3. Formal Features of Petri Nets

Prof. Dr. U. Aßmann Technische Universität Dresden Institut für Software- und Multimediatechnik Softwaretechnologie http://st.inf.tu-dresden.de 14-0.1, 10/29/14 <u>Lecturer</u>: Dr. Sebastian Götz 1) Reachability Graph
 2) Boundedness
 3) Liveness

Content

- Behavioral properties of petri nets
 - Reachability
 - Liveness
 - Boundedness
- Liveness checking

Obligatory Readings

- T. Murata. Petri Nets: properties, analysis, applications. IEEE volume 77, No 4, 1989.
- Ghezzi Chapter 5
- J. B. Jörgensen. Colored Petri Nets in UML-based Software Development – Designing Middleware for Pervasive Healthcare. www.pervasive.dk/publications/files/CPN02.pdf

Literature

- K. Jensen: Colored Petri Nets. Lecture Slides http://www.daimi.aau.de/~kjensen Many other links and informations, too
 - www.daimi.aau.dk/CPnets the home page of CPN. Contains lots of example specifications. Very recommended
- W. Tichy. Lectures on Software Engineering. Karlsruhe University

Literature

- K. Jensen, Colored Petri Nets. Vol. I-III. Springer, 1992-96.
 Landmark book series on CPN.
- W. Reisig. Elements of Distributed Algorithms Modelling and Analysis with Petri Nets. Springer. 1998.
- W. Reisig, G. Rozenberg: Lectures on Petri Nets I+II, Lecture Notes in Computer Science, 1491+1492, Springer.
- J. Peterson. Petri Nets. ACM Computing Surveys, Vol 9, No 3, Sept 1977
- H. Balzert. Lehrbuch der Softwaretechnik. Verlag Spektrum der Wissenschaft. Heidelberg, Germany.

Goals

- Understand the isomorphism between finite automata (statecharts) and bounded Petri nets
- Understand why Petri nets are useful

Reachability of Markings

- If transaction t is enabled in the marking M, we write M[t)
- A marking M_n is said to be *reachable* from a marking M₀ if there exists a firing sequence s that transforms M₀ to M_n.
 - We write this M₀[s) M_n
- A firing sequence is denoted by a sequence of transitions s = M₀ [t1) M₁ [t2) M₂ ... [tn) M_n or simply s = t1 t2 t3 ... tn.
- The set of all possible markings reachable from M₀ is denoted R(M₀).
 - R(M₀) is spanning up a state automaton, the state space, reachability graph, or occurrence graph
 - Every marking of the PN is a state in the reachability graph
- The set of all possible firing sequences in a net (N,M₀) is denoted L(M₀). This is the language of the automaton R(M₀).

Reachability Tree of the 2 Robots

Folding the Tree to the Reachability Graph (Common Subtree Elimination)

Example: The Reachability Tree and Graph

Only one token per place at a time.

S

Boundedness and Safety

- A PN (N,M₀) is *k-bounded* or simply *bounded* if every place is size-restricted by k
 - $M(p) \le k$ for every place p and every marking M in $R(M_0)$.
- A PN is safe if it is 1-bounded.
- Bounded nets can have only finitely many states, since the number of tokens and token combinations is limited
 - The reachability graph of bounded nets is finite, it corresponds to a finite automaton (which is much larger)
 - The PN is much more compact, it *abbreviates* the automaton

Example: Unbounded net

ST

Prof. U. Aßmann, Softwaretechnologie II

Applications of Boundedness

- The markings of a state can express the number of available resources
 - Operating Systems: number of memory blocks, number of open devices, number of open files, number of processes
 - Workflows: number of actors, number of workpieces that flow
- Boundedness can be used to prove that a system consumes k resources at most
 - Important for systems with resource constraints

Liveness of Nets

- Liveness is closely related to the complete absence of deadlocks in operating systems.
- A PN (N,M₀) is **live** if, no matter what marking has been reached from M₀,
 - all transitions are live
 - i.e., it is possible to fire any transition of the net by progressing through some further firing sequence.

Liveness of Transitions

- Liveness expresses whether a transition stays active or not A transition t is called:
- Dead (L0-live) if t can never be fired in any firing sequence in $R(M_o)$. (not fireable)
- L1-live (potentially fireable) if t can be at least fired once in some firing sequence in $R(M_0)$. (firing at least once from the start configuration)
- L2-live (k-fireable) if t can be fired at least k times in some firing sequence in R(M_o), given a positive integer k. (firing k times from the start configuration)
- L3-live (inf-fireable) if t appears infinitely often in some firing sequence in $R(M_o)$. (firing infinitely often from the start configuration)
- ▶ *live (L4-live)* if t is L1-live for every marking M in $R(M_o)$. (This is more: t is always fireable again in a reachable marking)

Liveness of Markings and Nets

- A marking is *dead* if no transition is enabled.
- A marking is *live* if no reachable marking is dead (equivalent: all transitions are live)
- A net is *live* if M₀ is live (every t is always fire-able again from every reachable marking of M₀)

- Assumption: net is boolean
- t₁ L1-live (fireable only once, brigde)
- Hence, t₃ is L3-live (on a cycle), but not L4-live, since it cannot be activated anymore once t₁ is crossed
- t₀ is L0-live (dead, since t₁ is bridge and either p₁ or p₃ is filled)
- t₂ L2-live (fireable when t₁ is crossed)

ST

A safe, live PN. M0 can be reproduced again, e.g., with t1 t2 t4 t3 t6 reproduces a filled p1 and p2

p2 is a synchronization dependency; process p5 can run earlier, p2 has to wait. Note: the content of p2 must be reproduced again

Net is unbounded, due to the reproduction facilities of t6, i.e., running t6 before t3: t1 t2 t4 t6 t1 t2 t4 t6 ...

Well, everything: Safe, Live

Not Bounded, Not Live

 Not live, because t1 is never
 enabled
 Unbounded: (0100) t3 (1010) t2 (1001) t4 (2100) t3 (2010) t2 (2001) t4 (3100) ...

What have we learned?

- Behavioral properties of petri nets
 - Reachability
 - Liveness
 - Boundedness
- Formal approaches (matrix algebra) out of this lectures scope

