
Design Patterns and Frameworks, © Prof. Uwe Aßmann

1

14. The Tools And Materials
Architectural Style and
Pattern Language (TAM)

Prof. Dr. U. Aßmann
Chair for Software Engineering

Faculty of Informatics
Dresden University of Technology

13-0.1, 12/28/13

1) Tools and Materials - the metaphor
2) Tool construction
3) The environment

1) Material constraints
4) TAM and layered frameworks

This pattern language is one basic strand in the course
“Metamodelling and Software Tools” (Winter Term). Welcome! P

ro
f.

U
w

e
A

ß
m

a
n

n,
 D

e
si

g
n

P
a

tte
rn

s
an

d
 F

ra
m

ew
or

k s

2

Literature

► D. Riehle, H. Züllighoven. A Pattern Language for Tool Construction
and Integration Based on the Tools&Materials Metaphor. PLOP I,
1995, Addison-Wesley.

► JWAM: Still available on Sourceforge
http://sourceforge.net/projects/jwamtoolconstr/

– A copy of jwam.org is in the Internet Archive, also literature
– http://web.archive.org/web/20041009212341/www.jwam.org/engl/produk

t/e_literature.htm
– Thanks to Moritz Bartl!

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

3

Literature

► D. Riehle, H. Züllighoven. A Pattern Language for Tool Construction
and Integration Based on the Tools&Materials Metaphor. PLOP I,
1995, Addison-Wesley.

► JWAM: Still available on Sourceforge
http://sourceforge.net/projects/jwamtoolconstr/

– A copy of jwam.org is in the Internet Archive, also literature
– http://web.archive.org/web/20041009212341/www.jwam.org/engl/produk

t/e_literature.htm
– Thanks to Moritz Bartl!

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

4

Secondary Literature

► Heinz Züllighoven et.al. The object-oriented construction handbook.
Morgan Kaufmann Publishers, 2004. The TAM explained in detail.

► In German: Heinz Züllighoven et.al. Das objektorientierte
Konstruktionshandbuch – nach dem Werkzeug und Material-Ansatz.
Dpunkt-Verlag, Heidelberg, 1998.

► D. Riehle. Framework Design – A Role Modeling Approach. PhD
thesis 13509, ETH Zürich, 2000. Available at http://www.riehle.org.

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

5

Exam Questions (Examples)

► What are the central metaphors of the Tools-and-Materials
architectural style?

► Explain tool-material collaboration. Which roles do role models play?
► How are tools structured?
► How is TAM arranged as a layered framework?

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

6

Why Do People Prefer to Use Certain
Software Systems?

► People should feel that they are competent to do certain tasks
► No fixed workflow, but flexible arrangements with tools

– Domain office software, interactive software

► People should decide on how to organize their work and environment
► People want to work incrementally, in piecemeal growth

Design Patterns and Frameworks, © Prof. Uwe Aßmann

7

14.1 Elements of “Tools and
Materials”

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

8

The Central T&M Metaphor

► Tools and Materials pattern language T&M
– Werkzeug und Material (WAM)
– Craftsmanship: Craftsmen use tools to work on material

► People use tools in their everyday work: Tools are means of work
– People use tools to work on material

► T&M-collaboration: Tools and materials are in relation
► Environment: Craftsmen work in an environment

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

9

And 3-Tier Architectures?

► Another popular architectural style for interactive applications is 3-tier
architecture

► However, the 3-tiers are so coarse-grained that they do not really help
for interactive applications

► T&M is much more detailed

User Interface

Application logic

Middleware

Data Handling

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

10

Material

► Passive entities, either values or objects
– Ex.: Forms laid out on a desktop, entries in a database, items in a worklist

► Prepared and offered for the work to be done
► Transformed and modified during the work
► Not directly accessible, only via tools

► Objects (e.g., Persons, technical
objects, Bills, Orders)

– With time and position
– Concrete, with identity
– Equality is on names
– Mutable; identity does not change
– Shared by references
– Structured (a subvalue may have

several references)

► Values (e.g., Dates, Money)
– Without time and position
– Abstract, without identity
– Equality is on value
– A value is defined or undefined,

but immutable
– Cannot be used in a shared way
– Structured (then every subvalue

has 1 reference), such as
documents

– are domain-specific, such as
business values (value objects
with value semantics)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

11

Tools

► Active entitites
– Tools are means of work. They embody the experience of how to

efficiently work with material
– Present a view on the material.
– Often visible on the desktop as wizards, active forms,..
– Tools give feedback to the user
– Tools have a state

► If well-designed, they are transparent, light-weight, and orthogonal
– However, they should not disappear, since users need to look at a tool if

they are worried

► Examples:
– Browser – Contents of a folder
– Interpreter – Code and data
– Calendar - Calendar data
– Form editor - Form

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

12

Tools vs. Material

► To say, what is a tool and what the material, depends a lot on the
concrete task (interpretation freedom)

■ Pencil -– paper
■ Pencil sharpener - pencil

► Tools can be structured
■ Supertools and subtools, according to tasks and subtasks
■ e.g., Calendar = AppointmentLister + AppointmentEditor

► In implementations, tools are a often realized as a variant of the
Command/Objectifier reified actions

■ They have a function execute()

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

13

Tools and Materials as Special Role Model

► The tool is active, has control
► The material is passive and hands out data

► We work with different tools on the same material

<<use>> Usable
Material

Using
Tool

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

14

(Work-)Environment

► The (Work-)Environment to organize the tools, materials, and T&M-
collaborations

– Tools can be created from the environment by tool factories (Factory
pattern)

– Materials can be created from the environment by material factories
– Corresponds to the metaphors of a workshop or desktop

► Environment for planning, working, arranging, space
– Several logical dimensions to arrange things

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

15

Running Example: TORA Tools

► Requirements Analysis Tool for Task-oriented Requirements Analysis
(TORA)

► Editor SANE for activity nets in requirements analysis. subtools:
■ Glossary browser Lexicon to manage glossaries about requirement

specifications
■ Canvas for the editor's graphical objects. Manipulates the editor's visible

materials (Graphical objects, GraphObj):

- Edit shapes, icons, representation

- Annotate activity nets

■ ActivityNetEditor for logical materials ActivityObj

- An ActivityObj may have several visual representations (GraphObj)

CanvasSane

ActivityNetEditor

Lexicon

Design Patterns and Frameworks, © Prof. Uwe Aßmann

16

14.2 Tool Construction

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

17

Tool-Material Collaboration Pattern

► A tool-material collaboration (T&M role model, T&M access aspect)
expresses the relation of a tool and the material

– Characterizes a tool in the context of the material
– The material in the context of a tool
– The tool's access of the material. The tool has a view on the material,

several tools have different views

► More specifically:
– A role of the material, in collaboration with a tool

● An interface of the material, visible by a tool, for a specific task
● An abstract class

– Roles of a material define the necessary operations on a material for
one specific task

● They reflect usability: how can a material be used?
● Express a tool's individual needs on a material P

ro
f.

U
w

e
A

ß
m

a
n

n,
 D

e
si

g
n

P
a

tte
rn

s
an

d
 F

ra
m

ew
or

k s

18

Tools and Their Views on Material

Tool Material
<<use>>

..able Role

Tool

Material

<<use>>
..able Role

..able Role

..able Role
Tool

Material
Client

Material
Client

Material
Client

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

20

Tools/Views/Material with ..able-Interfaces

Break
Planner

BreakPlanManagable
<<use>> <<inherit>>

Break
Planner BreakPlanPrintable

<<use>>

<<inherit>>

Storable

Editable

Viewable

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

21

Names of Roles

► The notion of a material-role helps a lot to understand the functionality
of the materials

– And helps to separate of them

► Often a “adjectified verb”, such as Listable, Editable, Browsable,
expresses the ability of a material from the perspective of a tool

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

22

Ex.: Access To Materials In TORA

► Access from tools to material via material-roles
– Main tool Sane: Storable
– Tool Canvas: Drawable, Sizable with the help of wrappers DragWrapper,

ResizeWrapper

Canvas

GraphObj
Graphical

<<use>>
<<inherit>>

Composite

Sizable

DrawableSane

DragWrapper

Tool layer Tool/Material collaboration Material layer

Storable ActivityObj

ResizeWrapper

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

23

Alternative Implementations of Tool-
Material Collaboration

► See chapter on role implementation
– Construction of roles by interfaces
– By multiple or mixin inheritance

► By ObjectAdapter pattern
► By Decorator pattern
► By Role-Object Pattern
► By GenVoca Pattern

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

24

Ex.: Tools Accessing Material Via
Decorators

Canvas

GraphObj

Graphical

<<use>>

3-D-Decorator

Sizable

Drawable

Sane

Wrappers

Tool layer Tool/Material collaboration Material
layer

Decorator

Decorated

Decorator

Decorated

► Converting roles into decorator objects

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

25

Tool Framework

Composition of a Tool and a Material
Framework With Collaboration Roles

► Since Material-roles are roles, Tool layer and Material layer can be
modeled as frameworks (which then can be composed by role
composition/use)

Subtool GraphObj

Main

Wrapper

EditObj

Material Framework

Graphical

Composite

Sizable

Drawable

Storable

Graphics
Client

Storable
Client

Drawing
Client

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

26

Tool Construction: Structured Tool Pattern

► Structured tools
– Atomic tools
– Composed tools (with subtools)
– Recursively composed tools (Composite pattern)

► Structured along the tasks
► A complex tool creates, delegates to, and coordinates its subtools

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

27

Tool Construction:
Structured Tool Pattern

► Subtools are aggregated
► A subtool can work on its own

material
– Or on the same material as a

supertool, but with fewer or
less complex roles

► Advantage: complex tools see
complex roles, simple tools
simple roles

► The role hierarchy opens
features of the material only as
needed (good information
hiding)

CalendarTool

EditorTool ListerTool

Browsable

Editable Listable

<<inherit>>

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

28

Tool Construction: Composite as Structured
Tool Pattern

► The Composite pattern can be used to build up recursive tools

TableTool

TableCellTool

AtomicCellTool

Browsable

Zoomable
Listable

Tool

AtomicTool

CompositeTool
P

ro
f.

U
w

e
A

ß
m

a
n

n,
 D

e
si

g
n

P
a

tte
rn

s
an

d
 F

ra
m

ew
or

k s

29

Tool Construction:
Separation of Function and Interaction

► Separation of function and interaction
– Separation of user interface and application logic, as in 3-tier
– Tools have one functional part and one or several interaction part

► Functional Part (FP):
– Manipulation of the material
– Access to Material via material-roles

► Interaction Part (IP):
– Reactive on user inputs
– Modeless, if possible
– Can be replaced without affecting the functional part

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

30

Interaction Part (IP) and Functional Part (FP)

Material

Graphical

<<inherit>>

Listable

Indexable

Lister-IP Lister-FP

VisualList

► FP create a new layer

GUI Business logic Material Access Material

Lister Tool

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

31

How TORA Tools Access Their Material

SaneFP

GraphObj

Graphical
<<use>>

<<inherit>>

Composite

Sizable

Drawable

Canvas-FP

Sane-IP

Canvas-IP

► Tool Sane is split into IP and FP
– Manages a frame on the screen for drawing

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

32

IP-FP TAM Refines MVC

► Tools contain
– a view (IP)
– the controller (FP)
– and the managing part of the model

► The model is split between tool-FP, material access, and material
P

ro
f.

U
w

e
A

ß
m

a
n

n,
 D

e
si

g
n

P
a

tte
rn

s
an

d
 F

ra
m

ew
or

k s

33

Coupling between Function and Interaction
With Observer

► Play-Out via Observer pattern: IP listen to FP changes and actions
► Play-In via call

Canvas-IP

GraphObj
Graphical

<<use>>
<<inherit>>

Composite

Sizable

Drawable

Canvas-FP

Sane-IP

Sane-FP

Observer

Subject

*

Observer

Subject

*

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

34

Coupling between Subtool-FP and
Supertool-FP

► Vertical tool decomposition by structuring into subtools with Bridge,
Composite, Bureaucracy

► Horizontal tool decomposition into IP and FP
► How to add new subtools at runtime?

– Decomposition should be extensible
● Vertically: for Composite, this is the case
● Horizontally, Observer serves for extensibility

– Communication should be extensible (next slide)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

35

Symmetric Coupling between Subtools
and Supertools by Observer

► Vertical Observer: Supertools are notified from subtools if something
changes

Canvas-IP

GraphObj

Graphical

<<use>>

<<inherit>>

Composite

Sizable

Drawable

Canvas-FP

Sane-IP

Sane-FP

Observer

Subject

*

Observer

Subject

*Observer

Subject

Observer

Subject

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

36

Coupling between Subtools and
Supertools By Symmetric Bureaucracy

► IP and FP hierarchy can work with a Bureaucracy each

Canvas-IP

GraphObj

Graphical

<<use>>

<<inherit>>

Composite

Sizable

Drawable

Canvas-FP

Sane-IP

Sane-FP

Observer

Subject

*

Observer

Subject

*Observer

Subject

Observer

Subject

Mediator

Colleague

Mediator

Colleague

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

37

Creation of New Subtools

► Initiated by a Super-FP, which decides to create a new sub-FP
► Steps:

– Super-FP notifies Super-IP
– Super-IP may create one or several sub-IP

● Connects them as observers to the sub-FP

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

38

Non-Symmetric Coupling between
Subtools and Supertools

► Super-IPs can be notified by Super-FPs
► Optimization: Several of the event channels can be coalesced for

better runtime behavior
– Merging FP and IP again, getting rid of Observer, but no extensibility

anymore
– Substituting events by hard-coded calls

Canvas-IP

GraphObj

Graphical

<<use>>

<<inherit>>

Composite

Sizable

Drawable

Canvas-FP

Sane-IP

Sane-FP

Observer

Subject

*

Observer

Subject

*

Observer

Subject

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

39

Example:
Generic Editor and Lister Framework

► Supertools are notified from subtools if something changes
► Can be used for every editor and lister of material

Editor-IP

Material

Graphical

<<use>>

<<inherit>>

Composite

Listable

Editor-FP

Tool-IP

Tool-FP

Observer

Subject

*

Observer

Subject

*Observer

Subject

Observer

Subject

Lister-IP

Lister-FP
Editable

Observer

Subject
*

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

40

Instantiated to a Calendar Editor and Lister
Tool

► Supertools are notified from subtools if something changes

CalEditor-IP

Dates

Graphical<<use>>

<<inherit>>

Composite

Listable

CalEditor-FP

Calendar-IP

Calendar-FP

Observer

Subject

*

Observer

Subject

*Observer

Subject

Observer

Subject

CalLister-IP

CalLister-FP
Editable

Observer

Subject
*

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

41

GraphObj

EditObj

Material Framework

Graphical

Composite

Sizable

Drawable

Storable

FP Framework

The Generic Editor in Framework Notation

Editor-IP

Editor-FP

Tool-IP

Tool-FP

Observer

Subject

*

Observer

Subject

*Observer

Subject

Observer

Subject

Lister-IP

Lister-FP

Observer

Subject
*

IP Framework

Client

Client

Client

Design Patterns and Frameworks, © Prof. Uwe Aßmann

42

14.3 TAM Environment

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

43

The Environment

► Tools and Materials live in an environment with
– Tool coordinators
– Material administrations
– Event coordinators

► The environment initializes everything, displays everything on the
desktop, and waits for tool launch

MaterialAdministration

TAMEnvironment

ToolCoordinator

Tools Materia
l

EventCoordinator

Events

* * *

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

44

Tool Coordinator in the Tol
Environment

► The Tool Coordinator is a global object
– Groups a set of tools and their related material

– Contains
● A Tool-Material dictionary of all tools and the materials they work

on
● A tool factory

► Is a Mediator between FPs and other tools
– Usually, FPs talk to their supertools and their related IPs. When

materials depend on other materials in complex ways, other tools have
to be informed

– The ToolCoordinator uses the Tool-Material dictionary to notify tools
appropriately

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

45

Example: TORA Tool Coordinator

Actifity-FP

Sane-FP

Tool
Coordinator

Editor-FP

Lexicon-FP

Object
Lexicon

Sane

(Central) Mediator

Colleague

Colleague

Colleague

Colleague

T&M Group

Design Patterns and Frameworks, © Prof. Uwe Aßmann

46

14.3.1. Pattern: Constrained
Material Container

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

47

Problem: Dependencies Among Materials

► Materials may depend on each other
► Example MeetingScheduler

– Maintains regular meeting dates (week, month, year)
– Should collaborate with the Calendar tool that maintains individual dates

► Clearly, these materials are dependent on each other
– The Calendar tool should take in meetings as individual dates
– The MeetingScheduler should block meetings if individual dates appear

in the calendar

MeetingDateScheduler-FP

Tool
Coordinator

IndividualDateCalendar-FP

Calendar

MeetingScheduler

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

48

Pattern: Constrained Material Container

► We group all material that depend on each other into one Material container
– And associate a constraint object InSaneConstraint that maintains the dependencies

– The constraint object is a Strategy for controlling the dependencies of the Material

SchedEditor-FP

Scheduler-FP

Tool
Coordinator

CalEditor-FP

Calendar-FP

Calendar

MeetingSchedular

Mediator

Colleague

Colleague

Colleague

Colleague

T&M Group

MeetingDate

IndividualDate

InSane
Constraint

Material
Container

Strategy P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

49

Tool Coordinator and Material Container

► Unfortunately, Constrained Material Containers of the group must
query the dictionary of the Tool Coordinator,

– to know about the currently available tools, to activate constraints
– (which introduces an ugly dependency between them...)

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

50

Example:
How TORA Tools Access Their Material

GraphObjStorable

ActivityObj

Lexicon
Obj

InSane
Constraint

Actifity-FP

Sane-FP

Material
Container

TORA Tool
Coordinator

Editor-FP

Lexicon-FP

Object
Lexicon

Sane

Mediator

Colleague

Colleague

Colleague

Colleague

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

51

TORA Material Constraints

► For each ActivityObj, there is a LexiconObj
– The user can textually edit the LexiconObj to document the ActivityObj

and the GraphObj

► All Materials are in a MaterialContainer
– Uses a ConstraintObject InSaneConstraint to make sur that the label of

the ActivityObj is always the same as that of the LexiconObj

► If an ActivityObj is created, deleted, or changed, the tool coordinator is
informed

– And informs all related tools of TORA
– The tool coordinator is a mediator

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

52

Automaton

► An automaton (interpreter, workflow engine) is an automated tool for
repeated tasks

– Similar to a macro-tool, a variant of Design Pattern Interpreter
– Can run in the background
– Often realized as separate machine processes

► An automaton encapsulates an automated workflow (or process)
– Production of a complex artifact
– Storing a complex technical object
– Producing data in different versions

► Workflow can be specified by statecharts, activity diagrams, data-flow
diagrams, Petrinets, workflow languages

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

53

An Automaton Booking Calendar Dates

► The Automaton books regular meetings as dates into the calendar

SchedEditor-FP

Scheduler-FP

Tool
Coordinator

CalEditor-FP

Calendar-FP

Calendar

MeetingSchedular

Mediator

Colleague
Colleague

Colleague

Colleague MeetingDate

IndividualDate

InSane
Constraint

Material
Container

Booking
Automaton

Colleague

Design Patterns and Frameworks, © Prof. Uwe Aßmann

54

14.4 TAM and Layered
Frameworks

Now, let's order the patterns of TAM into layers
What happens?

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

55

TAM and Layered Frameworks

SchedEditor-FP

Scheduler-FP

Tool
Coordinator

CalEditor-FP

Calendar-FP
Calendar

MeetingDateIndividualDate

InSane
Constraint

Material
Container

Booking
Automaton

Materia
l

Material Access
EditableListable

Material Containers
(Dependencies)

Functional Parts

SchedEditor-IP

Scheduler-IP

CalEditor-IP

Calendar-IP

Interaction Parts
Observer

Observer

Observer

Observer

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

56

TAM and Layered Frameworks

SchedEditor-FP

Scheduler-FP

Tool
Coordinator

CalEditor-FP

Calendar-FP
Calendar

MeetingDateIndividualDate

InSane
Constraint

Material
Container

Booking
Automaton

Materia
l

EditableListable

Material Containers
(Dependencies)

Functional Parts

SchedEditor-IP

Scheduler-IP

CalEditor-IP

Calendar-IP

Interaction Parts
Observer

Observer

Observer

Observer
P

ro
f.

U
w

e
A

ß
m

a
n

n,
 D

e
si

g
n

P
a

tte
rn

s
an

d
 F

ra
m

ew
or

k s

57

TAM and Layered Frameworks

MeetingDateIndividualDate

Material
Container2

Materia
l

EditableListable

Material Containers
(Dependencies)

Functional Parts Scheduler-FP

Scheduler-IPCalendar-IPInteraction Parts

Observer Observer

Calendar-FP

Material
Container1

Subject Subject

Material2Material1

Material
Use2

Material
Use1

n-T—H
Observer

n-T—H
Bridge

n-T—H
Bridge

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

58

TAM Is a Variant of a Layered Framework

► Combining different miniconnectors between the layers
– n-T—H Observer between IP and FP
– n-T—H Bridge between FP and MaterialUse
– n-T—H Bridge between MaterialUse and Material, with roles as access

for material

► Hence, interactive applications can be seen as instances of a layered
framework

– That uses not only RoleObject as mini-connectors, but also Observer
and Bridge.

– Hence the analogy to 3-tier

► This gives hope that we can construct layered frameworks for
interactive applications in the future!

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

59

Summary

► The T&M conceptual pattern is a very important pattern for object-
oriented development; all classes fall into these categories

► T&M is a pattern language for constructing interactive applications
– Refines 3-tier and MVC
– Uses Command, Strategy, Observer, Composite, etc.
– Defines several new complex patterns such as Separation of IP and FP

► TAM is a variant of a layered framework, using n-T—H miniconnectors
(Observer, Bridge) between the layers

– Pree's framework hook patterns play an important role

P
ro

f.
U

w
e

A
ß

m
a

n
n,

 D
e

si
g

n
P

a
tte

rn
s

an
d

 F
ra

m
ew

or
k s

60

The End

