
Fakultät Informatik, Institut für Software- und Multimediatechnik, Lehrstuhl für Softwaretechnologie

12) Validation of Graph-Based Models
and Programs (Analysis and

Consistency of Models)

Prof. Dr. U. Aßmann
Technische Universität Dresden
Institut für Software- und Multimediatechnik
Gruppe Softwaretechnologie
http://st.inf.tu-dresden.de/teaching/swt2
WS14/15, 24.11.2014

Lecturer: Dr. Sebastian Götz

1. Big Models
2. Examples of Graphs in Models
3. Types of Graphs
4. Analysis of Graphs in Models

1. Layering of Graphs
2. Searching in Graphs
3. Checking UML Models with

Datalog
5. Transitive Closure and Reachability

Contents

 Different kinds of relations: Lists, Trees, DAGs, Graphs

 The graph-logic isomorphism

 Analysis, querying, searching graph-based models

 The “Same Generation” Problem

 Datalog and Edge Addition Rewrite Systems (EARS)

 Transitive Closure

 Consistency checking of graph-based specifications (aka model
validation)

 Projections of graphs

 Transformation of graphs

TU Dresden, Prof. U. Aßmann Model Consistency 2

Goals

 Understand that software models can become very large

 the need for appropriate techniques to handle large models

 the need for automatic analysis of the models

 Learn how to use graph-based techniques to analyze and check models for
consistency, well-formedness and integrity

• Datalog,

• Graph Query Languages,

• Description Logic,

• Edge Addition Rewrite Systems and

• Graph Transformations.

 Understand some basic concepts of simplicity in software models

TU Dresden, Prof. U. Aßmann Model Consistency 3

Motivation

 Software engineers must be able to

 handle big design specifications (design models) during development

 work with consistent models

 measure models and implementations

 validate models and implementations

 Real models and systems become very complex

 Most specifications are graph-based

 We have to deal with basic graph theory to be able to measure well

TU Dresden, Prof. U. Aßmann Model Consistency 4

12.1 THE PROBLEM: HOW
TO MASTER LARGE
MODELS

 Large models have large graphs

 They can be hard to understand

Figures taken from Goose Reengineering Tool, analysing a Java class system [Goose, FZI Karlsruhe]

TU Dresden, Prof. U. Aßmann Model Consistency 5

TU Dresden, Prof. U. Aßmann Model Consistency 6

Partially Collapsed

TU Dresden, Prof. U. Aßmann Model Consistency 7

Totally Collapsed

TU Dresden, Prof. U. Aßmann Model Consistency 8

Requirements for Modeling in Requirements and Design

 We need guidelines how to develop simple models

 We need analysis techniques to

 Analyze models

 Find out about their complexity

 Find out about simplifications

 Search in models

 Check the consistency of the models

TU Dresden, Prof. U. Aßmann Model Consistency 9

12.2 GENERATING
GRAPHS FROM DIAGRAMS
AND PROGRAMS

How are models and programs represented in a Software Tool?

Some Relationships (Graphs) in Software Systems

TU Dresden, Prof. U. Aßmann Model Consistency 10

All Specifications and All Programs
have an Internal Graph-Based Representation

 Texts are parsed to abstract syntax trees (AST)

 Two-step procedure

 Concrete Syntax Tree (CST)

 Abstract Syntax Tree (AST)

 Through name analysis, they become abstract syntax graphs (ASG) or Use-
Def-Graphs (UDG)

 Through def-use-analysis, they become Use-def-Use Graphs (UDUG)

TU Dresden, Prof. U. Aßmann Model Consistency 11

.......

AST

.......

ASG (UDG)

.......

UDUG

.......

CST

Text

Diagram

Concrete Syntax Tree (CST) – Example

TU Dresden, Prof. U. Aßmann Model Consistency 12

Expr ::= ‘(’ Expr ‘)’
| Expr ‘&&’ Expr
| Expr ‘||’ expr
| ‘!’ Expr
| Lit .

Lit ::= Var | ‘true’ | ‘false’.
Var ::= [a-z][a-z 0-9_]+ .

Parsing this string:
((looking || true) && !found)

CST - Example

Expr

(Expr

Expr

(Expr

Expr

Var
id = looking

|| Expr

true

)

&& Expr

! Expr

Var
id = found

)

TU Dresden, Prof. U. Aßmann Model Consistency 13

Expr ::= ‘(’ Expr ‘)’
| Expr ‘&&’ Expr
| Expr ‘||’ expr
| ‘!’ Expr
| Lit .

Lit ::= Var | ‘true’ | ‘false’.
Var ::= [a-z][a-z 0-9_]+ .

Parsing this string:
((looking || true) && !found)

From the CST to the AST

&&

||

Var
id = looking

True

!

Var
id = found

TU Dresden, Prof. U. Aßmann Model Consistency 14

Expr

(Expr

Expr

(Expr

Expr

Var
id = looking

|| Expr

true

)

&& Expr

! Expr

Var
id = found

)

Abstract Syntax Trees (AST)

 Parse trees (CST) waste a fair amount
of space for representation of terminal
symbols and productions

 Compilers post-process parse trees
into ASTs

 ASTs are the fundamental data
structure of IDEs
(ASTView in Eclipse JDT)

TU Dresden, Prof. U. Aßmann Model Consistency 15

AST

 Problem with ASTs: They do not support static semantic checks,
re-factoring and browsing operations, e.g.:

• Name semantics:

 Have all used variables been declared? Are they declared once?

 Have all classes used been imported?

• Are the types used in expressions / assignments compatible? (type
checking)

• Referencing:

 Navigate to the declaration of method call / variable reference / type

• How can I pretty-print the AST to a CST again, so that the CST looks like
the original CST

 Necessary for hygenic refactoring

TU Dresden, Prof. U. Aßmann Model Consistency 16

Def-Use Graphs (DUG) and Use-Definition-Use Graphs (UDUG)

 Many languages and notations have
 Definitions of items (definition of the variable Foo), which specify the type

or other metadata

 Uses of items (references to Foo)

 We talk in specifications or programs about names of objects and
their use

 Definitions are done in a data definition language (DDL)

 Uses are part of a data query language (DQL) or
data manipulation language (DML)

 Starting from the abstract syntax tree, name analysis finds out
about the definitions of uses of names

• Building the Use-Def graph

• This revolves the meaning of used names to definitions

• Inverting the Use-Def graph to a Use-Def-Use graph (UDUG)

• This links all definitions to their uses

TU Dresden, Prof. U. Aßmann Model Consistency 17

Abstract Syntax Graphs (ASG) are UDGs

 Abstract Syntax Graphs
have use-def edges that
reflect semantic
relationships

• from uses of names to
definitions of names

 These edges are used for
static semantic checks

• Type checking

• Type inference

• Coercion (transfer to new
instance of other type
with same contents)

TU Dresden, Prof. U. Aßmann Model Consistency 18

boolean looking, found;
…
if (looking && !found) {…}

Block

VarDecl

type=boolean

VarName
id=looking

VarDecl

Type=boolean

VarName
id=found

IfStmt

&&

looking !

found

Block

Refactoring on Complete Name-Resolved Graphs
(Use-Def-Use Graphs)

 UDUGs are used in refactoring operations (e.g., renaming a class or
a method consistently over the entire program).

 For renaming of a definition, all uses have to be changed, too

 We need to trace all uses of a definition in the Use-Def-graph, resulting in its
inverse, the Def-Use-graph

 Refactoring works always on Def-Use-graphs and Use-Def-graphs, the
complete name-resolved graph (the Use-Def-Use graphs)

TU Dresden, Prof. U. Aßmann Model Consistency 19

class Person { .. }

class Course {

Person teacher = new Person(“Jim”);

Person student = new Person(“John”);

}

Example: Rename Refactorings in Programs

TU Dresden, Prof. U. Aßmann Model Consistency 20

Definition

Reference (Use)

Refactor the name Person to Human, using bidirectional use-def-use links:

class Human { .. }

class Course {

Human teacher = new Human(“Jim”);

Human student = new Human(“John”);

}

Refactoring

 Refactoring works always in the same way:

 Change a definition

 Find all dependent references

 Change them

 Recurse handling other dependent definitions

 Refactoring can be supported by tools

 The Use-Def-Use-graph forms the basis of refactoring tools

 However, building the Use-Def-Use-Graph for a complete program
costs a lot of space and is a difficult program analysis task

 Every method that structures this graph benefits immediately the
refactoring

 either simplifying or accelerating it

 UDUGs are large

• Efficient representation important

TU Dresden, Prof. U. Aßmann Model Consistency 21

Further Representations

From the ASG or an UDUG, more graph-based program
representations can be derived

 Control-flow Analysis -> Control-Flow Graph (CFG), Call graph
(CLG)

• Records control-flow relationships

 Data-Flow Analysis -> Data-Flow Graph (DFG) or Value-Flow
Graph (VFG)

• Records flow relationships for data values

The same remarks holds for graphic specifications

 Hence, all specifications are graph-based!

TU Dresden, Prof. U. Aßmann Model Consistency 22

.......

CFG, CLG

.......

VFG (DFG)

.......

ASG (UDG)

Control-Flow Graphs

 Describe the control flow in a program

 Typically, if statements and switch statements split control flow

 Their ends join control flow

 Control-Flow Graphs resolve symbolic labels

 Perform name analysis on labels

 Nested loops are described by nested control flow graphs

TU Dresden, Prof. U. Aßmann Model Consistency 23

while

if

print a

a+=5;

print a++

return

Simple (Flow-Insensitive) Call Graph (CLG)

 Describe the call relationship between the procedures
 Interprocedural control-flow analysis performs name analysis on called

procedure names

TU Dresden, Prof. U. Aßmann Model Consistency 24

main = procedure () {

array int[] a = read();

print(a);

quicksort(a);

print(a);

}

quicksort = procedure(a: array[0..n]) {

int pivot = searchPivot(a);

quicksort(a[0], a[pivot-1]);

quicksort(a[pivot+1,n]);

}

quicksort

main

print

read

searchPivot

Data-Flow Graphs (DFG)

 A data-flow graph (DFG) aka value-flow graph (VFG) describes the
flow of data through the variables

 DFG are based on control-flow graphs

 Building the data-flow graph is called data-flow analysis

 Data-flow analysis is often done by abstract interpretation, the symbolic
execution of a program at compile time

TU Dresden, Prof. U. Aßmann Model Consistency 26

while

if

print a

a=a+5;

print a++

b=a

a=0

Inheritance Analysis:
Building an Inheritance Tree or Inheritance Lattice

 A lattice is a partial order with largest and smallest element

 Inheritance hierarchies can be generalized to inheritance lattices

 An inheritance analysis builds the transitive closure of the
inheritance lattice

TU Dresden, Prof. U. Aßmann Model Consistency 27

Don’t Know

Man Woman

Undefined

Object

Person

Inheritance

UML Graphs

 All diagram sublanguages of UML generate internal graph
representations

 They can be analyzed and checked with graph techniques

 Graphic languages, such as UML, need a graph parser to be recognized, or a
specific GUI who knows about graphic elements

 Hence, graph techniques are an essential tool of the software
engineer

TU Dresden, Prof. U. Aßmann Model Consistency 28

Remark: All Specifications Have a Graph-Based Representation

 Texts are parsed to abstract syntax trees (AST)

 Graphics are parsed by GUI or graph parser to AST also

 Through name analysis, they become abstract syntax graphs (ASG)

 Through def-use-analysis, they become Use-def-Use Graphs (UDUG)

 Control-flow Analysis -> CFG, CLG

 Data-Flow Analysis -> DFG

TU Dresden, Prof. U. Aßmann Model Consistency 29

.......

AST

.......

ASG

.......

UDUG

.......

CFG, CLG

.......

DFG

12.3 TYPES OF GRAPHS IN
SPECIFICATIONS

Lists, Trees, DAGs, Graphs

Structural constrains on graphs

(background information)

TU Dresden, Prof. U. Aßmann Model Consistency 30

Modeling Graphs on Two Abstraction Levels

 In modeling, we deal mostly with directed graphs (digraphs)
representing unidirectional relations

 lists, trees, DAGs, overlay graphs, reducible (di-)graphs, graphs

 There are two different abstraction levels; we are interested in the
logical level:
 Logical level (conceptual, abstract, often declarative, problem oriented)

 Methods to specify algorithms on graphs:

 Relational algebra

Datalog, description logic

Graph rewrite systems, graph grammars

 Recursion schemas

 Physical level (implementation level, concrete, often imperative, machine
oriented)

 Representations: Data type adjacency list, boolean (bit)matrix,
binary decision diagrams (BDDs)

 Imperative algorithms

 Pointer based representations and algorithms

TU Dresden, Prof. U. Aßmann Model Consistency 31

Essential Graph Definitions

 Fan-in

 In-degree of a node under a certain relation

 Fan-in(n) = 0: n is root node (source)

 Fan-in(n) > 0: n is reachable from other nodes

 Fan-out

 Out-degree of node under a certain relation

 Fan-out(n) = 0: n is leaf node (sink)

 An inner node is neither a root nor a leaf

 Path

 A path p = (n1, n2,…,nk) is a sequence of nodes of length k

TU Dresden, Prof. U. Aßmann Model Consistency 32

Lists

 One source (root)

 One sink

 Every other node has fan-in 1, fan-out 1

 Represents a total order (sequentialization)

 Gives

 Prioritization

 Execution order

TU Dresden, Prof. U. Aßmann Model Consistency 33

root

sink

Trees

 One source (root)

 Many sinks (leaves)

 Every node has fan-in <= 1

 Hierarchical abstraction:

 A node represents or abstracts
all nodes of a sub tree

 Example

 Structured Analysis (SA) function trees

 Organization trees (line organization)

TU Dresden, Prof. U. Aßmann Model Consistency 34

.......

.......

.......

root

sinks

Directed Acyclic Graphs

 Many sources

 A jungle (term graph) is a dag with
one root

 Many sinks

 Fan-in, fan-out arbitrary

 Represents a partial order

 Less constraints than in a total order

 Weaker hierarchical abstraction
feature

 Can be layered

 Example

 UML inheritance DAGs

 Inheritance lattices

TU Dresden, Prof. U. Aßmann Model Consistency 35

.......

.......

.......

roots

sinks

Skeleton Trees with Overlay Graphs
(Trees with Secondary Graphs)

 Skeleton tree with overlay graph
(secondary links)

 Skeleton tree is primary

 Overlay graph is secondary: “less important”

 Advantage of an Overlay Graph

 Tree can be used as a conceptual hierarchy

 References to other parts are possible

 Example

 XML, e.g., XHTML. Structure is described
by Xschema/DTD, links form the
secondary relations

 AST with name relationships after
name analysis (name-resolved trees,
abstract syntax graphs)

TU Dresden, Prof. U. Aßmann Model Consistency 36

.......

.......

.......

roots

sinks

Reducible Graphs (Graphs with Skeleton Trees)

 A reducible graph is a graph with cycles, however, only
between siblings

 No cycles between hierarchy levels

 Graph can be “reduced” to one node

 Advantage

 Tree can be used as a conceptual hierarchy

 Example

 UML statecharts

 UML and SysML component diagrams

 Control-flow graphs of Modula, Ada, Java
(not C, C++)

 SA data flow diagrams

 Refined Petri Nets

TU Dresden, Prof. U. Aßmann Model Consistency 37

.......

.......

.......

roots

sinks

Reduction of a Reducible Graph

TU Dresden, Prof. U. Aßmann Model Consistency 38

B1

B2

B3

B4

B1a

B3a

B1a

B3a

B1b

Layerable Graphs with Skeleton DAGs

 Like reducible graphs, however, sharing between different parts of
the skeleton trees

 Graph cannot be “reduced” to one node

 Advantage

 Skeleton can be used to layer the graph

 Cycles only within one layer

 Example

 Layered system architectures

TU Dresden, Prof. U. Aßmann Model Consistency 39

.......

.......

.......

Wild Unstructured (Directed) Graphs

 Wild, unstructured graphs are the
worst structure we can get

 Wild, unstructured, irreducible cycles

 Unlayerable, no abstraction possible

 No overview possible

 Many roots

 A digraph with one source is called flow graph

 Many sinks

 Example

 Many diagrammatic methods in
Software Engineering

 UML class diagrams

TU Dresden, Prof. U. Aßmann Model Consistency 40

.......

.......

.......

Strength of Assertions in Models

TU Dresden, Prof. U. Aßmann Model Consistency 41

List: strong assertion: total order

Graph: the worst case

Dag: still layering possible

Tree: still abstraction possible

Sequential

Partial order

Layered

Hierarchies

Unstructured

Ease of

Understanding

Strength of Assertions in Models

 Saying that a relation is

 A list: very strong assertion, total order!

 A tree: still a strong assertion: hierarchies possible, easy to think

 A dag: still layering possible, still a partial order

 A layerable graph: still layering possible, but no partial order

 A reducible graph: graph with a skeleton tree

 A graph: hopefully, some structuring or analysis is possible. Otherwise, it’s
the worst case

 And those propositions hold for every kind of diagram in Software
Engineering!

 Try to model reducible graphs, dags, trees, or lists in your
specifications, models, and designs

 Systems will be easier, more efficient

TU Dresden, Prof. U. Aßmann Model Consistency 42

Structuring Improves Worst Case

TU Dresden, Prof. U. Aßmann Model Consistency 43

List: strong assertion: total order

Graph: the worst case

Dag: still layering possible

Tree: still abstraction possible

Sequential

Partial order

Layered

Hierarchies

Unstructured

Structured
Structured graph (reducible,

skeleton dag)

Ease of

Understanding

UnstructuredGraph with analyzed features

12.4 METHODS AND
TOOLS FOR ANALYSIS OF
GRAPH-BASED MODELS

TU Dresden, Prof. U. Aßmann Model Consistency 44

The Graph-Logic Isomorphism

 In the following, we will make use of the graph-logic isomorphism:

 Graphs can be used to represent logic

 Nodes correspond to constants

 (Directed) edges correspond to binary predicates over nodes (triple statements)

 Hyperedges (n-edges) correspond to n-ary predicates

 Consequence:

 Graph algorithms can be used to test logic queries on graph-based specifications

 Graph rewrite systems can be used for deduction

TU Dresden, Prof. U. Aßmann Model Consistency 45

Victoria

Silvia

Carl Gustav

married

father

mother

// fact base
married(CarlGustav,Silvia).

married(Silvia, CarlGustav).

father(CarlGustav,Victoria).

mother(Silvia,Victoria).

// Normalized English
CarlGustav is married to Silvia.

Silvia is married to CarlGustav.

CarlGustav is father to Victoria.

Silvia is mother to Victoria.

Graphs and Fact Data Bases

 Graphs can also be noted textually

 Graphs consist of nodes, relations

 Relations link nodes

TU Dresden, Prof. U. Aßmann Model Consistency 46

 Fact data bases consist of
constants (data) and
predicates

 Nodes of graphs can be
regarded as constants, edges
as predicates between
constants (facts):

GustavAdolf

Adam

Sibylla

isParentOf

isParentOf

// Facts

isParentOf(Adam,GustavAdolf).

isParentOf(Adam,Sibylla).

// OWL Triples

Adam isParentOf GustavAdolf.

Adam isParentOf Sibylla.

Queries on Graph-Based Models Make Implicit Knowledge Explicit

 Since graph-based models are a mess, we try to analyze them

 Knowledge is either

 Explicit, i.e., represented in the model as edges and nodes

 Implicit, i.e., hidden, not directly represented, and must be analyzed

 Query and analysis problems try to make implicit knowledge
explicit

 E.g., does the graph have one root? How many leaves do we have? Is this
subgraph a tree? Can I reach that node from this node?

 Determining features of nodes and edges

 Finding certain nodes, or patterns

 Determining global features of the model

 Finding paths between two nodes (e.g., connected, reachable)

 Finding paths that satisfy additional constraints

 Finding subgraphs that satisfy additional constraints

TU Dresden, Prof. U. Aßmann Model Consistency 47

Queries for Checking Consistency (Model Validation)

 Queries can be used to find out whether a graph is consistent (i.e.,
valid, well-formed)

 Due to the graph-logic isomorphism, constraint specifications can be phrased
in logic and applied to graphs

 Business people call these constraint specifications business rules

 Example:

 if a car is exported to England, steering wheel and pedals should be on the
right side; otherwise on the left

TU Dresden, Prof. U. Aßmann Model Consistency 48

12.4.1 Layering Graphs: How to Analyze a System for
Layers

 With the “Same Generation” Problem

 How to query and search in a DAG

 How to layer a DAG – a simple structuring problem

TU Dresden, Prof. U. Aßmann Model Consistency 49

Layering of Systems

 To be comprehensible, a system should be structured in layers

 Several relations in a system can be used to structure it, e.g., the

 Call graph: layered call graph

 Layered definition-use graph

TU Dresden, Prof. U. Aßmann Model Consistency 50

 A layered architecture is the dominating
style for large systems

 Outer, upper layers use inner, lower

layers (layered USES relationship)

 Legacy systems can be analyzed for

layering, and if they do not have a

layered architecture, their structure can

be improved towards this principle

Layering of Acyclic Graphs

 Given any acyclic relation, it can be made layered

 Same Generation analysis creates layers for trees or DAGs

 Example: layering a family tree:

 Who is whose contemporary?

 Who is ancestor of whom?

TU Dresden, Prof. U. Aßmann Model Consistency 51

Victoria
Madeleine

Ralf

Silvia

Sibylla

GustavAdolf

Walter

Alice

Desiree

Adam

Carl Gustav

Pattern and Rules

 Parenthood can be described by a graph pattern

 We can write the graph pattern also in logic:

isParentOf(Parent,Child1) && isParentOf(Parent,Child2)

 And define the rule
if isParentOf(Parent,Child1) && isParentOf(Parent,Child2)

then sameGeneration(Child1,Child2)

TU Dresden, Prof. U. Aßmann Model Consistency 52

Parent

Child 1

Child 2

Parent

Child 1

Child 2

isParentOf

isParentOf

isParentOf

isParentOf

<<create>>

sameGeneration

Impact of Rule on Family Graph

TU Dresden, Prof. U. Aßmann Model Consistency 53

CarlGustav

VictoriaMadeleine

Ralf

Silvia

Sibylla

GustavAdolf

Walter

Alice

Desiree

Adam

CarlGustav

VictoriaMadeleine

Ralf

Silvia

Sibylla

GustavAdolf

Walter

Alice

Desiree

Adam

Rule set “Same Generation“

 Base rule: Beyond sisters and brothers we can link all people of
same generation

 Additional rule (transitive): Enters new levels into the graph

TU Dresden, Prof. U. Aßmann Model Consistency 54

Parent

Child 1

Child 2

Parent

Child 1

Child 2

Parent 1 Child 1

Parent 2 Child 2

Parent 1 Child 1

Parent 2 Child 2

Impact of Transitive Rule

TU Dresden, Prof. U. Aßmann Model Consistency 55

Carl

Gustav

VictoriaMadeleine

Ralf

Silvia

Sibylla

GustavAdolf

Walter

Alice

Desiree

Adam

”Same Generation” Introduces Layers

 Computes all nodes that belong to one layer of a dag

 If backedges are neglected, also for an arbitrary graph

 Algorithm:

 Compute Same Generation

 Go through all layers and number them

 Applications:

 Compute layers in a call graph

 Find out the call depth of a procedure from the main procedure

 Restructuring of legacy software (refactoring)

 Compute layers of systems by analyzing the USES relationships (ST-I)

 Insert facade classes for each layer (Facade design pattern)

 Every call into the layer must go through the facade

 As a result, the application is much more structured

TU Dresden, Prof. U. Aßmann Model Consistency 56

The Generations as Layers

TU Dresden, Prof. U. Aßmann Model Consistency 57

Adam

Gustav
Adolf

Sybille

Walter

Alice

Carl
Gustav

Madeleine

Silvia

Desiree

Ralf

Victoria

12.4.2 SEARCHING GRAPHS –
SEARCHING IN SPECIFICATIONS
WITH DATALOG AND EARS

TU Dresden, Prof. U. Aßmann Model Consistency 58

SameGeneration as a Graph Rewrite System

 The rule system SameGeneration only adds edges.

 An edge addition rewrite system (EARS) adds edges to graphs

 It enlarges the graph, but the new edges can be marked such that they
are not put permanently into the graph

 EARS are declarative

 No specification of control flow and an abstract representation

 Confluence: The result is independent of the order in which rules
are applied / all orders of applying rules lead to the same result

Recursion: The system is recursive, since relation “Same
Generation” is used and defined

 Termination: terminates, if all possible edges are added, latest,
when graph is complete

 EARS compute

 Reachability of nodes

 Paths in graphs

 “Same Generation” can be used for graph analysis

TU Dresden, Prof. U. Aßmann Model Consistency 59

Rule Systems in EARS and Datalog

 Rule systems can be noted
textually or graphically
(DATALOG vs. EARS)

 Datalog contains
• textual if-then rules, which test

predicates about the constants

• rules contain variables

TU Dresden, Prof. U. Aßmann Model Consistency 60

Child1

Parent

Child2

Child1

Parent

Child2

// conclusion

sameGeneration(Child1, Child2)

:- // say: "if"

// premise

isParentOf(Parent,Child1),

isParentOf(Parent,Child2).

// premise

if isParentOf(Parent,Child1) &&

isParentOf(Parent,Child2)

then

// conclusion

sameGeneration(Child1,Child2)

Same Generation Datalog Program

TU Dresden, Prof. U. Aßmann Model Consistency 61

isParentOf(Adam,GustavAdolf).

isParentOf(Adam,Sibylla).

.....

if isParentOf(Parent,Child1), isParentOf(Parent,Child2)
then sameGeneration(Child1, Child2).

if sameGeneration(Parent1,Parent2),

isParentOf(Parent1,Child1), isParentOf(Parent2,Child2)

then

sameGeneration(Child1, Child2).

Solving Path Problems With Datalog

TU Dresden, Prof. U. Aßmann Model Consistency 62

A SMPP problem (searching for Single source a set of Multiple targets)

descendant(Adam,X)?

X={ Silvia, Carl-Gustav, Victoria,}

An MSPP problem (multiple source, single target)

descendant(X,Silvia)?

X={Walter, Adam, Alice}

An MMPP problem (multiple source, multiple target)

ancestor(X,Y)?

{X=Walter, Y={Adam}

X=Victoria, Y={CarlGustav, Silvia, Sibylla, ...}

 Single Source Multiple Target Path Problem – SMPP

 Multiple Source Single Target Path Problem – MSPP

 Multiple Source Multiple Target Path Problem – MMPP

12.5 REACHABILITY
QUERIES WITH
TRANSITIVE CLOSURE IN
DATALOG AND EARS

 The Swiss-Knife of Graph Analysis

TU Dresden, Prof. U. Aßmann Model Consistency 63

Who is Descendant of Whom?

 Sometimes we need to know transitive edges, i.e., edges after
edges of the same color

 Question: what is reachable from a node?

 Which descendants has Adam?

 Answer: Transitive closure calculates reachability over nodes

 It contracts a graph, inserting masses of edges to all reachable nodes

 It contracts all paths to single edges

 It makes reachability information explicit

 After transitive closure, it can easily be decided whether a node is
reachable or not

 Basic premise: base relation is not changed (offline problem)

TU Dresden, Prof. U. Aßmann Model Consistency 64

Transitive Closure as Datalog Rule System or EARS

 Basic rule descendant(Parent,Child) :- isChildOf(Parent,Child).

 Transitive rule (recursion rule)

 left recursive: descendant(Parent,GrandCh) :-
descendant(Parent,X),isChildOf(X,GrandCh).

 right recursive: descendant(Parent,GrandCh) :-
isChildOf(Parent,X), descendant(X,GrandCh).

TU Dresden, Prof. U. Aßmann Model Consistency 65

Parent

Child

Parent

Child

Parent

Child

GrandCh Parent

Child

GrandCh

Impact of Basic Rule

TU Dresden, Prof. U. Aßmann Model Consistency 66

CarlGustav

VictoriaMadeleine

Ralf

Silvia

Sibylla

GustavAdolf

Walter

Alice

Desiree

Adam

CarlGustav

VictoriaMadeleine

Ralf

Silvia

Sibylla

GustavAdolf

Walter

Alice

Desiree

Adam

Impact of Recursion Rule

TU Dresden, Prof. U. Aßmann Model Consistency 67

CarlGustav

VictoriaMadeleine

Ralf

Silvia

Sibylla

GustavAdolf

Walter

Alice

Desiree

Adam

Impact only shown for Adam,

but is applied to other nodes too

[S|M][S|M]PP Path Problems are
Special Cases of Transitive Closure

 Single Source Single Target Path Problem, SSPP:

 Test, whether there is a path from a source to a target

 Single Source Multiple Target SMPP:

 Test, whether there is a path from a source to several targets

 Or: find n targets, reachable from one source

 Multiple Source Single Target MSPP:

 Test, whether a path from n sources to one target

 Multiple Source Multiple Target MMPP:

 Test, whether a path of n sources to n targets exists

 All can be computed with transitive closure:

 Compute transitive closure

 Test sources and targets on direct neighboarship

TU Dresden, Prof. U. Aßmann Model Consistency 68

Example: Railway Routes as Reachability Queries

 The info system of DB could be based on a graph of German
railway stations.

 Base (Facts):
 directlyLinked(Berlin, Potsdam).

 directlyLinked(Potsdam,Braunschweig).

 directlyLinked(Braunschweig, Hannover).

 Define the predicates
 linked(A,B)

 alsoLinked(A,B)

 unreachable(A,B)

 Answer the queries
 linked(Berlin,X)

 unreachable(Berlin, Hannover)

TU Dresden, Prof. U. Aßmann Model Consistency 69

Application: Inheritance Analysis as Reachability
Queries

 Base (Facts):
 class(Person). class(Human). class(Man). class(Woman).

 extends(Person, Human).

 extends(Man,Person).

 extends(Woman,Person).

 Define the predicates
 superScope(A,B) :- class(A), class(B), isA(A,B).

 transitiveSuperScope(A,B) :- superScope(A,C),

transitiveSuperScope(C,B).

 Answer the queries
 ? transitiveSuperScope(Man,X)

 >> {X=Person,X=Human}

 ? transitiveSuperScope(Woman,Y)

 >> {Y=Person,Y=Human}

TU Dresden, Prof. U. Aßmann Model Consistency 70

The End: What Have We Learned

 Graphs and Logic are isomorphic to each other

 Using logic or graph rewrite systems, models can be validated

 Analyzed

 Queried

 Checked for consistency

 Structured

 Applications are many-fold, using all kinds of system relationships

 Consistency of UML class models (domain, requirement, design models)

 Structuring (layering) of USES relationships

 Logic and graph rewriting technology involves reachability
questions

TU Dresden, Prof. U. Aßmann Model Consistency 71

Logic and edge addition rewrite systems are the Swiss army
knifes of the validating modeler

Reading

 Alexander Christoph. Graph rewrite systems for software design
transformations. In M. Aksit, editor, Proceedings of Net Object Days 2002, Erfurt,
Germany, October 2002. Springer LNCS 2591

 D. Calvanese, M. Lenzerini, D. Nardi. Description Logics for Data Modeling. In J.
Chomicki, G. Saale. Logics for Databases and Information Systems. Kluwer, 1998.

 Michael Kifer. Rules and Ontologies in F-Logic. Reasoning Web Summer School
2005. Lecture Notes in Computer Science, LNCS 3564, Springer.
http://dx.doi.org/10.1007/11526988_2

 Mira Balaban, Michael Kifer. An Overview of F-OML: An F-Logic Based Object
Modeling Language. Proceedings of the Workshop on OCL and Textual Modelling
(OCL 2010). ECEASST 2010, 36, http://journal.ub.tu-
berlin.de/eceasst/article/view/537/535

 Lam, M. S., Whaley, J., Livshits, V. B., Martin, M. C., Avots, D., Carbin, M., and Unkel,
C. 2005. Context-sensitive program analysis as database queries. In Proceedings
of the Twenty-Fourth ACM SIGMOD Symposium on Principles of Database Systems
(Baltimore, Maryland, June 13 - 15, 2005). PODS '05. ACM, New York, NY, 1-12. DOI=
http://doi.acm.org/10.1145/1065167.1065169

TU Dresden, Prof. U. Aßmann Model Consistency 72

http://journal.ub.tu-berlin.de/eceasst/article/view/537/535
http://doi.acm.org/10.1145/1065167.1065169

Query Engines on Code and Models Using Logic

 Yi, Kwangkeun, Whaley, John, Avots, Dzintars, Carbin, Michael, Lam, Monica.
Using Datalog with Binary Decision Diagrams for Program Analysis. In:
Programming Languages and Systems. Lecture Notes in Computer Science 3780,
2005, pp. 97-118 http://dx.doi.org/10.1007/11575467_8

 Thomas, Dave, Hajiyev, Elnar, Verbaere, Mathieu, de Moor, Oege.
codeQuest: Scalable Source Code Queries with Datalog, ECOOP 2006 – Object-
Oriented Programming, Lecture Notes in Computer Science 4067, 2006, Springer, pp.
2 - 27 http://dx.doi.org/10.1007/11785477_2

 Ebert, Jürgen; Riediger, Volker; Schwarz, Hannes; Bildhauer, Daniel
Using the TGraph Approach for Model Fact Repositories. In: Proceedings of the
International Workshop on Model Reuse Strategies (MoRSe 2008). S. 9--18.

 Bildhauer, Daniel; Ebert, Jürgen (2008): Querying Software Abstraction Graphs.
In: Working Session on Query Technologies and Applications for Program
Comprehension (QTAPC 2008), collocated with ICPC 2008.

TU Dresden, Prof. U. Aßmann Model Consistency 73

http://dx.doi.org/10.1007/11575467_8
http://dx.doi.org/10.1007/11785477_2
http://www.uni-koblenz.de/~dbildh
http://www.uni-koblenz-landau.de/koblenz/fb4/institute/IST/AGEbert/personen/juergen-ebert

References

 S. Ceri, G. Gottlob, L. Tanca. What You Always Wanted to Know About Datalog
(And Never Dared to Ask). IEEE Transactions on Knowledge And Data Engineering.
March 1989, (1) 1, pp. 146-166.

 S. Ceri, G. Gottlob, L. Tanca. Logic Programming and Databases. Springer, 1989.

 Ullman, J. D. Principles of Database and Knowledge Base Systems. Computer
Science Press 1989.

 Benjamin Grosof, Ian Horrocks, Raphael Volz, and Stefan Decker. Description logic
programs: Combining logic programs with description logics. In Proc. of World
Wide Web Conference (WWW) 2003, Budapest, Hungary, 05 2003. ACM Press.

 Uwe Aßmann, Steffen Zschaler, and Gerd Wagner. Ontologies, Meta-Models, and
the Model-Driven Paradigm. Handbook of Ontologies in Software Engineering.
Springer, 2006.

 http://www.uni-koblenz-
landau.de/koblenz/fb4/institute/IST/AGEbert/personen/juergen-ebert/juergen-ebert/

TU Dresden, Prof. U. Aßmann Model Consistency 74

http://www.uni-koblenz-landau.de/koblenz/fb4/institute/IST/AGEbert/personen/juergen-ebert/juergen-ebert/

Querying and Transformings Models with
Graph Rewriting

 Graph rewriting for programs and models:

 U. Aßmann. On Edge Addition Rewrite Systems and Their Relevance to
Program Analysis. In J. Cuny, H. Ehrig, G. Engels, and G. Rozenberg, editors,
5th Int. Workshop on Graph Grammars and Their Application To Computer
Science, volume 1073 of Lecture Notes in Computer Science, pages 321-335.
Springer, Heidelberg, November 1994.

 Uwe Aßmann. How to uniformly specify program analysis and
transformation. In P. A. Fritzson, editor, Proceedings of the International
Conference on Compiler Construction (CC), volume 1060 of Lecture Notes in
Computer Science, pages 121-135. Springer, Heidelberg, 1996.

 U. Aßmann. Graph Rewrite Systems for Program Optimization. ACM
Transactions on Programming Languages and Systems, June 2000.

 U. Aßmann. OPTIMIX, A Tool for Rewriting and Optimizing Programs.
Graph Grammar Handbook, Vol. II, 1999. Chapman&Hall.

 U. Aßmann. Reuse in Semantic Applications. REWERSE Summer School. July
2005. Malta. Reasoning Web, First International Summer School 2005, number
3564 in Lecture Notes in Computer Science. Springer.

 Alexander Christoph. GREAT - a graph rewriting transformation framework
for designs. Electronic Notes in Theoretical Computer Science (ENTCS), 82(4),
April 2003.

TU Dresden, Prof. U. Aßmann Model Consistency 75

