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Goals

 Understand that software models can become very large

 the need for appropriate techniques to handle large models

 the need for automatic analysis of the models

 Learn how to use graph-based techniques to analyze and check models for 
consistency, well-formedness and integrity

• Datalog, 

• Graph Query Languages, 

• Description Logic, 

• Edge Addition Rewrite Systems and 

• Graph Transformations.

 Understand some basic concepts of simplicity in software models
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Motivation

 Software engineers must be able to 

 handle big design specifications (design models) during development

 work with consistent models

 measure models and implementations

 validate models and implementations

 Real models and systems become very complex

 Most specifications are graph-based

 We have to deal with basic graph theory to be able to measure well
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12.1 THE PROBLEM: HOW 
TO MASTER LARGE 
MODELS

 Large models have large graphs 

 They can be hard to understand

Figures taken from Goose Reengineering Tool, analysing a Java class system [Goose, FZI Karlsruhe]
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Partially Collapsed
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Totally Collapsed
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Requirements for Modeling in Requirements and Design

 We need guidelines how to develop simple models

 We need analysis techniques to 

 Analyze models

 Find out about their complexity

 Find out about simplifications

 Search in models

 Check the consistency of the models
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12.2 GENERATING 
GRAPHS FROM DIAGRAMS 
AND PROGRAMS

How are models and programs represented in a Software Tool?

Some Relationships (Graphs) in Software Systems
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All Specifications and All Programs 
have an Internal Graph-Based Representation

 Texts are parsed to abstract syntax trees (AST)

 Two-step procedure

 Concrete Syntax Tree (CST)

 Abstract Syntax Tree (AST)

 Through name analysis, they become abstract syntax graphs (ASG) or Use-
Def-Graphs (UDG)

 Through def-use-analysis, they become Use-def-Use Graphs (UDUG)
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Concrete Syntax Tree (CST) – Example
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Expr ::= ‘(’ Expr ‘)’
| Expr ‘&&’ Expr
| Expr ‘||’ expr
| ‘!’ Expr
| Lit .

Lit ::= Var | ‘true’ | ‘false’.
Var ::= [a-z][a-z 0-9_]+ .

Parsing this string:
(( looking || true) && !found )



CST - Example

Expr

( Expr

Expr

( Expr

Expr

Var
id = looking

|| Expr

true

)

&& Expr

! Expr

Var
id = found

)
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Expr ::= ‘(’ Expr ‘)’
| Expr ‘&&’ Expr
| Expr ‘||’ expr
| ‘!’ Expr
| Lit .

Lit ::= Var | ‘true’ | ‘false’.
Var ::= [a-z][a-z 0-9_]+ .

Parsing this string:
(( looking || true) && !found )



From the CST to the AST

&&

||

Var
id = looking

True

!

Var
id = found
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Expr

( Expr
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Var
id = looking

|| Expr
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&& Expr

! Expr

Var
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)



Abstract Syntax Trees (AST)

 Parse trees (CST) waste a fair amount 
of space for representation of terminal 
symbols and productions

 Compilers post-process parse trees 
into ASTs

 ASTs are the fundamental data 
structure of IDEs 
(ASTView in Eclipse JDT)
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AST

 Problem with ASTs: They do not support static semantic checks, 
re-factoring and browsing operations, e.g.:

• Name semantics:

 Have all used variables been declared? Are they declared once?

 Have all classes used been imported?

• Are the types used in expressions / assignments compatible? (type 
checking)

• Referencing: 

 Navigate to the declaration of method call / variable reference / type

• How can I pretty-print the AST to a CST again, so that the CST looks like 
the original CST 

 Necessary for hygenic refactoring
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Def-Use Graphs (DUG) and Use-Definition-Use Graphs (UDUG)

 Many languages and notations have
 Definitions of items (definition of the variable Foo), which specify the type 

or other metadata

 Uses of items (references to Foo)

 We talk in specifications or programs about names of objects and 
their use

 Definitions are done in a data definition language (DDL)

 Uses are part of a data query language (DQL) or 
data manipulation language (DML)

 Starting from the abstract syntax tree, name analysis finds out 
about the definitions of uses of names 

• Building the Use-Def graph

• This revolves the meaning of used names to definitions

• Inverting the Use-Def graph to a Use-Def-Use graph (UDUG)

• This links all definitions to their uses
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Abstract Syntax Graphs (ASG) are UDGs

 Abstract Syntax Graphs 
have use-def edges that 
reflect semantic
relationships

• from uses of names to 
definitions of names

 These edges are used for 
static semantic checks

• Type checking

• Type inference

• Coercion (transfer to new 
instance of other type 
with same contents)
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boolean looking, found;
…
if (looking && !found ) {…}

Block

VarDecl

type=boolean

VarName
id=looking

VarDecl

Type=boolean

VarName
id=found

IfStmt

&&

looking !

found

Block



Refactoring on Complete Name-Resolved Graphs 
(Use-Def-Use Graphs)

 UDUGs are used in refactoring operations (e.g., renaming a class or
a method consistently over the entire program).

 For renaming of a definition, all uses have to be changed, too

 We need to trace all uses of a definition in the Use-Def-graph, resulting in its 
inverse, the Def-Use-graph

 Refactoring works always on Def-Use-graphs and Use-Def-graphs, the 
complete name-resolved graph (the Use-Def-Use graphs)
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class Person { .. }

class Course { 

Person teacher = new Person(“Jim”);

Person student = new Person(“John”);

}

Example: Rename Refactorings in Programs
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Definition

Reference (Use)

Refactor the name Person to Human, using bidirectional use-def-use links:

class Human { .. }

class Course { 

Human teacher = new Human(“Jim”);

Human student = new Human(“John”);

}



Refactoring

 Refactoring works always in the same way:

 Change a definition

 Find all dependent references 

 Change them

 Recurse handling other dependent definitions

 Refactoring can be supported by tools

 The Use-Def-Use-graph forms the basis of refactoring tools

 However, building the Use-Def-Use-Graph for a complete program 
costs a lot of space and is a difficult program analysis task

 Every method that structures this graph benefits immediately the 
refactoring

 either simplifying or accelerating it

 UDUGs are large 

• Efficient representation important

TU Dresden, Prof. U. Aßmann Model Consistency 21



Further Representations

From the ASG or an UDUG, more graph-based program 
representations can be derived

 Control-flow Analysis -> Control-Flow Graph (CFG), Call graph
(CLG)

• Records control-flow relationships

 Data-Flow Analysis -> Data-Flow Graph (DFG) or Value-Flow
Graph (VFG)

• Records flow relationships for data values

The same remarks holds for graphic specifications

 Hence, all specifications are graph-based!
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CFG, CLG
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VFG (DFG)
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ASG (UDG)



Control-Flow Graphs

 Describe the control flow in a program

 Typically, if statements and switch statements split control flow

 Their ends join control flow

 Control-Flow Graphs resolve symbolic labels

 Perform name analysis on labels

 Nested loops are described by nested control flow graphs
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while

if

print a

a+=5;

print a++

return



Simple (Flow-Insensitive) Call Graph (CLG)

 Describe the call relationship between the procedures
 Interprocedural control-flow analysis performs name analysis on called 

procedure names
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main = procedure () {

array int[] a = read();

print(a);

quicksort(a);

print(a);

}

quicksort = procedure(a: array[0..n]) {

int pivot = searchPivot(a);

quicksort(a[0], a[pivot-1]);

quicksort(a[pivot+1,n]);

}

quicksort

main

print

read

searchPivot



Data-Flow Graphs (DFG)

 A data-flow graph (DFG) aka value-flow graph (VFG) describes the 
flow of data through the variables

 DFG are based on control-flow graphs

 Building the data-flow graph is called data-flow analysis

 Data-flow analysis is often done by abstract interpretation, the symbolic 
execution of a program at compile time
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while

if

print a

a=a+5;

print a++

b=a

a=0



Inheritance Analysis: 
Building an Inheritance Tree or Inheritance Lattice

 A lattice is a partial order with largest and smallest element

 Inheritance hierarchies can be generalized to inheritance lattices

 An inheritance analysis builds the transitive closure of the 
inheritance lattice
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UML Graphs

 All diagram sublanguages of UML generate internal graph 
representations

 They can be analyzed and checked with graph techniques

 Graphic languages, such as UML, need a graph parser to be recognized, or a 
specific GUI who knows about graphic elements

 Hence, graph techniques are an essential tool of the software 
engineer
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Remark: All Specifications Have a Graph-Based Representation

 Texts are parsed to abstract syntax trees (AST)

 Graphics are parsed by GUI or graph parser to AST also

 Through name analysis, they become abstract syntax graphs (ASG)

 Through def-use-analysis, they become Use-def-Use Graphs (UDUG)

 Control-flow Analysis -> CFG, CLG

 Data-Flow Analysis -> DFG
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.......

AST

.......

ASG

.......

UDUG

.......

CFG, CLG

.......

DFG



12.3 TYPES OF GRAPHS IN 
SPECIFICATIONS 

Lists, Trees, DAGs, Graphs 

Structural constrains on graphs

(background information)
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Modeling Graphs on Two Abstraction Levels

 In modeling, we deal mostly with directed graphs (digraphs) 
representing unidirectional relations

 lists, trees, DAGs, overlay graphs, reducible (di-)graphs, graphs

 There are two different abstraction levels; we are interested in the 
logical level:
 Logical level (conceptual, abstract, often declarative, problem oriented)

 Methods to specify algorithms on graphs:

 Relational algebra

Datalog, description logic

Graph rewrite systems, graph grammars

 Recursion schemas

 Physical level (implementation level, concrete, often imperative, machine 
oriented)

 Representations: Data type adjacency list, boolean (bit)matrix,
binary decision diagrams (BDDs)

 Imperative algorithms

 Pointer based representations and algorithms
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Essential Graph Definitions

 Fan-in

 In-degree of a node under a certain relation

 Fan-in(n) = 0: n is root node (source)

 Fan-in(n) > 0: n is reachable from other nodes

 Fan-out

 Out-degree of node under a certain relation 

 Fan-out(n) = 0: n is leaf node (sink)

 An inner node is neither a root nor a leaf

 Path

 A path p = (n1, n2,…,nk) is a sequence of nodes of length k
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Lists

 One source (root)

 One sink

 Every other node has fan-in 1, fan-out 1

 Represents a total order (sequentialization)

 Gives

 Prioritization

 Execution order
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root

sink



Trees

 One source (root)

 Many sinks (leaves)

 Every node has fan-in <= 1

 Hierarchical abstraction:

 A node represents or abstracts
all nodes of a sub tree

 Example

 Structured Analysis (SA) function trees

 Organization trees (line organization)
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.......

.......

.......

root

sinks



Directed Acyclic Graphs

 Many sources

 A jungle (term graph) is a dag with 
one root

 Many sinks

 Fan-in, fan-out arbitrary

 Represents a partial order 

 Less constraints than in a total order

 Weaker hierarchical abstraction 
feature 

 Can be layered

 Example

 UML inheritance DAGs

 Inheritance lattices
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.......

.......

.......

roots

sinks



Skeleton Trees with Overlay Graphs 
(Trees with Secondary Graphs)

 Skeleton tree with overlay graph 
(secondary links)

 Skeleton tree is primary

 Overlay graph is secondary: “less important”

 Advantage of an Overlay Graph

 Tree can be used as a conceptual hierarchy

 References to other parts are possible

 Example

 XML, e.g., XHTML. Structure is described
by Xschema/DTD, links form the 
secondary relations

 AST with name relationships after 
name analysis (name-resolved trees, 
abstract syntax graphs)
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Reducible Graphs (Graphs with Skeleton Trees)

 A reducible graph is a graph with cycles, however, only 
between siblings

 No cycles between hierarchy levels 

 Graph can be “reduced” to one node

 Advantage

 Tree can be used as a conceptual hierarchy

 Example

 UML statecharts

 UML and SysML component diagrams

 Control-flow graphs of Modula, Ada, Java 
(not C, C++)

 SA data flow diagrams

 Refined Petri Nets
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.......

.......

.......

roots

sinks



Reduction of a Reducible Graph
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Layerable Graphs with Skeleton DAGs

 Like reducible graphs, however, sharing between different parts of 
the skeleton trees

 Graph cannot be “reduced” to one node

 Advantage

 Skeleton can be used to layer the graph

 Cycles only within one layer

 Example

 Layered system architectures
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Wild Unstructured (Directed) Graphs

 Wild, unstructured graphs are the 
worst structure we can get

 Wild, unstructured, irreducible cycles

 Unlayerable, no abstraction possible

 No overview possible

 Many roots

 A digraph with one source is called flow graph

 Many sinks

 Example

 Many diagrammatic methods in 
Software Engineering 

 UML class diagrams
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Strength of Assertions in Models
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List: strong assertion: total order

Graph: the worst case

Dag: still layering possible

Tree: still abstraction possible

Sequential

Partial order

Layered

Hierarchies

Unstructured

Ease of 

Understanding



Strength of Assertions in Models

 Saying that a relation is

 A list: very strong assertion, total order!

 A tree: still a strong assertion: hierarchies possible, easy to think 

 A dag: still layering possible, still a partial order

 A layerable graph: still layering possible, but no partial order

 A reducible graph: graph with a skeleton tree

 A graph: hopefully, some structuring or analysis is possible. Otherwise, it’s 
the worst case

 And those propositions hold for every kind of diagram in Software 
Engineering!

 Try to model reducible graphs, dags, trees, or lists in your 
specifications, models, and designs

 Systems will be easier, more efficient
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Structuring Improves Worst Case
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List: strong assertion: total order

Graph: the worst case

Dag: still layering possible

Tree: still abstraction possible

Sequential

Partial order

Layered

Hierarchies

Unstructured

Structured
Structured graph (reducible, 

skeleton dag)

Ease of 

Understanding

UnstructuredGraph with analyzed features



12.4 METHODS AND 
TOOLS FOR ANALYSIS OF 
GRAPH-BASED MODELS
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The Graph-Logic Isomorphism

 In the following, we will make use of the graph-logic isomorphism:

 Graphs can be used to represent logic

 Nodes correspond to constants

 (Directed) edges correspond to binary predicates over nodes (triple statements)

 Hyperedges (n-edges) correspond to n-ary predicates

 Consequence:

 Graph algorithms can be used to test logic queries on graph-based specifications

 Graph rewrite systems can be used for deduction
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Victoria

Silvia

Carl Gustav

married

father

mother

// fact base
married(CarlGustav,Silvia).

married(Silvia, CarlGustav).

father(CarlGustav,Victoria).

mother(Silvia,Victoria).

// Normalized English
CarlGustav is married to Silvia.

Silvia is married to CarlGustav.

CarlGustav is father to Victoria.

Silvia is mother to Victoria.



Graphs and Fact Data Bases

 Graphs can also be noted textually

 Graphs consist of nodes, relations

 Relations link nodes
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 Fact data bases consist of 
constants (data) and 
predicates

 Nodes of graphs can be 
regarded as constants, edges 
as predicates between 
constants (facts):

GustavAdolf

Adam

Sibylla

isParentOf

isParentOf

// Facts

isParentOf(Adam,GustavAdolf).

isParentOf(Adam,Sibylla).

// OWL Triples

Adam isParentOf GustavAdolf.

Adam isParentOf Sibylla.



Queries on Graph-Based Models Make Implicit Knowledge Explicit

 Since graph-based models are a mess, we try to analyze them

 Knowledge is either

 Explicit, i.e., represented in the model as edges and nodes

 Implicit, i.e., hidden, not directly represented, and must be analyzed

 Query and analysis problems try to make implicit knowledge 
explicit

 E.g., does the graph have one root? How many leaves do we have? Is this 
subgraph a tree? Can I reach that node from this node?

 Determining features of nodes and edges

 Finding certain nodes, or patterns

 Determining global features of the model

 Finding paths between two nodes (e.g., connected, reachable)

 Finding paths that satisfy additional constraints

 Finding subgraphs that satisfy additional constraints
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Queries for Checking Consistency (Model Validation)

 Queries can be used to find out whether a graph is consistent (i.e., 
valid, well-formed)

 Due to the graph-logic isomorphism, constraint specifications can be phrased 
in logic and applied to graphs

 Business people call these constraint specifications business rules

 Example:

 if a car is exported to England, steering wheel and pedals should be on the 
right side; otherwise on the left
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12.4.1 Layering Graphs: How to Analyze a System for 
Layers

 With the “Same Generation” Problem

 How to query and search in a DAG

 How to layer a DAG – a simple structuring problem
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Layering of Systems

 To be comprehensible, a system should be structured in layers

 Several relations in a system can be used to structure it, e.g., the

 Call graph: layered call graph

 Layered definition-use graph
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 A layered architecture is the dominating 
style for large systems

 Outer, upper layers use inner, lower 

layers (layered USES relationship)

 Legacy systems can be analyzed for 

layering, and if they do not have a 

layered architecture, their structure can 

be improved towards this principle



Layering of Acyclic Graphs

 Given any acyclic relation, it can be made layered

 Same Generation analysis creates layers for trees or DAGs

 Example: layering a family tree:

 Who is whose contemporary?

 Who is ancestor of whom?
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Carl Gustav



Pattern and Rules

 Parenthood can be described by a graph pattern

 We can write the graph pattern also in logic:

isParentOf(Parent,Child1) && isParentOf(Parent,Child2)

 And define the rule
if isParentOf(Parent,Child1) && isParentOf(Parent,Child2)

then sameGeneration(Child1,Child2)
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Parent

Child 1

Child 2

Parent

Child 1

Child 2

isParentOf

isParentOf

isParentOf

isParentOf

<<create>>

sameGeneration



Impact of Rule on Family Graph
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Rule set “Same Generation“

 Base rule: Beyond sisters and brothers we can link all people of 
same generation

 Additional rule (transitive): Enters new levels into the graph
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Parent

Child 1

Child 2

Parent

Child 1

Child 2

Parent 1 Child 1

Parent 2 Child 2

Parent 1 Child 1

Parent 2 Child 2



Impact of Transitive Rule
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”Same Generation” Introduces Layers

 Computes all nodes that belong to one layer of a dag

 If backedges are neglected, also for an arbitrary graph

 Algorithm:

 Compute Same Generation

 Go through all layers and number them

 Applications: 

 Compute layers in a call graph

 Find out the call depth of a procedure from the main procedure

 Restructuring of legacy software (refactoring)

 Compute layers of systems by analyzing the USES relationships (ST-I)

 Insert facade classes for each layer (Facade design pattern)

 Every call into the layer must go through the facade

 As a result, the application is much more structured
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The Generations as Layers
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Adolf

Sybille

Walter

Alice

Carl
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Ralf

Victoria



12.4.2 SEARCHING GRAPHS –
SEARCHING IN SPECIFICATIONS 
WITH DATALOG AND EARS
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SameGeneration as a Graph Rewrite System

 The rule system SameGeneration only adds edges. 

 An edge addition rewrite system (EARS) adds edges to graphs

 It enlarges the graph, but the new edges can be marked such that they 
are not put permanently into the graph

 EARS are declarative

 No specification of control flow and an abstract representation

 Confluence: The result is independent of the order in which rules 
are applied / all orders of applying rules lead to the same result

Recursion: The system is recursive, since relation “Same 
Generation” is used and defined

 Termination: terminates, if all possible edges are added, latest, 
when graph is complete

 EARS compute

 Reachability of nodes 

 Paths in graphs 

 “Same Generation” can be used for graph analysis 
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Rule Systems in EARS and Datalog

 Rule systems can be noted 
textually or graphically 
(DATALOG vs. EARS)

 Datalog contains 
• textual if-then rules, which test 

predicates about the constants 

• rules contain variables 

TU Dresden, Prof. U. Aßmann Model Consistency 60

Child1

Parent

Child2

Child1

Parent

Child2

// conclusion

sameGeneration(Child1, Child2)

:- // say: "if" 

// premise

isParentOf(Parent,Child1),

isParentOf(Parent,Child2).

// premise

if isParentOf(Parent,Child1) &&

isParentOf(Parent,Child2)

then 

// conclusion

sameGeneration(Child1,Child2)



Same Generation Datalog Program
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isParentOf(Adam,GustavAdolf).

isParentOf(Adam,Sibylla).

.....

if isParentOf(Parent,Child1), isParentOf(Parent,Child2)
then sameGeneration(Child1, Child2).

if sameGeneration(Parent1,Parent2),

isParentOf(Parent1,Child1), isParentOf(Parent2,Child2)

then 

sameGeneration(Child1, Child2).



Solving Path Problems With Datalog
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# A SMPP problem (searching for Single source a set of Multiple targets)

descendant(Adam,X)? 

X={ Silvia, Carl-Gustav, Victoria, ....}

# An MSPP problem (multiple source, single target)

descendant(X,Silvia)?

X={Walter, Adam, Alice}

# An MMPP problem (multiple source, multiple target)

ancestor(X,Y)?

{X=Walter, Y={Adam}

X=Victoria, Y={CarlGustav, Silvia, Sibylla, ...}

 Single Source Multiple Target Path Problem – SMPP

 Multiple Source Single Target Path Problem – MSPP

 Multiple Source Multiple Target Path Problem – MMPP 



12.5 REACHABILITY 
QUERIES WITH 
TRANSITIVE CLOSURE IN 
DATALOG AND EARS

 The Swiss-Knife of Graph Analysis
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Who is Descendant of Whom?

 Sometimes we need to know transitive edges, i.e., edges after 
edges of the same color

 Question: what is reachable from a node?

 Which descendants has Adam?

 Answer: Transitive closure calculates reachability over nodes

 It contracts a graph, inserting masses of edges to all reachable nodes

 It contracts all paths to single edges

 It makes reachability information explicit

 After transitive closure, it can easily be decided whether a node is 
reachable or not

 Basic premise: base relation is not changed (offline problem)
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Transitive Closure as Datalog Rule System or EARS

 Basic rule      descendant(Parent,Child) :- isChildOf(Parent,Child). 

 Transitive rule (recursion rule)

 left recursive: descendant(Parent,GrandCh) :-
descendant(Parent,X),isChildOf(X,GrandCh).

 right recursive: descendant(Parent,GrandCh) :-
isChildOf(Parent,X), descendant(X,GrandCh).
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Parent

Child

Parent

Child

Parent
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Impact of Basic Rule
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Impact of Recursion Rule
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[S|M][S|M]PP Path Problems are
Special Cases of Transitive Closure

 Single Source Single Target Path Problem, SSPP: 

 Test, whether there is a path from a source to a target

 Single Source Multiple Target SMPP: 

 Test, whether there is a path from a source to several targets 

 Or: find n targets, reachable from one source

 Multiple Source Single Target MSPP: 

 Test, whether a path from n sources to one target  

 Multiple Source Multiple Target MMPP: 

 Test, whether a path of n sources to n targets exists 

 All can be computed with transitive closure:

 Compute transitive closure

 Test sources and targets on direct neighboarship
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Example: Railway Routes as Reachability Queries 

 The info system of DB could be based on a graph of German 
railway stations.

 Base (Facts):
 directlyLinked(Berlin, Potsdam).

 directlyLinked(Potsdam,Braunschweig).

 directlyLinked(Braunschweig, Hannover).

 Define the predicates
 linked(A,B)

 alsoLinked(A,B)

 unreachable(A,B)

 Answer the queries
 linked(Berlin,X)

 unreachable(Berlin, Hannover)
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Application: Inheritance Analysis as Reachability
Queries 

 Base (Facts):
 class(Person). class(Human). class(Man). class(Woman). 

 extends(Person, Human).

 extends(Man,Person).

 extends(Woman,Person).

 Define the predicates
 superScope(A,B) :- class(A), class(B), isA(A,B).

 transitiveSuperScope(A,B) :- superScope(A,C), 

transitiveSuperScope(C,B).

 Answer the queries
 ? transitiveSuperScope(Man,X)

 >> {X=Person,X=Human}

 ? transitiveSuperScope(Woman,Y)

 >> {Y=Person,Y=Human}
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The End: What Have We Learned

 Graphs and Logic are isomorphic to each other

 Using logic or graph rewrite systems, models can be validated

 Analyzed

 Queried

 Checked for consistency

 Structured 

 Applications are many-fold, using all kinds of system relationships

 Consistency of UML class models (domain, requirement, design models)

 Structuring (layering) of USES relationships

 Logic and graph rewriting technology involves reachability
questions
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Logic and edge addition rewrite systems are the Swiss army 
knifes of the validating modeler
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