Literature (To Be Read
1. Frameworks and Patterns - ()

J FrameworR Variation Patterns 2"l » W. Pree. Framework Development and Reuse Support. In
Visual Object-Oriented Programming, Manning Publishing Co.,

editors M. M. Burnett and A. Goldberg and T. G. Lewis, Pp, 253-

1 Prof. Dr. U. Agmann |- Open Role Framework Hooks 268, 1995. www.softwareresearch.net/publications/J003.pdf

Framework Hook Patterns - Or: D. Karlsson. Metapatterns. Paper in Design Pattern seminar,

IDA, 2001. Available at home page.

» D. Baumer, G. Gryczan, C. Lilienthal, D. Riehle, H. Zullighoven.
Framework Development for Large Systems. Communications
of the ACM 40(10), Oct. 1997.
http://citeseer.ist.pst.edu/bumer97framework.html

Software Engineering 2.
Faculty of Informatics 3. Delegation-Based Framework Hook

Dresden University of Patterns

Technol i
echnology 4. Recursion-Based Framework Hook

Version 13-1.0, 12/2/13 Patterns
5. Unification-Based
6. Inheritance-Based

7. T&H in Frameworks

@ Design Patterns and Frameworks, © Prof. Uwe ABmann

Prof. Uwe ABmann, Design Patterns and Frameworks

=)

Secondary Literature Goal
=)
3"l » W. Pree. Design Patterns for Object-oriented Software 4 » What's a framework?
Development. Addison-Wesley 1995. Unfortunately out of print. » Studying variabilities of frameworks with the T&H concept
> M. Fontoura, W. Pree, B. Rumpe. The UML Profile for > Introducing different types of hooks for frameworks and
Framework Architectures. Addison-Wesley, Object Technology components (TH patterns)
Series. 2002. » Understand framework hook patterns

- The box-like notation for frameworks and framework hooks
patterns

» More types of dimensional frameworks

Prof. Uwe ABmann, Design Patterns and Frameworks
Prof. Uwe ABmann, Design Patterns and Frameworks

&
&

Plugins and Extensions Points

Patterns and Frameworks

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» Frameworks are completed to products with plugins
(complements). Frameworks carry

— framework extension hooks, extension points, which can be
extended (bound) many times

= framework variation hooks, variation points, which can be bound only
once

» Plugins can be framework themselves (layered frameworks)

— 00—
/

Plugin, complement

Variation i i :i Extension

o[} [} e

Framework

1.1 FrameworR Instantiation and
Merging With Open Roles

Design Patterns and Frameworks, © Prof. Uwe ABmann

Prof. Uwe ABmann, Design Patterns and Frameworks

=)

» Historically, design patterns were discovered during framework
development

- Smalltalk MVC [Goldberg, Reenskaug]

- ET++ [Gamma]

- Interviews [Vlissides]
» Design patterns are building blocks of frameworks

- Framework developers vary and extend classes of the
framework

» Design patterns create the products of a product line

- Application developers vary and extend classes of the
framework

- Variability design patterns can be used as framework variation
points (framework variation hooks)

- Extensibility design patterns can be used as framework
extension points (framework extension hooks)

FrameworR Instantiation with Open Roles
(Role Hot Spots)

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» The most simple form of framework instantiation is
Riehle/Gross' open role instantiation based on association
= Here, frameworks are class models with open role hooks (free,
unbound abilities), role types that have not yet been assigned to
classes

» The hot spots form an integration repertoire (integration role

type set)
= the set of role types, by which the framework can be integrated
into an application (framework hooks, framework variation
points)
» A framework is instantiated by binding its integration repertoire
to classes
= The abilities are bound, role constraints have to be respected
» Hence, role models play the bridge between a framework and
its clients

Remember: The Partial Figure Model, a

Standard Class-Ability Model

The Figure FrameworR, Partially
Instantiated

Prof. Uwe ABmann, Design Patterns and Frameworks

=

(

Observer O
(Figure Observer),

Partial class model for figure editor

| Graphics

Fi
(

) igure
rarchy), Gigure Hierarchy),

Client
(Graphics)

Graphics
(Graphics)

)

Subject
(Figure Observer),

E

Predecessor
(Figure Chain)

ubject
Int. Fig. Observer

%

IRectangIeFigure

I CompositeFigure I

Client Figure
(RectangleFigure), (RectangleFigure),

Successor Parent L
(Figure Chain) (Figure Hierarchy),

D)

A

RectangleFigure),

Observer
Int. Fig. Observer

Hp

| ClassFigure

RootFigure I

Client Figure
(ClassFigure) (ClassFigure)
T

hild =
(Figure Hierarchy),

(FigureHierarchD

Root RootClient
(FigureHierarchy)

The Figure FrameworR, Fully Instantiated to

an Editor

10
Editor

Client

' Framework |_

-

(Figure Hierarchy

i(owr‘)ﬁg_ro_la types)
5 |

Prof. Uwe ABmann, Design Pattern

@ (ClassFigure)
[

The Figure Framework, Instantiated to an UML Editor

ﬁgure Client
wigure Hierarchy), (Graphics)

Subject Child
(Figure Observer), (Figure Hierarchy), |

1.%

Predecessor ubject |
(Figure Chain) Int. Fig. Observer;

.

RectangleFigure

\ Client Figure
(RectangleFigure), (RectangleFigure),

| | A

<t—

CompositeFigure

Successor Parent |
(Figure Chain) (Figure Hierarchy) |

Observer

ClassFigure

Client

UMLEditor

Framewcﬁ(

L

Client

4

Client

=

o foure
Loy qure Hierarchy;]

|
(Graphics))—I>

1 Editor I
lient |
Figure Hierarchy’
Client bserver N I
(ClassFigure))\(Figure Obsewﬂ 0.*
T 1
lient
RectangleFigure
17

Prof. Uwe ABmann, Design Patterns and Frameworks

!

I
ootClient
FigureHierarch
I

cE\YAR

ject

=
=2

Predecessor
(Figure Chain) !

=L

1.
ubject ild
Figure Observer igure Hierarchy’ |

. Fig. Observer)

=

RectangleFigurg

CompositeFigure

Successor
(Figure Chain)

ClassFigure

Figure

&

(ClassFigure)

RootFigure

oot
FigureHierarchy

arent I
Figure Hierarchy I

Int. Fig. Observer

Graphics
(Graphics)

Graphics

12

Prof. Uwe ARmann, Design Patterns and Frameworks

Figure
(ClassFigure)

Figure Hi

0.*

Figure
(Figure Hierarchy),
Observer Subject Child
(Figure Observer), er) (Fi

Client RootClient
(ClassDiagram) (FigureHierarchy)

Figure

RectangleTool

Client
(RectangleFigure),

]

RootFigure

Root

Int. Fig. Observer

(FigureHierarchy

Framework

—

Figure

1

Client

(Graphics)

| (Figure Observ

: 1.
igure Hierarchy)

| Predecessor ubject
(Figure Chain) Int. Fig. Observer

|

RectangleFigure

(Rectan(

hleFigure, ;)

i

CompositeFigure

| Successor Parent
| (Figure Chain) (Figure Hierarchy),

Int. Fig. Observer

ClassFigure

Figure
(ClassFigure)

—_ —

ClassDiagram

Client
(ClassFigure)

ClassDiagram

]

&

(ClassDiagram)

T

Graphics

Graphics
(Graphics)

Frozen spots:
(bound role

i_’tyge_s_; __________ i

Graphics

Graphics
(Graphics)

Merging of Frameworks A Graphics FrameworR

13 'l » Two frameworks are merged by binding the integration abilities 14 — —— =

Graphics

of Ato classes of B
i Cllent Graphizl:s
- Role constraints have to be respected G'aph'Cs > (Graphics
» Hence, role models play the bridge between different Cc"li?é.ng) —|—> (Cinping
frameworks Ciient Polyiner
(Polylining) (Polylining)
- Or layers of frameworks
Cllent —> Texte.r
Textmg) (Texting)

Imager
(Imaging)

Client
(Imaging)

Image

I

I

I

I

I

I

I

I

| |

Image

— |
I

I

I

I

1

| Font
|

Font

-
> \ (Texting) { o

Polygon
| - Polygon -
™\ (Polylining) I‘

Prof. Uwe ABmann, Design Patterns and Frameworks
Prof. Uwe ABmann, Design Patterns and Frameworks

&
=)

The Figure and Graphics FrameworRs, o o
Merged = Limitations of Open Role Instantiation

(Clipping))
' Figure ~ T " Graphics - : L :
15— T | — —2rapniesll | 16 "I » [Riehle/Gross] role-based framework instantiation relies on
Grag - . : :
| = | — | simple role binding, with role constraints
Figure) C Client) I Graphizl:s I A A X A i A
{oure Herarchy) T \Flgure Hierarchy) Eloaisy | | » Role binding for framework instantiation and merging can be
1
Observer Subject Child) Graphics
0.* Glgure Observ) (Flgure HlerarchQ_ I (Clipping) I even more E|ab0rated
K] I Predecessor ubject Polyliner I 9
‘g (Figure Chain) Int. Fig. Observer, I (Polylining) I ‘g-
CITent I 2 S I Textgr %
(RectangleFigure), }] (Texting) | £
Recargierigus ! e |
g - I I (Imaging) E
£ igure Successor Parent =1
& (RectangleFigure), |C(Figure Chain) (F:gure Hierarch Q’ I I Image I &
% A Glents bserver ! Image [%
5 (Polyiining) it Fig Observer) | [{_ (maging) il
£ I I I [Font I ;EB
Client I I g
(ClassFigure) - - Font =
: RootFigure 4— | 2
g Client Client Root g
(RectangleFigure)\ (Texting) | (FigureHierarchy) [Polygon I
Figue) | T T T T — ~ Polygon
(ClassFigure) RootClient -
@ (FigureHierarchy) I (REMIRED I @

J 1.2 Framework HooR Patterns

17

)

Design Patterns and Frameworks, © Prof. Uwe ABmann

T&H Patterns and Standard Patterns

Pree’'s Framework HooR Patterns
(Template&HooR Role Models)

18

Prof. Uwe ABmann, Design Patterns and Frameworks

O

> In Pree's work, framework hooks are characterized by design patterns
(framework hook patterns)
- They describe the roles of classes on the border of the framework
- The framework hook pattern determines the way how the classes interact with
each other at the border of the framework
» A framework variation point is characterized with a Template&Hook
conceptual pattern
- Pree called this a T&H metapattern, we call this a T&H role model

» AT&H role model has 2 parts:

- Atemplate class (or template role type), which gives the skeleton algorithm of the
framework: Fix, grasps commonalities

- Ahook class, which can be exchanged (or: a hook role type which can be bound
to a client class): Variable, even extensible, grasps variability and extension

Fixed Part | Template Flexible Part, Variation Point

TS&H in Standard Design Patterns

19

» A TH-role model overlays another pattern (hence Pree called it
a metapattern)
- The template part fixes parts of the pattern
- The hook part keeps parts of the pattern variable, i.e., open for

Prof. Uwe ABmann, Design Patterns and Frameworks

&

binding.
I Fixed Part, Framework | | Plexible Part, Variation Point |
! | ,
' / | Role\mapping |
| / | \ |
| Subject —t+—> Observer |
| | ,
I _______ - L — — — e — = = =

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» Subject and Observer can vary; nothing is fixed
- SortingAlgorithm and AnimationEngine can be exchanged

Subject Pattern role model

/ \' Role mapping
\

/
SortingAlgorithm » AnimationEngine | Class model

T&H in Framework HooR Patterns

Why T&6H Patterns Add More to Standard
Patterns

21

Prof. Uwe ABmann, Design Patterns and Frameworks

» Subject can no longer vary; it is fixed

- SortingAlgorithm cannot be exchanged (exeption:
DimensionalClassHierarchies)

| Fixed Part I Plexible Part, Variation Point

| * Framework hook role
Template | Hook
[

model (T&H role
I I model) |

I I

/ [\ |

! I - I
t—r—| AnimationEngine Cla§s model

|
I
! Subject | > Pattern roje model
I
i
I
I

SortingAlgorithm

Framework HooR Patterns

22

Prof. Uwe ABmann, Design Patterns and Frameworks

» Due to the Riehle-Gross Law, we know that metapatterns are role models that overlay the
role models of design patterns
- Metapatterns are very general role models that can be mixed into every design pattern
- As design patterns describe application models, metapatterns describe design patterns
» In [Pree], roles are not considered. Pree has only hook classes and hook methods. Here, we
combine [Pree] and [Riehle/Gross]

If a metapattern is overlayed to a role model of a design pattern, it adds commonality/variability
knowledge, describing a framework variation point

- The template part characterizes the framework's fixed parts
- The hook part characterizes the framework's variation point
» Hence we call a design pattern with metapattern information framework hook pattern

I
O—{
e

T&H Pattern
(Metapattern)

Framework
Hook Pattern

Standard
Design Pattern

Remark

23

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» The template-hook role model

- adds more pragmatics to a standard design pattern, information
about commonality and variability. Hence, framework variation
points are described

- The template-hook role model adds more constraints to a
standard design pattern. Some things can no longer be
exchanged

» Pree discovered 7 framework hook patterns, i.e., 7 template-
hook role models for framework hooks

- The template-hook role models describe the parameterization of
the framework by open role hooks

- They include Riehle's open role hooks, but add more variants
- There are even other ones (see next chapter)

24

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» Note: we mean in the following:
- with the role Template, that the class of the role type belongs to
the framework
- with the role Hook, that the class of the role type belongs to the
application
- with the role TemplateM(ethod) that the role defines a template
method, calling a hook method HookM(ethod)
» Problem: Pree uses TemplateM/HookM, but calls them
Template/Hook
- and varies HookM classes. This is misleading because the
variation is actually in the framework and the fixed part in the
application

Differences between Standard Patterns and

Two Simple Notations for FrameworR
HooR Patterns

m{| FrameworRk HooR Patterns
25 'l » Standard design pattern » Framework hook pattern 26 'l » Mini-connector notation: shows T, H, mini-connector
= Often, no template parts; = Fixed and variable part » Block notation: Shows T, H
everything flows = Elementary pattern and role
(exception: TemplateClass model Mini-connector notation: :
g and -Method) = Applicable only at the border | Framework P iiconeeior |
;g: = Rich pattern and role of the framework’ g ‘
g mOd?I _ = or at the border of a g |
f = Applicable everywhere in component, i.e., in an H ey T H
% the framework “interface” § Fixed Part T~ »
5 * No T&H metapattern = One T&H metapattern 5 T— ‘
f‘i Ovel'|ayed Overlayed é
g £ Block notation:
% » Aframework hook pattern § Framework
3 = provides a design pattern at 3 : :
4 the border of a framework : \/FlG{X't*?le ';a'_'t-t
........... s ar'a |on Oln
= combines a T&H role model T|H |«

&

with standard role models

11.3 Delegation-Based

J Framework HooR Patterns

27

Design Patterns and Frameworks, © Prof. Uwe ABmann

=)

T—H Connection Pattern

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» T&H connection pattern (T--H framework hook)

- Similar to Riehle/Gross open role type, but with aggregation
instead of association

- T and H classes are coupled by a template-hook role model, the
hook is a delegatee (the relation is called a mini-connector)

- “Whole” is in the framework, “Part” is in the plugin

1-T—H (aggregated open role hook) n-T—H (flat extension)
Hpartof T T has n H parts, n is dynamic

Mini-connector:

Mini-connector:
-~ %
— &
- s

TKOAH] 7 T (O— H

/
~ /
Tompiefo—e{ e) emmalo—{ o)

TemplateClass with 1-T--H

TemplateClass Runtime Scenario

29

Prof. Uwe ABmann, Design Patterns and Frameworks

» Attention: in this case, the Template role also carries the

TemplateM role (framework has template method, application
has hook method)

i
" Framework ' _

DataGenerato
Data data;

Mini-connector
I -~

Generatorimpl

I
I
| generate() — = generateData(Data
I imp.generateData(data) ZF
I T
| I
I
| TestDataGenerator | ExhaustiveGenerator RandomGenerator
I | generateData(Data) | | generateData(Data)
I
I I
I

Dimensional Hierarchies with 1-T--H
(Bridge with Template/Hook Constraint)

30

Template object

/

" Framework | _ _,~ _ _

' |

:TestDataGenerator |

generate() |

Prof. Uwe ABmann, Design Patterns and Frameworks

=)

I
I
| Data data;
I
I

Hook object

/
/

¥

:ExhaustiveGenerator

imp

generateData(Data)

Ex.: Internationalization as
Dimensional Class Hierarchy with 1-T--H

31 "I » Template classes cannot be varied, only the hook class

| Framework |

—_—— == = = — — — —

| TemplateClass{ Template h°°k°b;e°£(Hookw HookClass

I templateMethod(}? | I hookMethod()
! | |
gl hookObject.hookMethod(I
gl
3 |
£ MoreConcrete MoreConcrete
5 ConcreteHookClassA| ConcreteHookClassB
gl TemplateA | | Template
g TemplateA TemplateB
gl templateMethod()? templateMethod(}ID hookMethod() hookMethod()
| i :
§| Implementation A I|
3 L= hookObject.hookMethod(); E Attention: To be a template class,

(B

the templateMethod should

Implementation B
... hookObject.hookMethod

—_— — —

-

fulfil a contract!

1

... layout from right to left
language.getText()
... layout...

¥

... layout fromleft to right
language.getText()

In the template class, the
templateMethod fulfills the contract
that all content of the page has

| Framework

| LayoutAlgorith{ Tomplate langudge Hook }Iguage

| layoutPage() e} | getText()

| Iayout from left to righ |

| language.getText() |

| ... layout... |

| I

|| MoreConcrete MoreConcrete . .

| TemplateA TemplateB English (GB) Chinese
| layoutPage() Q layoutPage() getText() getText()
I

I

I

d

\

... layout...

been layouted.

Ex.: Internationalization of Frameworks with
Dimensional Class Hierarchy with 1-T--H

Ex.: Multiple Internationalization as
Dimensional Class Hierarchy with n-T--H

Prof. Uwe ABmann, Design Patterns and Frameworks

&

Razoie

I
LayoutAlgorith{ Tompjate language, Hook |Language
layoutPage() getText()
I

» may be abbreviated with block notation to:

Framework

_____J__]

I
LayoutAlgorithm | Language

_ —_— — — ——

Ex.: Multiple Internationalization as
Dimensional Class Hierarchy with n-T--H

L Framework

e
| LayoutAlgorith{ Tomplate 'a"g“algii[Hook)_anguage
| layoutPage() © | | getText()
| Iayout from left to righ |
| for I in languages |
| layout(l.getText())
I
|| MoreConcrete MoreConcrete . .
[TemplateA TemplateB English (GB) Chinese

layoutPage() ¢

getText() getText()

S
r

1

... layout from left to right
for I in languages
layout(l.getText())

Ex.: Multiple Internationalization as
n-T—H Dimensional Hierarchy

layoutPage() ¢

In the template class, the
templateMethod fulfills the contract

... layout from right to left
for | in languages
layout(l.getText()) been layouted.

that all content of the page has

35

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» n-T—H is based on *-Bridge pattern

» This framework hook allows for multiple internationalized texts
- An application can layout several languages at the same time

» The layout algorithm can be coupled with different languages

that use the same layout (multiple internationalization)
» However, mixin of different layout languages freely with
languages is impossible!
» Here, you can see the power of the T—H concept:
- 1-T--H: dynamic variability
- n-T—H: dynamic extension (flat, non-recursive)

I
I
I
I
I
I

Prof. Uwe ABmann, Design Panerlr

Framework

___;;J__j

Block notation:

&

I
LayoutAlgorith Template Ianguages) Hook |Language
layoutPage() | getText()
I

—

—_— e —

_Framework , _ _

I
LayoutAlgorithm | - Language

Observer as n-T—H of a FrameworkR

Observer Runtime Scenario: Several
Visualizers in Parallel

i i

Framework |

Subject

Template

Observer

38

Template object Hook objects

I
I
I
I register(Observer) | update () [“Framework _J /
I unregister(Observer) for all b in observers { ! % |_ T -~ ===
| notify() O b.update () | % | ¥ |
| } | L :SortingAlgorithm | :TextVisualizer
/ \ s >
| | § | register(Observer) update()
| | | ConcreteObserver g unr_?glster(Observer) |
) Subject g | notify() :HtmIVisualizer
| | ConcreteSubject | I update () oO- |1 Observerstate = 8 getState() | N
Subject.qetState() 5 | setState() | update()
| | getState() O, | [Observerstate g
| | setstate() ’ | ?z b e - - == | | :JDKVisualizer
| SubjectState | &
| return SubjectState | update()
v | 7
Observer-Based Extensible Frameworks Observer
SR m——— 40 "'l » The Observer pattern is used for extensibility
Framework B
|I - - - - =1 » With T&H, it becomes clear that Observers are a perfect way to
| | achieve product lines with new feature extensions:
I SortingAlgorithp: vieualizere Visualizer - Model a critical template algorithm as Subject (template of the n-
| Template [> Hook o T--H)
| § - Model an extension as a new Observer (hook of the n-T--H)
| | 3
e - - - —— - = — 4 2
g Il’ Framework &
8 - T T 7 T 7 :
| |
% | SortingAlgorithm| « Visualizer %
g [S
I

&

&

Bridge Frameworks Have . . '
g Ex.: Bridge Framework Runtime Scenario
m| T—H Hooks
41 'l » Every dimension corresponds to a T—H hook 42
» Bridges, Strategy, Adapter can be used as mini-connectors
Template object Hook objects
Core Facet: Animal Domain e . [—— — — — 7
2 [T1 | [12] [73 | Miniconnector. l_FE@Wka_ I — —~— _
g / A\ - - % | / I
L ! ' 4 :Animal :AnimalGroup
5 First facet dimension (e.g., Group) - - 5 : : > : -
: H1 : ! g | |
'§ I I § I .| :AnimalAge
‘E Second facet (e.g., Age) I I ‘E : |
< / 3
. S N e ———— - - — = I | :AnimaiNurture
Third facet (e.g., Nurture)

&
=)

Ex.: Bridge FrameworkR Runtime Scenario,
ml| with Dimension 1in FrameworR

43 g T = = = .

Template object Hook objects I — F_rarEka__J - —

————— /
I

I

I

I

I

[Framework
— AMewore | _ _ ~

BusinessObjectCoreI

I

I

| | Framework | _
Template I

I

d

c
I
S N |
*y extensions | Core Object

- Extension *

BusinessObjectExtension

:Animal :AnimalGroup

)

L — — — —

h :AnimalAge

Prof. Uwe ABmann, Design Patterns and Frameworks
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
L
Prof. Uwe ABmann, Design Patterns and Frameworks

:AnimalNurture

&
&

n-T—H Makes Bridge FrameworRks
Extensible

T—H Patterns Result in Blackbox
Frameworks

45

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» An n-T—H framework hook makes dimensional bridge
frameworks extensible with new dimensions at run time
» New extensions in new dimensions can be added and removed
on-the-fly
» Applications
- Business applications
- System software
- 3- and n-tier architectures

11.4 The H<=T Recursion

_ Metapattern

47

Design Patterns and Frameworks, © Prof. Uwe ABmann

46

Prof. Uwe ABmann, Design Patterns and Frameworks

=)

» The main relation between T and H is delegation.

» Hence, when overriding and instantiating H, the framework is
untouched (blackbox framework)

» 1-T—H gives variability
» n-T—H gives extensibility

H<=T Recursive Connection

48

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» T&H recursive connection pattern (H<=T framework hook, deep
extension pattern)
- with 1- or n-ObjectRecursion
- H-class inherits from T; T is part of H

- His decorator of T (1:1) or a composed class in a composite
pattern (1:n)

H<=T (deep list extension) n-H<=T (deep graph extension)
T part of H Hhas n T parts
H inherit from T T inherit from H
1-ObjectRecursion/Decorator n-ObjectRecursion/Composite
n
— —)
T H T H
F— F—

Template ’ Template V“l

D {-HeeT Ex.: Run-Time Snapshot of Decorator as
ecorator as I-H<=
o FrameworRk HooR Pattern

49 'l » All decorator objects have to conform to the template class of so ' » Lists extend the framework

the Decorator pattern S .

‘ “Framework _, ~Mini-connector: T late obiect

D —_— - T T =<

Record T » ~ emplate objec
| ‘ Template | mimiced A — = = —
access() » | _Framework , -

[| | ‘/I
| ? K| | TransientRecord |
| TransientRecord | PersistentDecorator i | Hook objects
| access() || access(). . = = Q |
| | mimiced.access()] | =
L T T E] | :PersistentRecord > | :PersistentRecord
ST T T T

§ PersistentRead PersistentRecord é

2 OnlyRecord 0 - if (lloaded()) load(); 2

£ i (lloaded()) load()y ~ = |- access() Eggleesasn Ioade;i.(; o : :

super.access(); f;‘;‘;'ga“ loaded() boolean modified() I (modified()) dump():

load()

O dump D

i Ex. Run-Time Snapshot of Composite as
Composite as n-H<=T
o FrameworRk HooR Pattern
51 "1 » Composite is as instance of n-ObjectRecursion and n-H<=T s2 'l » Part/Whole hierarchies extend the framework
[~ ~ Fameok | Template object
Y . | o
> Component | | Framework ,

°§ | commonOperation() | 4 A Hook objects
H ; >

g | add(Component) | Picture Ll

i | remove(Component) | i |

getType(int) (M :

£ | Templat chidObjects] I

---F-—--- - ! | > : -
g 1 | :Picture :Line :Rectangle
: Hook S / \

< 00 <

2 Leaf Composite ; 2 / \ N

] i : [@ 1N I .D; . .

S commonOperation() ggfg‘(fggnm?)gi;ar?gn() for all g in childObjects & :Picture :Line :Rectangle

remove(Component) g.commonOperation()

@ getType(int) @

Production Data Systems

Ex. Snapshot of a Production Data
System

» Piece lists are part/whole hierarchies of technical artefacts in
production

» The roles of a composite form the hook of the framework

Composed
Car

53

Template class
7

Atomic

§

w — — — —

I Framewok ,

1

-§’| | 2| ComposedPiece <]— CarPart
: | — .

§ | |— AtomicPiece <]— AtomicCarPart
=}

g |

:
;
!
)
!
‘3
!

Prof. Uwe

=)

» Piece lists are part/whole hierarchies of technical artefacts in
production

» Example: SAP PDM module, IBM San Francisco
Hook objects

Template object

Framework

e = 1 _/I /
’ .
:PieceL.ist sLar
| /
| 4 N >
| :Chassis :Motor :Window

AN

:Roof :Cabin

Bridge FrameworRs Can Be Done with H<=T
(Bridge H<=T FrameworR)

H<=T framework hooks result in frameworks between black-box
and white-box

» Mini-connector H<=T is used

» Attention: The class with the Template role carries the HookM
role, the class with the Hook role carries TemplateM role

- The template (fixed) class in the framework is called from the
hook class in the application (which carries the template method
role)

- Pree calls the pattern T<=H, but means TemplateM <= HookM !!

55 >

Prof. Uwe ABmann, Design Patterns and Frameworks

&

&

Prof. Uwe ABmann, Design Patterns and Frameworks

» A dimension may correspond to a H<=T hook of the core
framework

» Composite, Decorator, Bureaucracy can be used as mini-
connectors

Core Facet: Animal Domain

L1112] |
AN ZN

Mini-connector:
I Decorator

First facet dimensign /
(e.g., Group) |
H1

Second facet (e.g., Age)

H2

Third facet (e.g., Nurture)

Bridge Frameworks Can Be Done with H<=T
m| (Bridge H<=T FrameworR) 11.5 The TH Unification
57 'l » Composite as mini-connector I Meta pattern
58
e Core Facet: Core Domain Mini-connector:
; Lol el 15 Compositum |
§ " TN _ N Unification Hooks replace a framework object by a plugin
%First facet dimension S | -« = object
E H1 ! !
8 | |
<§Second facet <> ‘ !
5 H2 /
S \ [L/
L
Third facet | H3 |
® Design Patterns and Frameworks, © Prof. Uwe ARBmann
TH ChainOfResponsibility as 1-TH
)
s9 'l » Unified T&H pattern (TH framework hook) 60 "I » A Chain is recursing on the abstract super class, i.e.,
- T-class == H-class - All classes in the inheritance tree know they hide some other
class (unlike the ObjectRecursion)
Successor
: : L Framework
TH 1-TH (deep list extension) n-TH (deep tree
T== T== extension) |
TH part of TH TH part of TH T== Client
“funny” Decorator “funny” Decorator TH has n TH parts |
“funny” 1:n-Composite I

TH TH <>__] TH <>__]

n
Template K > Template {5 Hook) El'emplate §->

ConcreteWorker1 ConcreteWorker2

Prof. Uwe ABmann, Design Patterns and Frameworks
Prof. Uwe ABmann, Design Patterns and Frameworks

Work() Work()

Ex.: Event Handlers

Ex.: Snapshot of Event Handlers

61

Prof. Uwe ABmann, Design Patterns and Frameworks

&

Client

Successor

- -
Framework

1 L ="

Logger

SecurityHandler

handleEvent()

handleEvent()

Why TH Unification Makes Sense

62

Prof. Uwe ABmann, Design Patterns and Frameworks

=)

Template object

N
N

R\

- -
Framework

- — — — L -

Client

:Authentication

handleEvent()

:Logger

Hook objects

handleEvent()

:SecurityHandler

:Personalizer

handleEvent()

handleEvent()

Bridge FrameworkRs Can Be Done with TH

(Bridge TH FrameworR)

63

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» If a hook class is the same as the template class,
- Some methods are template methods, others are hook methods
- Together with the template, the hooks can be exchanged

» Template methods in the template class are not abstract, but

concrete

- They are build from referencing hook methods of the hook class

» As we saw in the last chapter, merging role types in one class
can make an application faster, but less flexible

64

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» Adimension may correspond to a H<=T hook
» Chain can be used as mini-connector

Core Facet: Animal Domain

First facet dimen

Second facet (e.g., Age)

T1 T2
<& <&
H1

H2

T3

H3

Third facet (e.g., Nurture)

11.5.2 The H<T Whitebox

|l Inheritance Metapattern

65

)

» The object of a plugin, typed by the
subclass, replaces the object of the
framework, typed by the superclass

Design Patterns and Frameworks, © Prof. Uwe ABmann

Whitebox Framework with H<T
Framework HooR

67

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» Also TemplateMethod can be applied (HookM <= TemplateM)

—_—_ —_ —

Worker

Client

Template

[
[
Work() |
[
[

ConcreteWorker1 ConcreteWorker2

Work() Work()

H<T

66

Prof. Uwe ABmann, Design Patterns and Frameworks

=)

» If H inherits from T, H<T framework port (whitebox framework
pattern)
- Whitebox reuse of T in the framework, while deriving H in the
application
- (not of Pree, earlier known)
» If a hook class inherits from a template class, it inherits the
skeleton algorithm

- Template methods in the template class are not abstract, but
concrete

- They are build from referencing hook methods of the hook class
» A H<T framework hook means a whitebox framework

HeT T K| H

Summary of
T&H Patterns and FrameworR

J Hooks

68

Design Patterns and Frameworks, © Prof. Uwe ABmann

Cardinalities and Extensibility of FrameworkR
FrameworR HooR Patterns
m{| HooRs
Inheritance———————Unification

69 "I » 1:1—Tand H correspond 1:1 70 H<T

- Thas 1H part H inherit from T P’l_

- Hooks are not extensible at runtime whitebox

- 1:1 T&H framework hooks should be used when the behavior of ~ Aggregation/Association T K| H TH
o the framework should be varied, but not extended at the variation
g point ¢ T-H H<=T Recursion 1-TH
g « Because variability patterns form the mini-connector between Tand ¢ H partofT T part of H T==
E H, derived from 1-ObjectRecursion e Tiscore clqss of H inherit from T TH part of TH
g ¢ complex object Decorator “funny” Decorator
2 » 1:n—T and H correspond 1:n 2 ¢
£ - ThasnH parts g | T KO H T |q—H ™
2‘ - Hooks are extensible, also dynamically ¢
: 1:n T&H f k hooks should be used when the behavior of ~ & ~1°H n-H<=T n-TH
; - 1in ramework hooks should be used when the behavior o % ThasnHparts H has n T parts T ==
s the framework should not only be varied, but also extended > Tis core class of H inherit from T TH has n TH parts
S dynamically at the variation point & complex object 1:n-Degorator “funny” 1:n-Composite

* Because extensibility patterns form the mini-connector between T n %)

D) and H, derived from n-ObjectRecursion D T O H T |g4—2 H TH <n>—_l

Mini-Connector Notation for FrameworR i
Block Notation for FrameworkR Hooks
ml| HoORs
7 H<T TH 72 HeT TH
T H ™ O] T H TH
§ATH He=T 1-TH PAT-H He=T 1-TH
: T O H T H H L : T |H T4 H TH 1
g I'q g
§ n-T--H n-H<=T n-TH g n-T--H n-H<=T n-TH

=)
&

1.7 TSH in Frameworks

73

Design Patterns and Frameworks, © Prof. Uwe ABmann

)

Pree's First Law of FrameworR Instantiation

Advantages of T6H Framework HooR
Patterns

74"l » One big mess with frameworks is the trustworthy framework
instantiation problem:

- If a framework is instantiated by inheritance (whitebox) or
delegation (blackbox), illegal combinations of parameters appear

- Applications may not run stabel
» Framework Hook Patterns describe much more precise how the
variation points of a framework should be instantiated

- They allow for determining whether the framework is varied or
extended in a product line

Prof. Uwe ABmann, Design Patterns and Frameworks

=)

Pree's Second Law of FrameworR
Instantiation

75 'l » Variability-based framework hooks define framework variation
points
- If you want to constrain the uses of a framework to a fixed set of
variations, use variability patterns for framework hooks
(1-TH patterns)

If a framework hook is based on a variability pattern,

the framework is varied, but NOT extended

Prof. Uwe ABmann, Design Patterns and Frameworks

&

76 "I » Extensibility-based framework hooks define framework
extension points

- If you do not want to constrain the uses of a framework to a fixed
set of variations, use extensibility patterns for framework hooks
(n-TH patterns)

If a framework hook is based on an extensibility pattern,

the framework is extended, but not varied

Prof. Uwe ABmann, Design Patterns and Frameworks

&

-y - .) 7\
A Multi-Lingual Dimensional Data -
Class Diagram Lvout | o [Laneeae
Ii Generator g produceLayout()l /IJroduceLayout()
77 : : . 78 - \
» One framework hook may have several bridge dimensions layoy >| GeneratorStrategy o
DataGenerator OMC generateData(Data)
I;E;]E;i;a_m;ﬂ;_]_ _____________ I generate() Of . R data ZF

g | e
% | % imp.generateData(data|
E | | E ExhaustiveGenerator] RandomGenerator
s fin
2 | 2 teData(Dat teD. t
§ | 7\ /7 \ /7 \ E generateData(Data) generate e}a(De a)
2 I £ 7 D Il
T I \ i no%s
& [DataGenera;tor LayOIit Data | TestDataGenerator | | ReportGenerator | Data . « | Grammar
5 | _| 1
2 - ' - - - - / b Dat
3 D Lanquage* . cnerate cnerate \ Data createData() ata createData()
S ata | I gupg ’Grammpr | g 0 9 g 0 9 - i I
@ < 1 1
g GenerationStrategy \ \ g pa ‘ 5 \
% o N\ \r % parseTestDataGrammar(); ': \—r
;9-- ? imp.generateData(data); E
T T = . TestData ReportData
Variable Extensible e FromForm):
Variation Point Extension Points @ imp.generateData(data); TestData createData() | ReportData createDgta()

&

o A Multi-lingual Business FrameworR (Block
al FrameworR Instantiation Market Notation)

79 'l » Today, frameworks are the most important software technology 80
for product lines in large companies
» Instantiating big frameworks is very hard
- Requires special instantiation consultancy, which is a big market
- SAP Germany has a marker for instantiation companies of their

: framework! s _ _ _ _

s . . . E [Business Framework L Product

£ - If you go to a big company, teach them framework instantiation s _———l - - - < - - - — — |
: patterns! | Piecelist |
L |
- |
b |
3 s | Business Object Layout Workflow |
3 5 [Scheduling | _ _ _ _
2 2 Extensions * Language Scheduling

&
&

A Business FrameworR with Several Languages

gl| Simultaneously (Block Notation) OpenOffice (Block Notation)

g1 'l » Problem: business frameworks have an enormous number of g2 "I > |Variabilities
- Type of program (word, slides, drawings, calc, ...)
framework hOOkS Structured documents (Composite pattern)

Embeddings of all document types into other document types possible

- Language
- GuUI
%‘; _____ Product % » Visible toolbar (visibility, position) of MainToolbar, FunctionBar, ObjectBar, ColorBar,
é [Business Framework L _ roauet | § OptionBar, PresentationBar, HyperlinkBar
g | _____ Pi list v | = Views, such as StandardView, OutlineView, HandoutView
= iecelis' T
| | " GficsFromevotk " _ _ _ | Document | _ _ _
: | | g I Editor |
g l g |
2 I | S | |
é | Business Object Layout Workflow | § | |
§ - Extensi L /:)‘ _____ % Editor Layout DocumentLayout | SpellChecker |
e xtensions * angua&g SchedulirQ: = _ _ _ - —
& ElDimenSionaLT — »| Toolbars * Language Language
Framework | View *
&rin-T--H
@ Cy— —— — Language |
GEBOS BanRing Layered Framework Relations Extensibility Patterns
83 'l » If atemplate class of a framework hook has several hook 84 5
. iali rox isitor
classes (e.g., as an n-Bridge), then the Framework becomes Specialized Patterns Y
layered
e (ot ooz

[| T |ObjectRecursion
TechnicalKernel

|

I

Chai
an Observer

Composite Dimensional

ClassHierarchies

o
0
@
g
2
'
45' XI
-~

'<+'

hn, Design Patterns and Frameworks

Prof. Uwe ABmann, Design Patterns and Framew

Banking Objects Banking Values Folders | | [
— —
|L§yeTed_ [:::t'il:)ensss ValueHierarchy TechnicalFolders || ! TH Pattern
F‘g(ameworkﬂ’ - - - |
| ST--H | Application * v
n_; —— ~<_ | knowledge | _ |

Framework Patterns Connection
T--H Pattern

Recursive
H<=T Pattern

D)

Summary

The End

85

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» When overlayed with a T--H metapattern, a design pattern
becomes a framework hook pattern for the interface of a
framework

» These are mini-connectors between a framework and its
application classes

- More flexible that just generic classes (generic frameworks) or
delegation (blackbox) or inheritance (whitebox)

» The framework hook patterns determine very precisely how a
framework is to be instantiated
» There are more kinds of dimensional frameworks
- Dimensional T—H (n-Bridge LF), H<=T, TH, T>H dimensional
frameworks
» 1-T&H framework hook patterns can be used for variability of
the framework

» n-T&H for extensibility.

86

Prof. Uwe ABmann, Design Patterns and Frameworks

=)

