TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik, Institut fiir Software- und Multimediatechnik, Lehrstuhl fiir Softwaretechnologie

12) Validation of Graph-Based Models
and Programs (Analysis and
Consistency of Models)

Prof. Dr. U. ABmann

Technische Universitat Dresden

Institut flir Software- und Multimediatechnik
Gruppe Softwaretechnologie
http://st.inf.tu-dresden.de/teaching/swt2
WS14/15, 24.11.2014

Lecturer: Dr. Sebastian Go6tz

R

Big Models
Examples of Graphs in Models
Types of Graphs
Analysis of Graphs in Models
1. Layering of Graphs
2. Searching in Graphs
3. Checking UML Models with
Datalog
Transitive Closure and Reachability

@ Contents

» Different kinds of relations: Lists, Trees, DAGs, Graphs
» The graph-logic isomorphism

» Analysis, querying, searching graph-based models
» The “Same Generation” Problem
» Datalog and Edge Addition Rewrite Systems (EARS)

» Transitive Closure

» Consistency checking of graph-based specifications (aka model
validation)

» Projections of graphs

» Transformation of graphs

@ Goals

» Understand that software models can become very large
» the need for appropriate technigues to handle large models
» the need for automatic analysis of the models

» Learn how to use graph-based techniques to analyze and check models for
consistency, well-formedness and integrity

e Datalog,

e Graph Query Languages,

e Description Logic,

e Edge Addition Rewrite Systems and
e Graph Transformations.

» Understand some basic concepts of simplicity in software models

@ Motivation

» Software engineers must be able to
» handle big design specifications (design models) during development
» work with consistent models
» measure models and implementations
» validate models and implementations

» Real models and systems become very complex
» Most specifications are graph-based
» We have to deal with basic graph theory to be able to measure well

O

» Large models have large graphs
» They can be hard to understand

Figures taken from Goose Reengineering Tool, analysing a Java class system [Goose, FZI Karlsruhe]

12.1 THE PROBLEM: HOW
TO MASTER LARGE
MODELS

Graphlet: draw .simplified.gml =] B3

File Edit 3Select View Graph HNode Edge Tool Layout ﬂelp:

S 4 BE v 100% i Wiy

e

il ChopPolygonConnector |

tighStartHandle

s le b e ure

; ﬁ;{hh@ﬁé@gw shhE ~imgigtian ool

W P L T
L l."Ir"'."l b

il

'"Il. = --w."
i -4

onstrainer

ool

mRBLT N

ﬁﬁ%‘tﬁ%me@mmand

: .‘93_.:; :
5 %@ﬁ _T%ﬁmmethﬂﬁnumeramr
¥} 1
. 1\ -a--;
.E" o i ..'.J -_ {

Fyians: _.B eUpdateStrategﬂ
. _L dlTTLET

T e LRl ':&.’-“ ; .
I_'d‘-= Ry, __.' -!,H_ 'Tlu- ébﬁrr&
[AW

; h::».":‘l'f.— %l:m

1184 1402 Graphlet Yersion 5.0.1

Partially Collapsed

|
|
| | -]
| cH.ifedremrapplet, SleeperThrend L [CHfacdraw framework HIDERGF
L
| CH.Ife.dramapplet Drawapplet 25663562 |
[CHife.drew spplel DIewAPPIet 11015976 | |_H.iﬁ:_draw.framewoﬂc.FigumchangeLisfener]
CH.ife dre. frovnework, Figure .|i;\n-geEt.ier-+
l—l_ i T i, 122 49T |
PCH] framwo b Fizyhe Endinerahun |

W}h,draw f'gures FontSizeHandle |
redlina L‘,hnnechonl I:‘[—i |fa_dhﬁ°'g;q¥q shortestDisfenceConnectar |

CHifo draw appleiDrow Apple L 28751112 |

rrﬂmnewo

| CH.ifedraw. framework. PointC opsfrainer |-
[T Tacdram frameuwars.F aure Sxecfiog]~
[CH.ifedrem framewsrk DiewingCidgrEvent e han
IS
| CH.ife dreuw.samples favadram JavaDraw ADp. 15957995 |) .'
[o ap P ; ; %
r gion - 4 . otk CdnnecirdE dray Tiauss g ﬁ@@mm&bﬁgum |
[cH.ifadraurapplication.Drwapplication. 14165555 | A - & P 1=‘ S = T -1-\
- o)
; i qures. Line Figure

{CHT K e N
i e frometuo & Tikcl [T i lad i ; THARE Top
A . ni 3
I, P e =
; 7 --:«-"'WFM
. B T e mﬁlﬂmﬁgms.lmwmguﬂ

CH.ifedr. framowa
aples javadren. JaseDrn App. 51363274 i
fecdraw. samples. e e
- = i il -
Lite. dis.f o L H 5 i
e samples, 3 P)
{ CHfadvau fraures. LineDecorafion
15 i
! A g \ R
CH5 ew ok OraninaEdIoL. I—CF'T ra.liiEEur:'s.' A
| CH. |f3_dr1w ﬁgurfs.noundReciangleFigure
i
[W figures)
,l | Crd ffe.dren. figures. Ipsér‘i}magec:ommand |

[CH.ife draw appl cafion. DrawADDIIca.
Drewpplication 11555570
m—mﬁéﬁj el AN
. figures. Aqlating Locator T
>‘{CH.ifa.dra.w.ﬁgures.EIIiDseFigu'Fe]
H.ifedraw figures ArrowTip

[[CH.ife. dre. semples e adra AR ER R AR B TeLrDiran ADD 9202 55 |
| EH.ifeudram. figures. SbbleToo |

CHifedrew appl cafion Drawapplicafion 30855015 |
[e dremw figures. P ORI Ures. Figure Affibues |

[[CHiife. draw spplication.Orawspplicalion. 1 5 34f SRt dran figures. RadiusHandle |

[EH.ifedre. semples Jovadram JaneDrmm Applet 14166447 |

sH.ifedrew.applicetion.DrewApplicefion. 14251157 |

| CH.ifo.draw.applicafion DrewaApplicafion 13530412

[cH.fadrawapplicafion.Drewapplication. 7 329831 |

Totally Collapsed :

<ZHifa.draw.samples.nothifgy

. =
CATadraw sampleg.oer 7
Lo T draw Sterdartt

ff” L e drad, Ufits

ol.H.ifa.draw.samples.n

CHiifa draw.figure

Ta.draw.contr

@ Requirements for Modeling in Requirements and Design

» We need guidelines how to develop simple models

» We need analysis techniques to

» Analyze models
» Find out about their complexity
» Find out about simplifications
» Search in models
» Check the consistency of the models

O

How are models and programs represented in a Software Tool?

Some Relationships (Graphs) in Software Systems

12.2 GENERATING
GRAPHS FROM DIAGRAMS
AND PROGRAMS

All Specifications and All Programs :
have an Internal Graph-Based Representation

» Texts are parsed to abstract syntax trees (AST)
» Two-step procedure
» Concrete Syntax Tree (CST)
» Abstract Syntax Tree (AST)

» Through name analysis, they become abstract syntax graphs (ASG) or Use-
Def-Graphs (UDG)

» Through def-use-analysis, they become Use-def-Use Graphs (UDUG)

‘ Diagram /

@ Concrete Syntax Tree (CST) - Example .

/Expr i=‘("Expr')’ \

| Expr '&&’ Expr
| Expr'||’ expr
| ‘1" Expr
| Lit.

Var | ‘true’ | ‘false’.

[a-z][a-z 0-9_]+ . /

Lit

Qlar

Parsing this string:
((looking || true) && found)

CST - Example

/Expl‘ e ‘('EXpr |)I \
Expr ‘&& " Expr

|
I Expr ‘|| expr [Parsing this string:
|

L-’i'tEXP" ((looking || true) && !found)

Lit

\Var

Var | ‘true’ | 'false’.

[a-z][a-z 0-9_]+ . /

1
1
1
1

1
1 1

1 [|
||
[
V
Expr [Expr id = ?Jund
I_ Var I_
id = looking antls

'\") From the CST to the AST

1
1]
L—: >
Var L Var

Expr [Expr I— e — True

id = found
v I— true

id = looking

Abstract Syntax Trees (AST) :

e T F ® > BBES® YO

Pa rse t ree S (C ST) Wa Ste a fa | r a m O u n t StaffEditor.java (AST Level 3), Creation time: 63 ms, Size! 2,074 nodes, 226,736 byte:

FPACKAGE ~

of space for representation of terminal
- TypeDeclaration [1022, 16347]

Sy m b O I s a n d p rOd u Cti O n S = bype binding: staff_kp. gui,views, StaffEditor

1A AD0C: null

MODIFIERS (1)

Compilers post-process parse trees

MNAME
H TYPE_PARAMETERS ()
I n to ASTS SUPERCLASS_TYPE: null
SUPER_IMTERFACE_TYPES ()
= BODY_DECLARATIONS (39)
ASTs are the fundamental data e s, 1021
FieldDeclaration [1163, 33]

St ru Ctu re Of I D Es FieldDeclaration [1202, 28]

FieldDeclaration [1236, 22]
H H H FieldDeclaration [1264, 25]
(ASTVI eW I n E C I I p Se J DT) FieldDeclaration [1295, 28]
FieldDeclaration [1329, 32]
FieldDeclaration [1367, 59]
FieldDeclaration [1432, 64]
FieldDeclaration [1502, 56]
FieldDeclaration [1564, 103]
FieldDeclaration [1673, 125]
FieldDeclaration [1871, 137]
FieldDeclaration [2016, 3]
FieldDeclaration [2105, 40]
FieldDeclaration [2151, 53]
MethodDeclaration [2212, 481]
= MethodDeclaration [2701, 233]
= method binding: StaffEditor, SkaffEditor{FormToalkit, Scrolledr
JawADoC: nul
MODIFIERS (1)
COMSTRUCTOR: 'true'
TYPE_PARAMETERS ()
RETURM_TYPEZ: null
MAME
PARAMETERS (2)
ExXTRA_DIMENSIONS: 0"
THROWN_EXCEPTIONS (0}
BODY
MethodDeclaration [2942, 1166]

M AdmbhnAN el ounbkinn FT4110 7201

» Problem with ASTs: They do not support static semantic checks,
re-factoring and browsing operations, e.qg.:
e Name semantics:

» Have all used variables been declared? Are they declared once?
= Have all classes used been imported?

e Are the types used in expressions / assignments compatible? (type
checking)

e Referencing:
= Navigate to the declaration of method call / variable reference / type

e How can I pretty-print the AST to a CST again, so that the CST looks like
the original CST

» Necessary for hygenic refactoring

@ Def-Use Graphs (DUG) and Use-Definition-Use Graphs (UDUG) :

» Many languages and notations have
» Definitions of items (definition of the variable Foo), which specify the type
or other metadata
» Uses of items (references to Foo)

» We talk in specifications or programs about names of objects and
their use
» Definitions are done in a data definition language (DDL)

» Uses are part of a data query language (DQL) or
data manipulation language (DML)

» Starting from the abstract syntax tree, name analysis finds out
about the definitions of uses of names

Building the Use-Def graph

This revolves the meaning of used names to definitions

Inverting the Use-Def graph to a Use-Def-Use graph (UDUG)

This links all definitions to their uses

@ Abstract Syntax Graphs (ASG) are UDGs

» Abstract Syntax Graphs
have use-def edges that
reflect semantic
relationships

boolean looking, found;

e from uses of names to if (looking && !found) {...}
definitions of names
» These edges are used for ‘ plock ‘
static semantic checks - — 1 .
e Type f:hecking typ\éiﬁ icllaan Typ\;if:ocllean‘ ‘ IfStmt ‘
e Type inference

e Coercion (transfer to new v
instance of other type idiToc?;?.-qneg
with same contents)

11
| | | |
VarName
LI id=found ‘ ‘ && ‘ ‘ Block
11

) A .

[
! |
I y—— |ooking |
I

@ Refactoring on Complete Name-Resolved Graphs

(Use-Def-Use Graphs)

» UDUGs are used in refactoring operations (e.g., renaming a class or
a method consistently over the entire program).

» For renaming of a definition, all uses have to be changed, too

» We need to trace all uses of a definition in the Use-Def-graph, resulting in its
inverse, the Def-Use-graph

» Refactoring works always on Def-Use-graphs and Use-Def-graphs, the
complete name-resolved graph (the Use-Def-Use graphs)

@ Example: Rename Refactorings in Programs .

Refactor the name Person to Human, using bidirectional use-def-use links:

Definition

Jim*);,———__ Reference (Use)

\| Ohn”),

class Human { .. }

class Course {
Human teacher = new Human(“Jim”);
Human student = new Human(“John”);

@ Refactoring

» Refactoring works always in the same way:
» Change a definition
» Find all dependent references
» Change them
» Recurse handling other dependent definitions

» Refactoring can be supported by tools
» The Use-Def-Use-graph forms the basis of refactoring tools
» However, building the Use-Def-Use-Graph for a complete program
costs a lot of space and is a difficult program analysis task

» Every method that structures this graph benefits immediately the
refactoring

» either simplifying or accelerating it

» UDUGs are large
e Efficient representation important

é!) Further Representations

From the ASG or an UDUG, more graph-based program
representations can be derived

» Control-flow Analysis -> Control-Flow Graph (CFG), Call graph
(CLG)

e Records control-flow relationships

» Data-Flow Analysis -> Data-Flow Graph (DFG) or Value-Flow
Graph (VFG)
e Records flow relationships for data values

The same remarks holds for graphic specifications

» Hence, all specifications are graph-based!

ASG (UDG) CFG, CLG VEG (DFG)
@

D

Control-Flow Graphs

» Describe the control flow in a program

» Typically, if statements and switch statements split control flow
» Their ends join control flow

» Control-Flow Graphs resolve symbolic labels
» Perform name analysis on labels

» Nested loops are described by nested control flow graphs

=

[print a

i
|

\{ return]

[print a++

@ Simple (Flow-Insensitive) Call Graph (CLG)

» Describe the call relationship between the procedures

» Interprocedural control-flow analysis performs name analysis on called
procedure names

main = procedure () { [main]
array int[] a = read(); /
print(a);
quicksort(a); [read]
print(a);

} .
quicksort = procedure(a: array[0..n]) { [print][quicksort]

int pivot = searchPivot(a);
quicksort(a[0], a[pivot-1));
quicksort(a[pivot+1,n]);

} [searchPivot]

@ Data-Flow Graphs (DFG) °

» A data-flow graph (DFG) aka value-flow graph (VFG) describes the
flow of data through the variables

» DFG are based on control-flow graphs

» Building the data-flow graph is called data-flow analysis

» Data-flow analysis is often done by abstract interpretation, the symbolic
execution of a program at compile time

a=a+5;]

pri\r{k

: @ Inheritance Analysis:
Building an Inheritance Tree or Inheritance Lattice

»> A lattice is a partial order with largest and smallest element
» Inheritance hierarchies can be generalized to inheritance lattices

» An inheritance analysis builds the transitive closure of the
inheritance lattice

Object

Don’t Know

A

[/J[\J
\/

[Undefined]

T Inheritance

@ UML Graphs

» All diagram sublanguages of UML generate internal graph
representations
» They can be analyzed and checked with graph techniques

» Graphic languages, such as UML, need a graph parser to be recognized, or a
specific GUI who knows about graphic elements

» Hence, graph techniques are an essential tool of the software
engineer

E:!) Remark: All Specifications Have a Graph-Based Representation

Texts are parsed to abstract syntax trees (AST)

Graphics are parsed by GUI or graph parser to AST also

Through name analysis, they become abstract syntax graphs (ASG)
Through def-use-analysis, they become Use-def-Use Graphs (UDUG)
Control-flow Analysis -> CFG, CLG

Data-Flow Analysis -> DFG

AST

VV VYV VY

Lists, Trees, DAGs, Graphs
Structural constrains on graphs
(background information)

12.3 TYPES OF GRAPHS IN
SPECIFICATIONS

@ Modeling Graphs on Two Abstraction Levels

» In modeling, we deal mostly with directed graphs (digraphs)
representing unidirectional relations

> lists, trees, DAGs, overlay graphs, reducible (di-)graphs, graphs

» There are two different abstraction levels; we are interested in the
logical level:

» Logical level (conceptual, abstract, often declarative, problem oriented)
» Methods to specify algorithms on graphs:
» Relational algebra
» Datalog, description logic
» Graph rewrite systems, graph grammars
» Recursion schemas

» Physical level (implementation level, concrete, often imperative, machine
oriented)

» Representations: Data type adjacency list, boolean (bit)matrix,
binary decision diagrams (BDDs)

» Imperative algorithms
» Pointer based representations and algorithms

@ Essential Graph Definitions

» Fan-in
» In-degree of a node under a certain relation
» Fan-in(n) = 0: n is root node (source)
» Fan-in(n) > 0: n is reachable from other nodes

» Fan-out
» Out-degree of node under a certain relation
» Fan-out(n) = 0: n is /eaf node (sink)
» An inner node is neither a root nor a leaf

> Path

» A path p = (n{, n,,...,,n,) is a sequence of nodes of length k

@ Lists

» One source (root)
» One sink
» Every other node has fan-in 1, fan-out 1

root
» Represents a total order (sequentialization)

> Gives

> Prioritization
> Execution order

sink

D

Trees

» One source (root)
» Many sinks (leaves)
» Every node has fan-in <=1

> Hierarchical abstraction:

» A node represents or abstracts
all nodes of a sub tree

» Example
» Structured Analysis (SA) function trees
» Organization trees (line organization)

D

Directed Acyclic Graphs

Y

YV VY VY

Many sources

» A jungle (term graph) is a dag with
one root

Many sinks
Fan-in, fan-out arbitrary

Represents a partial order
> Less constraints than in a total order

Weaker hierarchical abstraction
feature

» Can be layered
Example

» UML inheritance DAGs

» Inheritance lattices

roots
® (D
/' __/
\ /
() ceeens O
/ |\ AN
/ |\ N
L
daR 1A
sinks

" s) Skeleton Trees with Overlay Graphs :
(Trees with Secondary Graphs)

» Skeleton tree with overlay graph
(secondary links)

» Skeleton tree is primary
» Overlay graph is secondary: “less important”

» Advantage of an Overlay Graph ®

» Tree can be used as a conceptual hierarchy
» References to other parts are possible \

» Example @ i O

» XML, e.g., XHTML. Structure is described
by Xschema/DTD, links form the \
secondary relations

» AST with name relationships after . . .
name analysis (name-resolved trees,
abstract syntax graphs) /J\ L\

sinks

@ Reducible Graphs (Graphs with Skeleton Trees) :

» A reducible graph is a graph with cycles, however, only
between siblings

» No cycles between hierarchy levels

roots

» Graph can be “reduced” to one node
» Advantage ®

» Tree can be used as a conceptual hierarchy / \
» Example /

» UML statecharts ‘ ------- ‘

» UML and SysML component diagrams

» Control-flow graphs of Modula, Ada, Java

(not C, C++)
» SA data flow diagrams ‘ . ’
» Refined Petri Nets /j\ /l\

Reduction of a Reducible Graph E

B1
=) ¥ C>C>
[

@ Layerable Graphs with Skeleton DAGs

» Like reducible graphs, however, sharing between different parts of

the skeleton trees
» Graph cannot be “reduced” to one node

» Advantage

» Skeleton can be used to layer the graph ‘
» Cycles only within one layer / \
» Example
» Layered system architectures ‘ ------- '

S\TD Wild Unstructured (Directed) Graphs :

» Wild, unstructured graphs are the
worst structure we can get

» Wild, unstructured, irreducible cycles
» Unlayerable, no abstraction possible
» No overview possible

» Many roots
» A digraph with one source is called flow graph

» Many sinks

» Example
» Many diagrammatic methods in

Software Engineering .

» UML class diagrams /j\

@ Strength of Assertions in Models .

Ease of
Understanding

List: strong assertion: total order Sequential

Tree: still abstraction possible Hierarchies

Partial order
Layered

Dag: still layering possible

Graph: the worst case Unstructured

@ Strength of Assertions in Models

» Saying that a relation is

A list: very strong assertion, total order!

A tree: still a strong assertion: hierarchies possible, easy to think

A dag: still layering possible, still a partial order

A layerable graph: still layering possible, but no partial order

A reducible graph: graph with a skeleton tree

A graph: hopefully, some structuring or analysis is possible. Otherwise, it’s

the worst case

» And those propositions hold for every kind of diagram in Software
Engineering!

» Try to model reducible graphs, dags, trees, or lists in your
specifications, models, and designs
» Systems will be easier, more efficient

YV VVVYVYY

@ Structuring Improves Worst Case .

Ease of
List: strong assertion: total order Sequential Understanding

Tree: still abstraction possible Hierarchies

Partial order

Dag: still layering possible
Layered

:_ Structured graph (reducible, Structured :
| skeleton dag) \
-h'.-'.-'.-'.-'.-'.-'----------------------1
|

|
I Graph with analyzed features Unstructured :
| |

Graph: the worst case Unstructured

12.4 METHODS AND
TOOLS FOR ANALYSIS OF
GRAPH-BASED MODELS

. @ The Graph-Logic Isomorphism .

» In the following, we will make use of the graph-logic isomorphism:

» Graphs can be used to represent logic
» Nodes correspond to constants
» (Directed) edges correspond to binary predicates over nodes (triple statements)
» Hyperedges (n-edges) correspond to n-ary predicates

» Conseguence:
» Graph algorithms can be used to test logic queries on graph-based specifications

> Graph rewrite systems can be used for deduction
P y Il fact base

married(CarlGustav,Silvia).
married(Silvia, CarlGustav).
father father(CarlGustav,Victoria).

l l mother(Silvia,Victoria).

// Normalized English
CarlGustav is married to Silvia.

Silvia is married to CarlGustav.
CarlGustav is father to Victoria.
Silvia is mother to Victoria.

married

dresden. Pro ABmMz odel Consiste 4 @.-.'

. @ Graphs and Fact Data Bases .

» Graphs can also be noted textually _

» Graphs consist of nodes, relations > Fact data bases consist of
_ _ ! constants (data) and

> Relations link nodes predicates

» Nodes of graphs can be
regarded as constants, edges
as predicates between
constants (facts):

// OWL Triples

GustavAdolf h Adam isParentOf GustavAdolf.

Adam i1sParentOf Sibylla.

isParentOf

// Facts
isParentOf (Adam, GustavAdolf) .
isParentOf (Adam, Sibylla) .

isParentOf

i) Queries on Graph-Based Models Make Implicit Knowledge Explicit

» Since graph-based models are a mess, we try to analyze them

» Knowledge is either
» Explicit, i.e., represented in the model as edges and nodes
» Implicit, i.e., hidden, not directly represented, and must be analyzed
» Query and analysis problems try to make implicit knowledge
explicit

» E.g., does the graph have one root? How many leaves do we have? Is this
subgraph a tree? Can I reach that node from this node?

» Determining features of nodes and edges
» Finding certain nodes, or patterns
» Determining global features of the model
» Finding paths between two nodes (e.g., connected, reachable)
» Finding paths that satisfy additional constraints
» Finding subgraphs that satisfy additional constraints

: @ Queries for Checking Consistency (Model Validation)

» Queries can be used to find out whether a graph is consistent (i.e.,
valid, well-formed)

» Due to the graph-logic isomorphism, constraint specifications can be phrased
in logic and applied to graphs

» Business people call these constraint specifications business rules
» Example:

» if a car is exported to England, steering wheel and pedals should be on the
right side; otherwise on the left

@ 12.4.1 Layering Graphs: How to Analyze a System for
Layers

» With the “"Same Generation” Problem
» How to query and search in a DAG
» How to layer a DAG - a simple structuring problem

@ Layering of Systems

» To be comprehensible, a system should be structured in layers

» Several relations in a system can be used to structure it, e.g., the
» Call graph: layered call graph
» Layered definition-use graph

» Alayered architecture is the dominating
style for large systems

» Outer, upper layers use inner, lower
layers (layered USES relationship)

» Legacy systems can be analyzed for
layering, and if they do not have a
layered architecture, their structure can
be improved towards this principle

: @ Layering of Acyclic Graphs .

» Given any acyclic relation, it can be made layered
» Same Generation analysis creates layers for trees or DAGs

» Example: layering a family tree:
» Who is whose contemporary?
» Who is ancestor of whom?

GustavAdolf

oy G e

@ Pattern and Rules

» Parenthood can be described by a graph pattern
» We can write the graph pattern also in logic:

isParentOf (Parent,Childl) && isParentOf (Parent,Child?2)

» And define the rule
if isParentOf (Parent,Childl) && isParentOf (Parent,Child?2)

then sameGeneration (Childl,Child?2)

isParentOf

<<create>>
sameGeneration

isParentOf

. @ Impact of Rule on Family Graph .

el) Rule set "Same Generation"

» Base rule: Beyond sisters and brothers we can link all people of
same generation

CChild 1> CChild 1>
<—<T
_Child 2 > <_Child 2 >

» Additional rule (transitive): Enters new levels into the graph

ﬁ E

@ Parent 1 @

Impact of Transitive Rule

GustavAdol

@ "Same Generation” Introduces Layers

» Computes all nodes that belong to one layer of a dag
» If backedges are neglected, also for an arbitrary graph

» Algorithm:
» Compute Same Generation
» Go through all layers and number them

» Applications:

» Compute layers in a call graph
» Find out the call depth of a procedure from the main procedure
» Restructuring of legacy software (refactoring)
» Compute layers of systems by analyzing the USES relationships (ST-I)
» Insert facade classes for each layer (Facade design pattern)
» Every call into the layer must go through the facade
» As a result, the application is much more structured

The Generations as Layers

Carl
Gustav ‘ '

12.4.2 SEARCHING GRAPHS -
SEARCHING IN SPECIFICATIONS
WITH DATALOG AND EARS

@ SameGeneration as a Graph Rewrite System

» The rule system SameGeneration only adds edges.

» An edge addition rewrite system (EARS) adds edges to graphs

» It enlarges the graph, but the new edges can be marked such that they
are not put permanently into the graph

» EARS are declarative
» No specification of control flow and an abstract representation

» Confluence: The result is independent of the order in which rules
are applied / all orders of applying rules lead to the same result

» Recursion: The system is recursive, since relation “Same
Generation” is used and defined

» Termination: terminates, if all possible edges are added, latest,
when graph is complete

» EARS compute
» Reachability of nodes
» Paths in graphs

» “Same Generation” can be used for graph analysis

. @ Rule Systems in EARS and Datalog .

» Rule systems can be noted
textually or graphically

(DATALOG vs. EARS) :
// conclusion

» Datalog contains sameGeneration (Childl, Child2)
e textual if-then rules, which test . _ . owien
predicates about the constants) /] say: "if
// premise

e rules contain variables i]
isParentOf (Parent,Childl),
isParentOf (Parent,Child2).

CChildT>

,f””‘? if isParentOf (Parent,Childl) &é&
— isParentOf (Parent,Child2)
\\\\‘ ~\\\\\L§ then

// conclusion
sameGeneration(Childl,Child2)

D

Same Generation Datalog Program

isParentOf(Adam,GustavAdolf). \
isParentOf(Adam,Sibylla).

if isParentOf(Parent,Childl), isParentOf(Parent,Child2)
then sameGeneration(Child1, Child2).

if sameGeneration(Parentl,Parent2),
isParentOf(Parentl,Childl), isParentOf(Parent2,Child2)
then
sameGeneration(Child1, Child2).

_ /

@ Solving Path Problems With Datalog

» Single Source Multiple Target Path Problem - SMPP
» Multiple Source Single Target Path Problem - MSPP
» Multiple Source Multiple Target Path Problem - MMPP

(# A SMPP problem (searching for Single source a set of Multiple targets)\

descendant(Adam, X)?
X={ Silvia, Carl-Gustav, Victoria,}

An MSPP problem (multiple source, single target)
descendant(X,Silvia)?
X={Walter, Adam, Alice}

An MMPP problem (multiple source, multiple target)
ancestor(X,Y)?

{X=Walter, Y={Adam}

X=Victoria, Y={CarlGustav, Silvia, Sibylla, ...}

\- J

» The Swiss-Knife of Graph Analysis

12.5 REACHABILITY

QUERIES WITH

TRANSITIVE CLOSURE IN
DATALOG AND EARS

@ Who is Descendant of Whom?

» Sometimes we need to know transitive edges, i.e., edges after
edges of the same color

» Question: what is reachable from a node?
» Which descendants has Adam?

» Answer: Transitive closure calculates reachability over nodes
» It contracts a graph, inserting masses of edges to all reachable nodes
» It contracts all paths to single edges
» It makes reachability information explicit

» After transitive closure, it can easily be decided whether a node is
reachable or not
» Basic premise: base relation is not changed (offline problem)

. @ Transitive Closure as Datalog Rule System or EARS .

> Basic rule descendant (Parent,Child) :- isChildOf (Parent,Child) .

CChild>
@arend> =) Gaed

» Transitive rule (recursion rule)

> left recursive: descendant (Parent, GrandCh) :-
descendant (Parent, X),1sChildOf (X, GrandCh) .

> right recursive: descendant (Parent, GrandCh) :-
1sChildOf (Parent, X), descendant (X,GrandCh) .

PCIION
(GTandCh) ety (ParenD)

Impact of Basic Rule .

-
f’
-

_ =2 (Desiree

ictori

@ Impact of Recursion Rule .

— ¥ (Desiree
, >
» \\

A
(Madeleind)
_/{

-
7”7

~ Impact only shown for Adam,
- but is applied to other nodes too

Qi

s\T) [S|M][S|M]PP Path Problems are
Special Cases of Transitive Closure

» Single Source Single Target Path Problem, SSPP:
» Test, whether there is a path from a source to a target

» Single Source Multiple Target SMPP:
» Test, whether there is a path from a source to several targets
» Or: find n targets, reachable from one source
» Multiple Source Single Target MSPP:
» Test, whether a path from n sources to one target
» Multiple Source Multiple Target MMPP:
» Test, whether a path of n sources to n targets exists

» All can be computed with transitive closure:
» Compute transitive closure
» Test sources and targets on direct neighboarship

Example: Railway Routes as Reachability Queries

» The info system of DB could be based on a graph of German

railway stations.

» Base (Facts):
» directlyLinked (Berlin, Potsdam).
» directlyLinked (Potsdam,Braunschweig) .

> directlylLinked (Braunschweig, Hannover).

» Define the predicates
» linked(2a,B)
» alsoLinked (a,B)
» unreachable (A, B)

» Answer the queries
» linked (Berlin,X)
> unreachable (Berlin, Hannover)

I DB Bahn: bahn.de - thr M

[www.bahn.de/p/view/index.shtml

M local MSearch R M News

AnMitarbeiter M ST-Gruppe M ST-VL-WS i SsT-vL-ws

BAHN Konakt | Hife | Stemap a a+ a++ [D

@ Auskunft & Tickets

Auskunft & Buchung l Sparpreis-Finder

[Von BahnhofiHattestelle oder Ort, Strafte ... | [#] Neu: Das Handy-Ticket
[.- nach Bahnhof/Haltestelle oder Ort, Strake | ietzt auch fiir kurze Streck‘e?
“'-

@ Enfache Fahrt () Hin- und Rickfahrt
[€][Do, 22.11.12 B E
[€][1445 |[3] @ Avfaht (O Ankunft

™ Schnelle Verbindung () Nur Nahverkehr
bevorzugen

O Nur Sitzplatzreservierun 9

L4 Reisende - Andern

1 Erwachsener, Keine Ermaigung

2. Klasse i\
i\
“Weitere Suchoptionen T
ahnreisen el ig:

- Sparpreis ab 29 €
{2} punktiichkeit & Anschiussziige > > Europa-Spezial ab39€
> Freizeit-Ticket ab30€
m Regionale Angebote & Pendler > > Ostsee-Ticket ab43€
> Autozug abg9€
es a - > Sitzplatz rvi
Hotel & Stidtereisen >
Mietwagen & Reisevergleich >

Neue Angebote, Gutscheinaktionen,
E c 3 | bonnieren Sie den bahn.d £
Mehr zu Reiseauskunft & Tickets
® Ihre E-Mail Adresse ->
—

> > Infos zu Riickgabe und Erstattung
’_. - bahn.de/aktuell / Baustellen

- Buchungsportal far Firmenkunden

® 0 Ihr Fahrplan fiir unterwegs
o - Mobile Services von bahn.de

[ib'.;

@ Application: Inheritance Analysis as Reachability
Queries

» Base (Facts):

class (Person). class(Human). class(Man). class (Woman) .
extends (Person, Human) .
extends (Man, Person) .

YV VYV

extends (Woman, Person) .

» Define the predicates
> superScope (A,B) :- class(A), class(B), isA(A,B).

> transitiveSuperScope (A,B) :- superScope(A,C),
transitiveSuperScope (C,B) .

» Answer the queries
> 2 transitiveSuperScope (Man, X)
» >> {X=Person, X=Human}
> 2 transitiveSuperScope (Woman, Y)
» >> {Y=Person,Y=Human}

@ The End: What Have We Learned :

» Graphs and Logic are isomorphic to each other

» Using logic or graph rewrite systems, models can be validated
» Analyzed
» Queried
» Checked for consistency
» Structured

» Applications are many-fold, using all kinds of system relationships
» Consistency of UML class models (domain, requirement, design models)
» Structuring (layering) of USES relationships
» Logic and graph rewriting technology involves reachability
questions

Logic and edge addition rewrite systems are the Swiss army
knifes of the validating modeler

@ Reading

» Alexander Christoph. Graph rewrite systems for software design

transformations. In M. Aksit, editor, Proceedings of Net Object Days 2002, Erfurt,
Germany, October 2002. Springer LNCS 2591

D. Calvanese, M. Lenzerini, D. Nardi. Description Logics for Data Modeling. In J.
Chomicki, G. Saale. Logics for Databases and Information Systems. Kluwer, 1998.

Michael Kifer. Rules and Ontologies in F-Logic. Reasoning Web Summer School
2005. Lecture Notes in Computer Science, LNCS 3564, Springer.
http://dx.doi.org/10.1007/11526988_2

Mira Balaban, Michael Kifer. An Overview of F-OML: An F-Logic Based Object
Modeling Language. Proceedings of the Workshop on OCL and Textual Modelling
(OCL 2010). ECEASST 2010, 36, http://journal.ub.tu-
berlin.de/eceasst/article/view/537/535

Lam, M. S., Whaley, J., Livshits, V. B., Martin, M. C., Avots, D., Carbin, M., and Unkel,
C. 2005. Context-sensitive program analysis as database queries. In Proceedings
of the Twenty-Fourth ACM SIGMOD Symposium on Principles of Database Systems
(Baltimore, Maryland, June 13 - 15, 2005). PODS '05. ACM, New York, NY, 1-12. DOI=
http://doi.acm.org/10.1145/1065167.1065169

http://journal.ub.tu-berlin.de/eceasst/article/view/537/535
http://doi.acm.org/10.1145/1065167.1065169

el) Query Engines on Code and Models Using Logic

Yi, Kwangkeun, Whaley, John, Avots, Dzintars, Carbin, Michael, Lam, Monica.
Using Datalog with Binary Decision Diagrams for Program Analysis. In:
Programming Languages and Systems. Lecture Notes in Computer Science 3780,
2005, pp. 97-118 http://dx.doi.org/10.1007/11575467 8

Thomas, Dave, Hajiyev, Elnar, Verbaere, Mathieu, de Moor, Oege.

codeQuest: Scalable Source Code Queries with Datalog, ECOOP 2006 - Object-
Oriented Programming, Lecture Notes in Computer Science 4067, 2006, Springer, pp.
2 - 27 http://dx.doi.org/10.1007/11785477 2

Ebert, JUrgen; Riediger, Volker; Schwarz, Hannes; Bildhauer, Daniel
Using the TGraph Approach for Model Fact Repositories. In: Proceedings of the
International Workshop on Model Reuse Strategies (MoRSe 2008). S. 9--18.

Bildhauer, Daniel; Ebert, Jirgen (2008): Querying Software Abstraction Graphs.
In: Working Session on Query Technologies and Applications for Program
Comprehension (QTAPC 2008), collocated with ICPC 2008.

http://dx.doi.org/10.1007/11575467_8
http://dx.doi.org/10.1007/11785477_2
http://www.uni-koblenz.de/~dbildh
http://www.uni-koblenz-landau.de/koblenz/fb4/institute/IST/AGEbert/personen/juergen-ebert

@ References

» S. Ceri, G. Gottlob, L. Tanca. What You Always Wanted to Know About Datalog
(And Never Dared to Ask). IEEE Transactions on Knowledge And Data Engineering.
March 1989, (1) 1, pp. 146-166.

S. Ceri, G. Gottlob, L. Tanca. Logic Programming and Databases. Springer, 1989.

» Ullman, J. D. Principles of Database and Knowledge Base Systems. Computer
Science Press 1989.

» Benjamin Grosof, Ian Horrocks, Raphael Volz, and Stefan Decker. Description logic
programs: Combining logic programs with description logics. In Proc. of World
Wide Web Conference (WWW) 2003, Budapest, Hungary, 05 2003. ACM Press.

» Uwe ABmann, Steffen Zschaler, and Gerd Wagner. Ontologies, Meta-Models, and
the Model-Driven Paradigm. Handbook of Ontologies in Software Engineering.
Springer, 2006.

> http://www.uni-koblenz-
landau.de/koblenz/fb4/institute/IST/AGEbert/personen/juergen-ebert/juergen-ebert/

http://www.uni-koblenz-landau.de/koblenz/fb4/institute/IST/AGEbert/personen/juergen-ebert/juergen-ebert/

@ Querying and Transformings Models with :
Graph Rewriting

» Graph rewriting for programs and models:

» U. ABmann. On Edge Addition Rewrite Systems and Their Relevance to
Program Analysis. In J. Cuny, H. Ehrig, G. Engels, and G. Rozenberg, editors,
5th Int. Workshop on Graph Grammars and Their Application To Computer
Science, volume 1073 of Lecture Notes in Computer Science, pages 321-335.
Springer, Heidelberg, November 1994.

» Uwe ABmann. How to uniformly specify program analysis and
transformation. In P. A. Fritzson, editor, Proceedings of the International
Conference on Compiler Construction (CC), volume 1060 of Lecture Notes in
Computer Science, pages 121-135. Springer, Heidelberg, 1996.

» U. ABmann. Graph Rewrite Systems for Program Optimization. ACM
Transactions on Programming Languages and Systems, June 2000.

» U. ABmann. OPTIMIX, A Tool for Rewriting and Optimizing Programs.
Graph Grammar Handbook, Vol. II, 1999. Chapman&Hall.

» U. ABmann. Reuse in Semantic Applications. REWERSE Summer School. July
2005. Malta. Reasoning Web, First International Summer School 2005, number
3564 in Lecture Notes in Computer Science. Springer.

» Alexander Christoph. GREAT - a graph rewriting transformation framework
for designs. Electronic Notes in Theoretical Computer Science (ENTCS), 82(4),
April 2003.

