22. The San Francisco (SF) Framework

J for Business Applications

Prof. Dr. U. ABmann 1) Architecture of SF
Chair for Software 2) Extensibility Mechanisms
Engineering

_ 3) Special SF Patterns
Faculty of Informatics

Dresden University of
Technology

13-1.0, 1/2/14

Design Patterns and Frameworks, © Prof. Uwe ABmann

San Francisco — Non-Obl. Literature

San Francisco — Obligatory Literature

Prof. Uwe ABmann, Design Patterns and Frameworks

=)

» K.A. Bohrer: Architecture of the San Francisco frameworks
http://researchweb.watson.ibm.com/journal/sj/372/bohrer.html

What is San Francisco (SF)?

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» P. Monday, J. Carey, M. Dangler. SanFrancisco Component Framework: an
introduction. Addison-Wesley, 2000. Overview on San Francisco and its
layered architecture.

» J. Carey et al.: SanFrancisco Design Patterns: blueprints for business
software. Addison-Wesley, 2000.

» Carey, Carlson, "Framework Process Patterns: Lessons Learned
Developing Application Frameworks", Addison-Wesley, 2002

» Carey, Carlson, Graser, "SanFrancisco Design Patterns: Blueprints
for Business Patterns”, Addison-Wesley, 2000.

» |IBM SanFrancisco Documentation Entry
http://csiserv0l.centerprise.com/techdoc/SF/doc_en/ibmsf.sf.FS_DocumentationEntry.html

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» Business framework of IBM, to support the building of business applications
= started in March 1995, initial release Aug 1997, stopped in 1999
» Arranged as layered frameworks
- Supporting distributed applications
» Based on business-specific Design Patterns
» Design goals
= flexibility by using object-oriented framework technology
= Dynamic extensibility
= Maximal reuse
= |solation from underlying technology
= Focus on the core, provide the common tasks of every business application
= Rapidly building quality applications
= |ntegration with existing systems

San Francisco Architecture

Common Business Objects (from the Domain
Model)

| Common Functions Financial Interface (CFFI)

5 || » Foundation: infrastructure and services (transactions, collections, administration, conflict 6 || » General business objects: » Financial business objects
control, mstalla'tlon), h|defs dn‘re.rences in un'derlymg tec.hnology. - Value objects: Address, = Value objects: Money, currency
> g::gc;ndg::gizess Objects: implementations of business objects that are common to more currency, natural calendar gain
-

» Core Business Processes: business objects and default business logic for selected vertical - Company ACC(_)unt’ loss acc9unt
domains (accounts receivable/accounts payable, general ledger, ord‘er management = Business partner, customer » Generalized mechanisms
warehouse management) P = Decimal structure of numbers, = Cached balances

_ % number series generator « Classification
e el [— g = Document location = Keys and Keyables
Core Business Processes E = Fiscal calendar
Order Customer 5 = Initials
ciEEE ARIAP Solutions g
Ledger Mgmt Ledger < = Payment method and payment
”””””””””””” 2 terms
Warehouse g .
Mgmt £ = Unit of measure
&
<
o
3
B
o

Prof. Uwe ABmann, Design Patterns and Frameworks

Common Business Objects

Foundation

Java

‘ Dangler]

Component Model of SF: Entity
(Dynamically Extensible Classes)

Core Business Processes

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» Entities: Dynamically extensible »
components in SF

= materials, also persistent

= with global identifiers (handles,

guids)

= Created via factories, entered
into containers
= Split into interface class and
implementation class

» Entities are similar to Java Entity

Beans.

>

= Hence, IBM started a move to

port onto EJB, but this was

very difficult

Standard Functions:

constructor (factory method). Calls
a global factory

initialize
getters and setters

set ownership of an entity (to an
entity container)

destroy
externalizeToStream
internalizeFromStream

Global functions:

begin, commit, rollback transaction
Manage work area for a thread

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» Common Function Financial Interface (CFFI): common functionality used by
other business processes
» Warehouse management
= Stock movements
= Quality control
» Order management (sales, purchase)
= Order data interchange planning
= Pricing, discounts, order acknowledgment
» Accounts payable (AP), Accounts receivable (AR)
= Payment process
= Business task transfer to other partners
» General ledger
= Journaling (creating, validating, maintaining journals)
= Closing at the end of a financial year

J 22.1 Extending San Francisco

= Dynamic Extension of
= Classes by dynamic subclassing
= Obiject life cycles by state maschine extension
= Business rules

@ Design Patterns and Frameworks, © Prof. Uwe ABmann

Dynamic Class Extension by Pattern
ml| “Property Container”

22.2.1. Extending Classes by Dynamic
Subclassing

10

Prof. Uwe ABmann, Design Patterns and Frameworks

=)

Business objects are extensible by subclassing (white-box extension)
Classes can be marked as extension points inheriting from Entity

= Naming scheme E<number>_<name>
Subclasses of class PropertyContainer are extensible via a special Design
Pattern

= New attributes (properties) can be added dynamically, without recompilation.
Access works via hash tables

Dynamic identifiers for extending value ranges of business value domains

Propert .
p.ry —[> Entity
Container is-a
| is-a
is-a is-a
Person Customer Vendor ™ Company
N .
\ extends dynamically
Premium | _____ i Long-Term i
i Behavior | extendsi Behavior ‘i "

How SF Should have Been:
Dynamic Extension by Roles

11 || > Intent: dynamically extend an instance of class (a business object class) with

new properties (dynamically new attributes)

» Motivation: adding dynamically new data, properties or capabilities to

specific instances of business objects
- Qualified association with key “propertyname:String”
» Related Patterns: Chain of Responsibility, Controller

PropertyContainer

T

Property

DomainBusinessObject propertyname:String o

Prof. Uwe ABmann, Design Patterns and Frameworks

&

Prof. Uwe ABmann, Design Patterns and Frameworks

&

Class modeling does not distinguish roles (context-based und non-rigid
knowledge)

Roles separate the functional core iof an object of the context-specific
(founded) und temporary (non-rigid) features

Property
Container
I\ is-a
is-a is-a
Person] Customer Vendor Company
A .
1 extends dynamically
......................... T SICTI,
Premium i _____ i Long-Term :
i Behavior i i Behavior i
LR extends bt
dynamically
12

How SF Should have Been:
Dynamic Extension by Roles

22.2.2 Lifecycle of Business Objects
(Business Workflow, Process)

13

Prof. Uwe ABmann, Design Patterns and Frameworks

&

> Property Container is not
necessary, because roles add
properties to core objects

> Dynamic class inheritance is
replaced by <<plays-a>>

Property
| container |

| is-a

A

-
Premium Long - Term
(__Customer l is-a | Customer

plays-a plays-a
Person | -—-- ->[Customer]—[Vendor]<' ==

Company

13

SF Business Objects are Context-Adaptive

(Cyclic) Automata

14

Prof. Uwe ABmann, Design Patterns and Frameworks

=)

» Abusiness workflow in SanFrancisco is described by an extensible state
machine (statechart)
= However, in the form of a state transition and decision table

= The table rows contain conditions and actions (CA-Rules) and change the state
of the process

» The statechart can be extended dynamically with new paths
= As an action, a transition can extend the statechart (or shrink it)

E/extendStatechart(i)

/shrinkStatechart(i)

22.2.3. Representing Extensible Business
Rules by Policy Classes

15

Prof. Uwe ABmann, Design Patterns and Frameworks

&

S

[

Premium . Long Term
Customer Customer

I1s-a

plays-a (plays-a
Person [===> Customer]—[Vendor]<- ==
>

Company

16

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» Policy Patterns is an extensibility pattern to implement business rules

- Policy classes implement business rules a Strategy (TemplateClass)
Pattern as extension points

- ChainOfResponsibility as extension points (for multiple policy objects and
multiple business rules), e.qg., for specific rules of product, system, company,
globally

- Composite as extension points: Policies may be added that search for
policies (higher-order policies) in composite data structures

Simple Policy Pattern (for Simple Business
Rule)

Chain-Of-Responsibility-Policy Pattern

17

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» Intent: encapsulate business rule as a set of methods in an object, make
them interchangeable and produce independence from affected business
objects

» Motivation: different versions of a algorithm are required dependent on the
specific situation in a company

» Related Patterns: Simple Policy is a Strategy. Additionally, the strategy
method implements a method in the domain business objects with the same
name (method factoring). Hence, the BO delegates the computation of the
business rule to the strategy

StandardPolicyA

DomainBusinessObject SimplePolicy //
domainMethod() domainMethod()

StandardPolicyB

J 22.3 San Francisco Design Patterns

19

= San Francisco uses several new
business-related Design Patterns meeting
particular problems of business
applications

- analyzing typical business applications and
developing generic solutions for recurring
problems

- encourage object-oriented implementation of
business software

- several patterns for several aspects of
business tasks

Design Patterns and Frameworks, © Prof. Uwe ABmann

Prof. Uwe ABmann, Design Patterns and Frameworks

=)

> Intent: encapsulate complex business rule(s) as a chain-of-responsibility

» Motivation: many rules are available for a business case and must be
exchanged dynamically.

» Related Patterns: A typical 1-TH-pattern. COR-Policy is a Chain, combined
with a Strategy. The Chain is searched for appropriate rules that apply to the
current state of business.

= Search order can be changed by higher-order policies

next D StandardPolicyA

DomainBusi Obj CORPoli
tomaln usinessObjec d .Ol\'/lc);h . A/
omainMetho
domainMethod()) V\ StandardPolicyB

SF Design Patterns

o
20 || Foundational Patterns: Behavioral Patterns:
- Dynamic Class Replacement - Simple Policy
- Special Class Factory - Chain of Responsibility-Driven Policy
- Property Container (extensible - Token-Driven Policy
class) Structural Patterns:
- Business Process Command - Controller
Process Patterns: - Key/Keyable
- Cached Aggregate - Generic Interface
- Keyed Attribute Retrieval Dynamic Behavioral Patterns:
- List Generation - Extensible Item

Prof. Uwe ABmann, Design Patterns and Frameworks

&

- Hierarchical Extensible Item
- Business Entity Lifecycle

- Hierarchy Information

- Decoupled Processes

Selected SF Patterns:

Dynamic Class Replacement Pattern

Selected SF Patterns: Business Process
Command

21

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» Intent: change the behavior without changing the class or application logic.
Provides a kind of super factory, a factory delivering factories

» Motivation: replace provided business objects with others that have been

tailored for a specific application

» Related Patterns: Abstract Factory and Factory Method

/

BaseFactory ?

class

SpecializedDomainClassFactory

ates after

ement Zr

DomainClassFactory creates

creates

DomainClass

SpecializedDomainClass

What Have We Learned?

Prof. Uwe ABmann, Design Patterns and Frameworks

=)

» Intent: a logical business object is implemented as multiple physical objects
and support one business process

» Moativation: encapsulating a business process (a tool) in a command, thus a
logical object combines a group of physical objects

» Related Patterns: Command, Template Method, Facade

Command ComponentBusinessClassA

T ___..-7| ComponentBusinessClassB

BusinessProcessCommand |-~

ComponentBusinessClassC

The End

23

Prof. Uwe ABmann, Design Patterns and Frameworks

&

» Big business frameworks are structured according to the principles of
variability and extensibility we have studied in the course.

» |IBM San Francisco manages extension points and types them with certain
framework hook patterns, e.g., Strategy/Policy, or Chain.

» If you ever design a business framework, do it
- Layered framework
- Roles for dynamic extension
- The SF patterns

24

Prof. Uwe ABmann, Design Patterns and Frameworks

&

