can have the same structure, the intent may be

different
– It is possible to distinguish a Strategy, TemplateClass, a Bridge

or DimensionalClassHierarchy

► This makes designs more explicit, precise, and formal

Strategy TemplateClass=!=

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

44

Consequence for Pattern Mining

► When you identify a pattern in the product of your company, use
pattern decomposition and composition

– Try to define a role model
– Split the role model into those that you know already, i.e.,

decompose the complex pattern in well-known ones

► Advantage:
– You know how to implement the well-known patterns
– You can check whether an implementation of the composite, new

pattern is correct
– If all component patterns are implemented correctly, i.e., conform

to their role models.

► Be Aware: These Role Models Are Not Stable
– Role models provide freedom; so there may be several ones

for one pattern

Design Patterns and Frameworks, © Prof. Uwe Aßmann

45

11.3 Efects of Role-Based Design
Patterns on Frameworks and
Applications

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

46

Efect of Role Models

► Role modelling allows for scaling of delegation
– By default, all roles are overlaid by their class
– But some can stay separate
– Layered frameworks split all roles off to role objects

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

47

Role Models and Facet/Layered
Frameworks

► Remember: An n-Bridge framework maintains roles (role models) in
every facet (because a facet model is based on a class-role model)

► Similar for Chain-Bridges and layered frameworks

First dimension

Second dimension

Third dimension

Core dimension: Abstraction Framework
Reuse

0

Reuse
0&1

Reuse
0-2

Reuse
0-3

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

48

Reuse
0

Reuse
0&1

Reuse
0-3

Merging dimensions of Facet/Layered
Frameworks

► If the dimensions are seen as role models, it can be chosen to
merge them, i.e., the role models

► Here: merge second and third dimension into one physical
implementation (mixins)

► => No reuse for dimension 2 possible

First dimension

Second dimension

Third dimension

Core dimension: Abstraction Framework

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

49

Role Models and Layered Frameworks

► Similar for Chain-Bridges and layered frameworks

First layer

Second layer

Third layer

Core layer: Abstraction Framework
Reuse

0

Reuse
0&1

Reuse
0-2

Reuse
0-3

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

50

Merging Dimensions/Layers of
Dimensional/Layered Frameworks

► When two layers are merged, the variability of a framework
sinks

► But its applications are more efficient:
– Less delegations (less bridges)
– Less allocations (less physical objects)
– Less runtime flexibility (less dynamic variation)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

51

MVC as Multi-Bridge Framework

► The roles of MVC can be ordered in a n-Bridge framework

First dimension: Views

Second dimension: Controller

Third dimension: Model

Core dimension: Application
Reuse

0

Reuse
0&1

Reuse
0-2

Reuse
0-3

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

52

Reuse
0

Reuse
0&1

Reuse
0-3

MVC as Optimized Multi-Bridge
Framework

► Model and Controller layer can be merged
► Less variability, but also less runtime objects

View

Controller

Model

Core dimension: Application

Design Patterns and Frameworks, © Prof. Uwe Aßmann

53

11.4 Optimization of Design
Patterns with Role Models

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

54

Law of Optimization for Design Patterns

► Effect:
– Less variability
– Less runtime objects
– Less delegations

Whenever you need a variant of a design pattern that is more efficient,
investigate its role model and try to merge the classes of the roles

Whenever you need a variant of a design pattern that is more efficient,
investigate its role model and try to merge the classes of the roles

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

55

Original Role-Class Model of MVC

Component
(Composite)

Root
(Composite)

Leaf
(Composite)

Composed
(Composite)

ClerkClient
(Composite)

DirectorClient
(Composite)

Strategy
(Strategy)

Observer
(Observer)

subject

Controller ViewModel

observers

LeafViewComposed
View

Root
View

Subject
(Observer)

StategyClient
(Strategy)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

56

Optimized Role-Class Model of MVC

Component
(Composite)

Root
(Composite)

Leaf
(Composite)

Composed
(Composite)

ClerkClient
(Composite)

DirectorClient
(Composite)

Strategy
(Strategy)

Observer
(Observer)

subject

Controller ViewModel

observers

LeafViewComposed
View

Root View

Model'New View'New

Subject
(Observer)

StategyClient
(Strategy)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

57

Optimized Role-Class Model of MVC

► The optimized model merges all roles into two classes
– No strategy variation
– No composite views

► Only 2 instead of 3+n objects at runtime
– Faster construction
– Essence of the pattern, the Observer, is still maintained

► However, restricted variability

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

58

Super-Optimized Role-Class Model of
MVC (Monolithic)

Component
(Composite)

Root
(Composite)

Leaf
(Composite)

Composed
(Composite)

ClerkClient
(Composite)

DirectorClient
(Composite)

Strategy
(Strategy)

Callee
(Call)

Controller ViewModel

callees

LeafViewComposed
View

Root View

ClassBeingNoLongerAnMVC

Caller
(Call)

StategyClient
(Strategy)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

59 ► In this design, the ClassBeingNoLongerAnMVC merges all
roles

– It should be a superclass of all contained classes

► The Observer pattern is exchanged to a standard call
► No variability anymore
► But only one runtime object!

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

60

The End: Summary

► Roles are important for design patterns
– If a design pattern occurs in an application, some class of the

application plays the role of a class in the pattern
– Roles are dynamic classes: they change over time

► Role-based modelling is more general and finer-grained than
class-based modelling

► Role mapping is the process of allocating roles to concrete
implementation classes

► Hence, role mapping decides how the classes of the design
pattern are allocated to implementation classes (and this can be
quite different)

► Composite design patterns are based on role model
composition

► Layered frameworks and design patterns can be optimized by
role merging

