
DPF EXCERCISE #6

Patterns for Architectural Mismatch
TUD, ST Group

Dr. Sebastian Götz



Task #1 – Medi(t)ative Air

 Design an application which enables you to book the cheapest flight 

to a destination of your choice out of a number of providers.

Assume, every provider is known in advance, and implements an interface 
IFlightProvider, which provides operations for querying for a connection, and for 

booking a flight. Develop an architecture which enables clients to interface to these 

providers and book the cheapest flight on offer for the destination and date they are 

interested in. 

• Flight providers should require (and receive) no knowledge on other flight providers 

known to the system. 

• Also, clients should not need to know which flight providers are registered with the 

system.

Which design pattern could you use?



Task #1 – Medi(t)ative Air

Client FlightMediator

getOffer(…)

bookOffer(…)

FlightOfferComparer

selectOffer(…)

<<interface>>

IFlightProvider

getOffer(…)

bookOffer(…)

MyFlightProvider

1

1..*

1b) Many airlines offer on-line booking services 

as web services. How can you incorporate such 

an airline as a flight provider?

ToSOAPAdapter

getOffer(…)

bookOffer(…)

FlightProviderWS

Search(…)

Book(..)

1



Task #2 – Raytracer

 Ray tracing is a rather complex technique. It consists of a number of 

steps from parsing a scene-graph description (often called a 

‘script’), building a scene-graph instance in memory, optimizing the 

scene graph, tracing rays through all pixels of the target image, 

possibly oversampling to provide anti-aliasing, to actually rendering 

the image; that is, transforming the ray color values into the value 

range of image color values. On the other hand, as a client all you 

want to do is provide a script and obtain an image.

Which design pattern can be used ?



Facade Pattern

Facade



Task #3: Pattern Relations

 Compare Template Method and Template 

Class. What do they have in common, what is 

the major difference? How do they achieve 

variability? What is their relation to the 

Template Hook and the Objectifier patterns?

Template

Method

Objectifier

Template

Class
+



Task #3: Pattern Relations

 Compare the extensibility patterns Decorator, 

Composite, Chain of Responsibility, and 

Observer. What are the mechanisms through 

which they achieve extensibility? Why does 

Proxy not provide extensibility? What is the 

relation of these patterns to Template Class 

and Object Recursion?



Task #3: Pattern Relations

Two ways to achieve extensibility:

*-Multiplicity Recursive Reference

Observer

Decorator

Composite

Chain of Responsibility

Object Recursion

Proxy



Task #3: Pattern Relations

 Now compare the architecture-glue patterns 

Adapter, Facade, and Mediator. How do they 

cope with architectural mismatch? How do 

they compare to the variability and extensibility 

patterns?

All patterns base on Template Cass, but have the intent to perform semantic 

mappings of interfaces.



Task #3: Pattern Relations

Sketch a chart of the relations between the
design patterns Template Method, Template
Class, Objectifier, Bridge, Strategy, State,
Visitor, Proxy, Adapter, Facade, Mediator,
Object Recursion, Decorator, Composite,
Chain of Responsibility, and Observer. Use
arrows to indicate specialization (based on class
structure, behavior, or intent) and introduce
additional helper concepts if you need them to
represent commonalities which have not yet
been abstracted into an individual pattern.



Task #3: Pattern Relations


