
DPF EXCERCISE #8

Role Modelling
TUD, ST Group

Dr. Sebastian Götz

A Role Modelling Example

The Horse Show2

© Dr. Sebastian Götz - Design Patterns & Frameworks - WS 2013/14 - Excercise #8

Task #1 – The Horse Show

You are to develop software for the management of horse shows.

In the world of horse shows, there are horses and riders who together

obtain a starting number, with which they can inscribe for

examinations, which are managed by referees.

Of course, because the average horse show takes about two to three

days, both horses and riders need a place to stay. It is one of the tasks

of the organization team to provide accommodation for horses and

riders.

1. Draw an object-oriented design model.

2. Identify problems of this design.

3. Draw a role-oriented design model.

3

© Dr. Sebastian Götz - Design Patterns & Frameworks - WS 2013/14 - Excercise #8

Task #1 – The Horse Show

Horse

run()

Rider/Guest

ride()

pay()

Accomodation

HotelShed

*

*

1 1

Room

1

1

Team

StartNumber

Exam
1..*1..*

11

Show
1..* 1

4

© Dr. Sebastian Götz - Design Patterns & Frameworks - WS 2013/14 - Excercise #8

Task #1 – The Horse Show

Horse

run()

Rider/Guest

ride()

pay()

Team

StartNumber

Accomodation

Exam
1..*1..*

11

HotelShed

*

*

1 1

The model covers

two collaborations

of rider and horse:

1. Exams and

2. Accomodation.Room

1

1

Show
1..* 1

5

© Dr. Sebastian Götz - Design Patterns & Frameworks - WS 2013/14 - Excercise #8

Task #1 – The Horse Show

 Problems of this solution

 Classic SE problems

 Extensibility

 Variability

Maintainability

 Specific Problem: Lack of knowledge expressed

Many aspects of the domain are not covered

 Required for a working MDA!

6

© Dr. Sebastian Götz - Design Patterns & Frameworks - WS 2013/14 - Excercise #8

Task #1 – The Horse Show

 Class vs. Object Model
 Inheritance denotes a subset relation ()

 Stable  Accomodation

 Hotel  Accomodation

 Instance-of denotes an element-of relation ()
 „Sunset Hotel, 3820 NY“  Hotel

 „Sunset Hotel, 3820 NY“  Accomodation

 In OO, objects have an identity!

 Compartments (part-of) denote complex objects (sets)
 They define a special set of objects

 The whole depends existencially on its parts

 The identity of the whole is composed of the identity of its parts
 There is no team without a horse and a rider

 But, horse and rider can exist without being a team

7

© Dr. Sebastian Götz - Design Patterns & Frameworks - WS 2013/14 - Excercise #8

Task #1 – The Horse Show

Jacqueline : Horse Horst : Person

Accomodation

1024: Room

x : Shed
sunset : Hotel

Chantal : Horse Karl : Person

2431: Room

Inheritance Set

8

© Dr. Sebastian Götz - Design Patterns & Frameworks - WS 2013/14 - Excercise #8

Task #1 – The Horse Show

Team #7

Team #13

Jacqueline : Horse Horst : Person

Accomodation

1st Round: Exam

1024: Room

x : Shed
sunset : Hotel

Chantal : Horse Karl : Person

2431: Room

2nd Round: Exam

Inheritance Set

Compartment Set

9

© Dr. Sebastian Götz - Design Patterns & Frameworks - WS 2013/14 - Excercise #8

Task #1 – The Horse Show

The system we model describes at least two collaborations:

1. Accomodation: Persons and Horses staying in a hotel or shed

2. Examinations: Persons with Horses participate in examinations

The objects in our diagram take part in these collaborations at different times.

Problem: Code for both collaborations will be intertwined (tangled)

 bad extensibility, maintainability, etc.

Goal: Separation of Concerns (here collaborations)

 Collaborations can be formalized by role models!

10

© Dr. Sebastian Götz - Design Patterns & Frameworks - WS 2013/14 - Excercise #8

Task #1 – The Horse Show

 Role models describe collaborations

 Role models describe role types!

 Class-role models describe the mapping of role models to
class-models

 Role constraints (D. Riehle):

 Role-use

 Role-prohibition

 Role-implication

 Role-equivalence

Student Lecturer

Lecture

Person

Student

Lecturer

Lecture

11

© Dr. Sebastian Götz - Design Patterns & Frameworks - WS 2013/14 - Excercise #8

Task #1 – The Horse Show

 Object diagram

 Role types  Roles

 Classes  Objects

 Role models  Collaborations

Person

Student

Lecturer

Lecture

Sebastian: Person

Max : Person Anja : Person

3215323 : Student 3013737 : Student

x : Lecturer

DPF#8 : Lecture

12

© Dr. Sebastian Götz - Design Patterns & Frameworks - WS 2013/14 - Excercise #8

Task #1 – The Horse Show

 Role Types are non-rigid and founded types!

 Non-rigid: instances can loose the type without loosing their identity
 Example: Student, Lecturer, Employee, etc.

 Founded types always depend on another type
 Example: Reader  Book, Friend  Friend, Speaker Listener, etc.

 Hence, role types are always part of a collaboration!

 Natural Types are rigid and non-founded

 Example: Tree, Person, Animal

 Role models describe relations between role types, i.e., types of
collaborations.

 Instances of role types (i.e., roles) are played by instances of
natural types (i.e., objects)

 Speciality: compartments are collaborations, too!

13

© Dr. Sebastian Götz - Design Patterns & Frameworks - WS 2013/14 - Excercise #8

Task #1 – The Horse Show

 Thus, in our example, we have 3

collaborations:

 Accomodation

 Examinations

 Compartment of Rider and Horse

14

© Dr. Sebastian Götz - Design Patterns & Frameworks - WS 2013/14 - Excercise #8

Task #1 – The Horse Show

Room

Person

Natural

Types

active (driving)

passive (driven)

a.k.a. counter-role

Role-use relationship

(Riehle)

Role Play Automata

occupied

Free/None

Guest

None

Role

Types

occupied

Guest

Collaboration

Type(s)

Accomodation

15

© Dr. Sebastian Götz - Design Patterns & Frameworks - WS 2013/14 - Excercise #8

Task #1 – The Horse Show

Room

Person

Natural

Types

Role

Types

occupied

Guest

Collaboration

Type(s)

Role Play Automata

occupied

Free/None

Guest

None

Accomodation

Horse

Rider

mounted
mounted

Free/None

Riding

Rider

16

© Dr. Sebastian Götz - Design Patterns & Frameworks - WS 2013/14 - Excercise #8

Task #1 – The Horse Show

Room

Person

Natural

Types

Role

Types

occupied

Guest

Collaboration

Type(s)

Role Play Automata

occupied

Free/None

Guest

None

Accomodation

Horse

Rider

mounted
mounted

Free/None

Riding

Rider

17

© Dr. Sebastian Götz - Design Patterns & Frameworks - WS 2013/14 - Excercise #8

Problem:

How to specify that a

guest must not be a rider

at the same time?

(i.e., inter-collab-oration

constraints)

 Enclosing Role Model!

Collaborations can play roles themselves!

18

© Dr. Sebastian Götz - Design Patterns & Frameworks - WS 2013/14 - Excercise #8

Are role models rigid ?  No, horse and rider can detach without ceising to exist.

Are role models founded ?  No, only via role types.

Room Person

Accomodation

Guestoccupied

Task #1 – The Horse Show

HorseRiding
Rider mounted

Exam

Referee

Participant

startNumber

Task #1 – The Horse Show

occupied

Free/None

Guest

None

mounted

Free/None

Rider

Referee Participant

Compound

19

© Dr. Sebastian Götz - Design Patterns & Frameworks - WS 2013/14 - Excercise #8

Room Person Horse

Role Play Automata:

Task #1 – The Horse Show

© Dr. Sebastian Götz - Design Patterns & Frameworks - WS 2013/14 - Excercise #8

20

 What have we gained (besides more

complexity) ?

 Separation of Concerns!

 Developers can independently work on all three

collaborations.

 Imagine new types of hotels, payment, etc.

 Imagine new types of examinations (artistic rider on

two horses, …)

 More information for code generation (MDA)

Rigidity and Foundedness

© Dr. Sebastian Götz - Design Patterns & Frameworks - WS 2013/14 - Excercise #8

21

Non-founded Founded

Rigid
Natural types

(OO classes)

bidirectional

existencial

compartments

Non-rigid
Contexts (Collaboration

Types, Role models)
Role types

Identity  Type

dependency

Type  Type

dependency

Identity depends on type.

Identity does not depend on type.

Type does not depend

on other types.

Type depends

on other types.

Template Method

Template Class

Dimensional Class Hierarchies

Role Models of Design Patterns22

© Dr. Sebastian Götz - Design Patterns & Frameworks - WS 2013/14 - Excercise #8

Task #2 – Template Method

© Dr. Sebastian Götz - Design Patterns & Frameworks - WS 2013/14 - Excercise #8

23

 Example: File Ranking Framework

 Subclasses as framework instances

Ranker

createRanking()

getFiles() : List<File>

grade(File) : File

sort(List<File>) : List<File>

MP3Ranker

getFiles() {…}

grade() { //by length }

sort() { // by length }

JPGRanker

getFiles() { … }

grade() { //by resol. }

sort() { // by resol. }

List<File> ranked;

for(File f : getFiles()) {

ranked.add(grade(f));

}

ranked = sort(ranked);

Music-

Player

Image-

Viewer

Task #2 – Template Method

 Template Method

24

© Dr. Sebastian Götz - Design Patterns & Frameworks - WS 2013/14 - Excercise #8

* ConcreteHookTemplate Hook

Class A

Class B

Template

Hook

ConcreteHook

for(…) {

hook();

}

protected abstract hook();

protected hook() { … }

role implication role prohibition

Task #2 – Template Method

 Template Method

25

© Dr. Sebastian Götz - Design Patterns & Frameworks - WS 2013/14 - Excercise #8

Class A

(Frame-

work)

Class B

(Client)

Template

Hook

ConcreteHook

role implication role prohibition

class A {…}

class B {…}

team class TemplateMethod {

role Template playedBy A {

void templateMethod() {

//returns most specific sub-role of Hook

Hook h = base.getRole(Hook.class)

for(…) { h.hook(); } }

}

role Hook playedBy A {

protected abstract void hook();

}

role ConcreteHook extends Hook playedBy B {

protected void hook() { … }

}

}

* ConcreteHookTemplate Hook

multiple separate

concretizations

Task #2 – Template Class

© Dr. Sebastian Götz - Design Patterns & Frameworks - WS 2013/14 - Excercise #8

26

 Example: File Ranking Framework

 Subclasses as framework instances

Ranker

~Ranker(RankerHook)

createRanking()

MP3Ranker

getFiles() {…}

grade() { //by length }

sort() { // by length }

JPGRanker

getFiles() { … }

grade() { //by resol. }

sort() { // by resol. }

List<File> ranked;

for(File f : h.getFiles()) {

ranked.add(h.grade(f));

}

ranked = h.sort(ranked);

RankerHook

getFiles() : List<File>

grade(File) : File

sort(List<File>) : List<File>

hMusic-

Player

Image-

Viewer

Task #2 – Template Class

© Dr. Sebastian Götz - Design Patterns & Frameworks - WS 2013/14 - Excercise #8

27

 Incentive: vary hooks independent from template (esp. for multiple hooks)

Ranker

~Ranker(RankerHook,

SorterHook)

createRanking()

MP3Ranker

getFiles() {…}

grade() { //by length }

JPGRanker

getFiles() { … }

grade() { //by resol. }

RankerHook

getFiles() : List<File>

grade(File) : File

hMusic-

Player

Image-

Viewer

Quicksort

sort(..) { … }

RadixSort

sort(..) { … }

SorterHook

sort(List<File>) : List<File>
s

List<File> ranked;

for(File f : h.getFiles()) {

ranked.add(h.grade(f));

}

ranked = s.sort(ranked);

Task #2 – Template Class

 Template Class

28

© Dr. Sebastian Götz - Design Patterns & Frameworks - WS 2013/14 - Excercise #8

* ConcreteHookTemplate * Hook

Class A
Class B

Template Hook

Class C

ConcreteHook

Hook in other class Separate Hooks

Task #2 – Dimensional Class Hierarchies

© Dr. Sebastian Götz - Design Patterns & Frameworks - WS 2013/14 - Excercise #8

29

 Incentive: vary hooks independent from template (esp. for multiple hooks)

Ranker

~Ranker(Grader,

Sorter)

createRanking()

MP3Grader

getFiles() {…}

grade() { //by length }

JPGGrader

getFiles() { … }

grade() { //by resol. }

Grader

getFiles() : List<File>

grade(File) : File

h

Music-

Player

Image-

Viewer

Quicksort

sort(..) { … }

RadixSort

sort(..) { … }

Sorter

sort(List<File>) : List<File>
s

ParallelRankerSeqRanker

~ParallelRanker(Grader,

Sorter)

createRanking()

~SeqRanker(Grader,

Sorter)

createRanking()

for(File f : h.getFiles()) {

new GraderThread(f).start();

}

…

Task #2 – Dimensional Class Hierarchies

© Dr. Sebastian Götz - Design Patterns & Frameworks - WS 2013/14 - Excercise #8

30

 Incentive: vary template indepently, too

* ConcreteHookTemplate * Hook

* Concrete-

Template

Class A Class C

Template Hook

Class D

ConcreteHook

Class B

Concrete-

Template

Application Domains for Roles

© Dr. Sebastian Götz - Design Patterns & Frameworks - WS 2013/14 - Excercise #8

31

 Where is role-oriented modelling and
programming most beneficial?
 Games
 RPGs, Sports (Racing, Soccer), Shooter, etc.

 Games are about collaborations between the player and
computer-controlled characters!

 Administration tools (SLM, CRM, etc.)
 Including graphical user interfaces

 Domains often inherently describe collaborations!

 Self-adaptive systems
 Systems adjust themselves to changes in their environment

 Thus, they describe collaborations between the
environment and themselves!

Interested?

© Dr. Sebastian Götz - Design Patterns & Frameworks - WS 2013/14 - Excercise #8

32

 Graduate College: RoSI (Role-oriented System
Infrastructures)

 Basic research on a complete software development
process using roles

 Collaborative Research Center: HAEC (Highly-
adaptive Energy-efficient Computing)

 Research on self-adaptive software optimizing for
energy-efficiency

 Interested for your thesis or SHK (student job)?

 Ask me or send a mail! (sebastian.goetz@acm.org)

