
Design Patterns and Frameworks, © Prof. Uwe Aßmann

1

22. The San Francisco (SF) Framework 
for Business Applications

Prof. Dr. U. Aßmann

Chair for Software 
Engineering

Faculty of Informatics

Dresden University of 
Technology

13-1.0, 1/2/14

1) Architecture of SF

2) Extensibility Mechanisms

3) Special SF Patterns

P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

2 ► K.A. Bohrer: Architecture of the San Francisco frameworks 
http://researchweb.watson.ibm.com/journal/sj/372/bohrer.html 

San Francisco – Obligatory Literature
P

ro
f. 

U
w

e 
A

ß
m

a
n

n,
 D

e
si

g
n  

P
a

tte
rn

s 
an

d
 F

ra
m

ew
or

k s

3 ► P. Monday, J. Carey, M. Dangler. SanFrancisco Component Framework: an 
introduction. Addison-Wesley, 2000. Overview on San Francisco and its 
layered architecture.

► J. Carey et al.: SanFrancisco Design Patterns: blueprints for business 
software. Addison-Wesley, 2000.

► Carey, Carlson, "Framework Process Patterns: Lessons Learned 
Developing Application Frameworks", Addison-Wesley, 2002

► Carey, Carlson, Graser, "SanFrancisco Design Patterns: Blueprints 
for Business Patterns", Addison-Wesley, 2000.

► IBM SanFrancisco Documentation Entry 
http://csiserv01.centerprise.com/techdoc/SF/doc_en/ibmsf.sf.FS_DocumentationEntry.html 

San Francisco – Non-Obl. Literature

P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

4

What is San Francisco (SF)?

► Business framework of IBM, to support the building of business applications
 started in March 1995, initial release Aug 1997, stopped in 1999

► Arranged as layered frameworks 
– Supporting distributed applications

► Based on business-specific Design Patterns
► Design goals

 flexibility by using object-oriented framework technology
 Dynamic extensibility
 Maximal reuse
 Isolation from underlying technology
 Focus on the core, provide the common tasks of every business application
 Rapidly building quality applications
 Integration with existing systems



P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

5 ► Foundation: infrastructure and services (transactions, collections, administration, conflict 
control, installation), hides differences in underlying technology 

► Common Business Objects: implementations of business objects that are common to more 
than one domain

► Core Business Processes: business objects and default business logic for selected vertical 
domains (accounts receivable/accounts payable, general ledger, order management 
warehouse management)

San Francisco Architecture

Java 

Foundation

Common Business Objects

Core Business Processes

Application Application

A
pplica tion

A
pplicati on

Customer
SolutionsGeneral

Ledger 

Warehouse 
Mgmt

Order 
Mgmt

AR/AP
Ledger

Common Functions Financial Interface (CFFI)

[Monday, Carey, 

Dangler]

P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

6

Common Business Objects (from the Domain 
Model)

► General business objects:
– Value objects: Address, 

currency, natural calendar 
 Company
 Business partner, customer
 Decimal structure of numbers, 

number series generator
 Document location
 Fiscal calendar
 Initials 
 Payment method and payment 

terms
 Unit of measure

► Financial business objects
 Value objects: Money, currency 

gain
 Account, loss account

► Generalized mechanisms
 Cached balances
 Classification
 Keys and Keyables

P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

7

Component Model of SF: Entity 
(Dynamically Extensible Classes)

► Entities: Dynamically extensible 
components in SF
 materials, also persistent
 with global identifiers (handles, 

guids)
 Created via factories, entered 

into containers
 Split into interface class and 

implementation class

► Entities are similar to Java Entity 
Beans. 

 Hence, IBM started a move to 
port onto EJB, but this was 
very difficult

► Standard Functions:
 constructor (factory method). Calls 

a global factory
 initialize
 getters and setters
 set ownership of an entity (to an 

entity container)
 destroy
 externalizeToStream
 internalizeFromStream

► Global functions:
 begin, commit, rollback transaction
 Manage work area for a thread

P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

8

Core Business Processes

► Common Function Financial Interface (CFFI): common functionality used by 
other business processes

► Warehouse management
 Stock movements
 Quality control

► Order management (sales, purchase)
 Order data interchange planning
 Pricing, discounts, order acknowledgment

► Accounts payable (AP), Accounts receivable (AR)
 Payment process
 Business task transfer to other partners

► General ledger
 Journaling (creating, validating, maintaining journals)
 Closing at the end of a financial year



Design Patterns and Frameworks, © Prof. Uwe Aßmann

9

22.1 Extending San Francisco

 Dynamic Extension of 
■ Classes by dynamic subclassing
■ Object life cycles by state maschine extension
■ Business rules

P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

10 ► Business objects are extensible by subclassing (white-box extension)
► Classes can be marked as extension points inheriting from Entity

 Naming scheme E<number>_<name>

► Subclasses of class PropertyContainer are extensible via a special Design 
Pattern

 New attributes (properties) can be added dynamically, without recompilation. 
Access works via hash tables

► Dynamic identifiers  for extending value ranges of business value domains

22.2.1. Extending Classes by Dynamic 
Subclassing

is-a

Property
Container

Person Customer

Long-Term
Behavior

Premium
Behavior

is-a
CompanyVendor

is-a

extends
dynamically

extends dynamically

10

is-a
Entity

P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

11 ► Intent: dynamically extend an instance of class (a business object class) with 
new properties (dynamically new attributes)

► Motivation: adding dynamically new data, properties or capabilities to 
specific instances of business objects

– Qualified association with key “propertyname:String”

► Related Patterns: Chain of Responsibility, Controller

PropertyContainer

DomainBusinessObject propertyname:String
0..*

Property

Dynamic Class Extension by Pattern 
“Property Container”

P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

12

How SF Should have Been: 
Dynamic Extension by Roles

► Class modeling does not distinguish roles (context-based und non-rigid 
knowledge)

► Roles separate the functional core iof an object of the context-specific 
(founded) und temporary (non-rigid) features

12

Person Customer

Long-Term
Behavior

Premium
Behavior

is-a
CompanyVendor

is-a

extends
dynamically

extends dynamically

is-a

Property
Container



P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

13

How SF Should have Been: 
Dynamic Extension by Roles

► Property Container is not 
necessary, because roles add 
properties to core objects

► Dynamic class inheritance is 
replaced by <<plays-a>>

13

is-a

plays-a

Person CompanyCustomerCustomer VendorVendor
plays-a

Long - Term
Customer

Long - Term
Customer

Premium
Customer

Premium
Customer

is-a

is-a

Property
Container

P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

14

22.2.2 Lifecycle of Business Objects 
(Business Workflow, Process)

► A business workflow in SanFrancisco is described by an extensible state 
machine (statechart)

 However, in the form of a state transition and decision table
 The table rows contain conditions and actions (CA-Rules) and change the state 

of the process

► The statechart can be extended dynamically with new paths
 As an action, a transition can extend the statechart (or shrink it)

E/extendStatechart(i) E/extendStatechart(i)

E/shrinkStatechart(i)E/shrinkStatechart(i)

P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

15

SF Business Objects are Context-Adaptive 
(Cyclic) Automata

is-a

plays-a

Person CompanyCustomerCustomer VendorVendor
plays-a

Long - Term
Customer

Long - Term
Customer

Premium
Customer

Premium
Customer

is-a

P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

16 ► Policy Patterns is an extensibility pattern to implement business rules
– Policy classes implement business rules a Strategy (TemplateClass) 

Pattern as extension points
– ChainOfResponsibility as extension points (for multiple policy objects and 

multiple business rules), e.g., for specific rules of product, system, company, 
globally

– Composite as extension points:  Policies may be added that search for 
policies (higher-order policies) in composite data structures

22.2.3. Representing Extensible Business 
Rules by Policy Classes



P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

17 ► Intent: encapsulate business rule as a set of methods in an object, make 
them interchangeable and produce independence from affected business 
objects

► Motivation: different versions of a algorithm are required dependent on the 
specific situation in a company

► Related Patterns: Simple Policy is a Strategy. Additionally, the strategy 
method implements a method in the domain business objects with the same 
name (method factoring). Hence, the BO delegates the computation of the 
business rule to the strategy

DomainBusinessObject

domainMethod()

StandardPolicyA

StandardPolicyB

SimplePolicy

domainMethod()

Simple Policy Pattern (for Simple Business 
Rule)

P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

18 ► Intent: encapsulate complex business rule(s) as a chain-of-responsibility
► Motivation: many rules are available for a business case and must be 

exchanged dynamically.
► Related Patterns: A typical 1-TH-pattern. COR-Policy is a Chain, combined 

with a Strategy. The Chain is searched for appropriate rules that apply to the 
current state of business. 

 Search order can be changed by higher-order policies

DomainBusinessObjec
t

domainMethod()

StandardPolicyA

StandardPolicyB

CORPolicy

domainMethod(
)

Chain-Of-Responsibility-Policy Pattern

next 1

Design Patterns and Frameworks, © Prof. Uwe Aßmann

19
 San Francisco uses several new 

business-related Design Patterns meeting 
particular problems of business 
applications

– analyzing typical business applications and 
developing generic solutions for recurring 
problems

– encourage object-oriented implementation of 
business software

– several patterns for several aspects of 
business tasks

22.3 San Francisco Design Patterns

P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

20 Foundational Patterns:

- Dynamic Class Replacement

- Special Class Factory

- Property Container (extensible 
class)

- Business Process Command

Process Patterns:

- Cached Aggregate

- Keyed Attribute Retrieval

- List Generation

SF Design Patterns

Behavioral Patterns:

- Simple Policy

- Chain of Responsibility-Driven Policy

- Token-Driven Policy

Structural Patterns:

- Controller

- Key/Keyable

- Generic Interface

Dynamic Behavioral Patterns:

- Extensible Item

- Hierarchical Extensible Item

- Business Entity Lifecycle

- Hierarchy Information

- Decoupled Processes



P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

21 ► Intent: change the behavior without changing the class or application logic. 
Provides a kind of super factory, a factory delivering factories

► Motivation: replace provided business objects with others that have been 
tailored for a specific application

► Related Patterns: Abstract Factory and Factory Method

SpecializedDomainClassFactory SpecializedDomainClass

DomainClassFactory DomainClass

creates

creates

creates after
class replacement

BaseFactory

Selected SF Patterns: 
Dynamic Class Replacement Pattern

P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

22 ► Intent: a logical business object is implemented as multiple physical objects 
and support one business process

► Motivation: encapsulating a business process (a tool) in a command, thus a 
logical object combines a group of physical objects

► Related Patterns: Command, Template Method, Facade

BusinessProcessCommand

ComponentBusinessClassC

Command

ComponentBusinessClassB

ComponentBusinessClassA

Selected SF Patterns: Business Process 
Command

P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

23

What Have We Learned?

► Big business frameworks are structured according to the principles of 
variability and extensibility we have studied in the course.

► IBM San Francisco manages extension points and types them with certain 
framework hook patterns, e.g., Strategy/Policy, or Chain.

► If you ever design a business framework, do it
– Layered framework
– Roles for dynamic extension
– The SF patterns 

P
ro

f. 
U

w
e 

A
ß

m
a

n
n,

 D
e

si
g

n  
P

a
tte

rn
s 

an
d

 F
ra

m
ew

or
k s

24

The End


