
Fakultät Informatik, Institut für Software- und Multimediatechnik, Lehrstuhl für Softwaretechnologie

12) Validation of Graph-Based Models
and Programs (Analysis and

Consistency of Models)

Prof. Dr. U. Aßmann
Technische Universität Dresden
Institut für Software- und Multimediatechnik
Gruppe Softwaretechnologie
http://st.inf.tu-dresden.de/teaching/swt2
WS14/15, 24.11.2014

Lecturer: Dr. Sebastian Götz

1. Big Models
2. Examples of Graphs in Models
3. Types of Graphs
4. Analysis of Graphs in Models

1. Layering of Graphs
2. Searching in Graphs
3. Checking UML Models with

Datalog
5. Transitive Closure and Reachability

Contents

 Different kinds of relations: Lists, Trees, DAGs, Graphs

 The graph-logic isomorphism

 Analysis, querying, searching graph-based models

 The “Same Generation” Problem

 Datalog and Edge Addition Rewrite Systems (EARS)

 Transitive Closure

 Consistency checking of graph-based specifications (aka model
validation)

 Projections of graphs

 Transformation of graphs

TU Dresden, Prof. U. Aßmann Model Consistency 2

Goals

 Understand that software models can become very large

 the need for appropriate techniques to handle large models

 the need for automatic analysis of the models

 Learn how to use graph-based techniques to analyze and check models for
consistency, well-formedness and integrity

• Datalog,

• Graph Query Languages,

• Description Logic,

• Edge Addition Rewrite Systems and

• Graph Transformations.

 Understand some basic concepts of simplicity in software models

TU Dresden, Prof. U. Aßmann Model Consistency 3

Motivation

 Software engineers must be able to

 handle big design specifications (design models) during development

 work with consistent models

 measure models and implementations

 validate models and implementations

 Real models and systems become very complex

 Most specifications are graph-based

 We have to deal with basic graph theory to be able to measure well

TU Dresden, Prof. U. Aßmann Model Consistency 4

12.1 THE PROBLEM: HOW
TO MASTER LARGE
MODELS

 Large models have large graphs

 They can be hard to understand

Figures taken from Goose Reengineering Tool, analysing a Java class system [Goose, FZI Karlsruhe]

TU Dresden, Prof. U. Aßmann Model Consistency 5

TU Dresden, Prof. U. Aßmann Model Consistency 6

Partially Collapsed

TU Dresden, Prof. U. Aßmann Model Consistency 7

Totally Collapsed

TU Dresden, Prof. U. Aßmann Model Consistency 8

Requirements for Modeling in Requirements and Design

 We need guidelines how to develop simple models

 We need analysis techniques to

 Analyze models

 Find out about their complexity

 Find out about simplifications

 Search in models

 Check the consistency of the models

TU Dresden, Prof. U. Aßmann Model Consistency 9

12.2 GENERATING
GRAPHS FROM DIAGRAMS
AND PROGRAMS

How are models and programs represented in a Software Tool?

Some Relationships (Graphs) in Software Systems

TU Dresden, Prof. U. Aßmann Model Consistency 10

All Specifications and All Programs
have an Internal Graph-Based Representation

 Texts are parsed to abstract syntax trees (AST)

 Two-step procedure

 Concrete Syntax Tree (CST)

 Abstract Syntax Tree (AST)

 Through name analysis, they become abstract syntax graphs (ASG) or Use-
Def-Graphs (UDG)

 Through def-use-analysis, they become Use-def-Use Graphs (UDUG)

TU Dresden, Prof. U. Aßmann Model Consistency 11

.......

AST

.......

ASG (UDG)

.......

UDUG

.......

CST

Text

Diagram

Concrete Syntax Tree (CST) – Example

TU Dresden, Prof. U. Aßmann Model Consistency 12

Expr ::= ‘(’ Expr ‘)’
| Expr ‘&&’ Expr
| Expr ‘||’ expr
| ‘!’ Expr
| Lit .

Lit ::= Var | ‘true’ | ‘false’.
Var ::= [a-z][a-z 0-9_]+ .

Parsing this string:
((looking || true) && !found)

CST - Example

Expr

(Expr

Expr

(Expr

Expr

Var
id = looking

|| Expr

true

)

&& Expr

! Expr

Var
id = found

)

TU Dresden, Prof. U. Aßmann Model Consistency 13

Expr ::= ‘(’ Expr ‘)’
| Expr ‘&&’ Expr
| Expr ‘||’ expr
| ‘!’ Expr
| Lit .

Lit ::= Var | ‘true’ | ‘false’.
Var ::= [a-z][a-z 0-9_]+ .

Parsing this string:
((looking || true) && !found)

From the CST to the AST

&&

||

Var
id = looking

True

!

Var
id = found

TU Dresden, Prof. U. Aßmann Model Consistency 14

Expr

(Expr

Expr

(Expr

Expr

Var
id = looking

|| Expr

true

)

&& Expr

! Expr

Var
id = found

)

Abstract Syntax Trees (AST)

 Parse trees (CST) waste a fair amount
of space for representation of terminal
symbols and productions

 Compilers post-process parse trees
into ASTs

 ASTs are the fundamental data
structure of IDEs
(ASTView in Eclipse JDT)

TU Dresden, Prof. U. Aßmann Model Consistency 15

AST

 Problem with ASTs: They do not support static semantic checks,
re-factoring and browsing operations, e.g.:

• Name semantics:

 Have all used variables been declared? Are they declared once?

 Have all classes used been imported?

• Are the types used in expressions / assignments compatible? (type
checking)

• Referencing:

 Navigate to the declaration of method call / variable reference / type

• How can I pretty-print the AST to a CST again, so that the CST looks like
the original CST

 Necessary for hygenic refactoring

TU Dresden, Prof. U. Aßmann Model Consistency 16

Def-Use Graphs (DUG) and Use-Definition-Use Graphs (UDUG)

 Many languages and notations have
 Definitions of items (definition of the variable Foo), which specify the type

or other metadata

 Uses of items (references to Foo)

 We talk in specifications or programs about names of objects and
their use

 Definitions are done in a data definition language (DDL)

 Uses are part of a data query language (DQL) or
data manipulation language (DML)

 Starting from the abstract syntax tree, name analysis finds out
about the definitions of uses of names

• Building the Use-Def graph

• This revolves the meaning of used names to definitions

• Inverting the Use-Def graph to a Use-Def-Use graph (UDUG)

• This links all definitions to their uses

TU Dresden, Prof. U. Aßmann Model Consistency 17

Abstract Syntax Graphs (ASG) are UDGs

 Abstract Syntax Graphs
have use-def edges that
reflect semantic
relationships

• from uses of names to
definitions of names

 These edges are used for
static semantic checks

• Type checking

• Type inference

• Coercion (transfer to new
instance of other type
with same contents)

TU Dresden, Prof. U. Aßmann Model Consistency 18

boolean looking, found;
…
if (looking && !found) {…}

Block

VarDecl

type=boolean

VarName
id=looking

VarDecl

Type=boolean

VarName
id=found

IfStmt

&&

looking !

found

Block

Refactoring on Complete Name-Resolved Graphs
(Use-Def-Use Graphs)

 UDUGs are used in refactoring operations (e.g., renaming a class or
a method consistently over the entire program).

 For renaming of a definition, all uses have to be changed, too

 We need to trace all uses of a definition in the Use-Def-graph, resulting in its
inverse, the Def-Use-graph

 Refactoring works always on Def-Use-graphs and Use-Def-graphs, the
complete name-resolved graph (the Use-Def-Use graphs)

TU Dresden, Prof. U. Aßmann Model Consistency 19

class Person { .. }

class Course {

Person teacher = new Person(“Jim”);

Person student = new Person(“John”);

}

Example: Rename Refactorings in Programs

TU Dresden, Prof. U. Aßmann Model Consistency 20

Definition

Reference (Use)

Refactor the name Person to Human, using bidirectional use-def-use links:

class Human { .. }

class Course {

Human teacher = new Human(“Jim”);

Human student = new Human(“John”);

}

Refactoring

 Refactoring works always in the same way:

 Change a definition

 Find all dependent references

 Change them

 Recurse handling other dependent definitions

 Refactoring can be supported by tools

 The Use-Def-Use-graph forms the basis of refactoring tools

 However, building the Use-Def-Use-Graph for a complete program
costs a lot of space and is a difficult program analysis task

 Every method that structures this graph benefits immediately the
refactoring

 either simplifying or accelerating it

 UDUGs are large

• Efficient representation important

TU Dresden, Prof. U. Aßmann Model Consistency 21

Further Representations

From the ASG or an UDUG, more graph-based program
representations can be derived

 Control-flow Analysis -> Control-Flow Graph (CFG), Call graph
(CLG)

• Records control-flow relationships

 Data-Flow Analysis -> Data-Flow Graph (DFG) or Value-Flow
Graph (VFG)

• Records flow relationships for data values

The same remarks holds for graphic specifications

 Hence, all specifications are graph-based!

TU Dresden, Prof. U. Aßmann Model Consistency 22

.......

CFG, CLG

.......

VFG (DFG)

.......

ASG (UDG)

Control-Flow Graphs

 Describe the control flow in a program

 Typically, if statements and switch statements split control flow

 Their ends join control flow

 Control-Flow Graphs resolve symbolic labels

 Perform name analysis on labels

 Nested loops are described by nested control flow graphs

TU Dresden, Prof. U. Aßmann Model Consistency 23

while

if

print a

a+=5;

print a++

return

Simple (Flow-Insensitive) Call Graph (CLG)

 Describe the call relationship between the procedures
 Interprocedural control-flow analysis performs name analysis on called

procedure names

TU Dresden, Prof. U. Aßmann Model Consistency 24

main = procedure () {

array int[] a = read();

print(a);

quicksort(a);

print(a);

}

quicksort = procedure(a: array[0..n]) {

int pivot = searchPivot(a);

quicksort(a[0], a[pivot-1]);

quicksort(a[pivot+1,n]);

}

quicksort

main

print

read

searchPivot

Data-Flow Graphs (DFG)

 A data-flow graph (DFG) aka value-flow graph (VFG) describes the
flow of data through the variables

 DFG are based on control-flow graphs

 Building the data-flow graph is called data-flow analysis

 Data-flow analysis is often done by abstract interpretation, the symbolic
execution of a program at compile time

TU Dresden, Prof. U. Aßmann Model Consistency 26

while

if

print a

a=a+5;

print a++

b=a

a=0

Inheritance Analysis:
Building an Inheritance Tree or Inheritance Lattice

 A lattice is a partial order with largest and smallest element

 Inheritance hierarchies can be generalized to inheritance lattices

 An inheritance analysis builds the transitive closure of the
inheritance lattice

TU Dresden, Prof. U. Aßmann Model Consistency 27

Don’t Know

Man Woman

Undefined

Object

Person

Inheritance

UML Graphs

 All diagram sublanguages of UML generate internal graph
representations

 They can be analyzed and checked with graph techniques

 Graphic languages, such as UML, need a graph parser to be recognized, or a
specific GUI who knows about graphic elements

 Hence, graph techniques are an essential tool of the software
engineer

TU Dresden, Prof. U. Aßmann Model Consistency 28

Remark: All Specifications Have a Graph-Based Representation

 Texts are parsed to abstract syntax trees (AST)

 Graphics are parsed by GUI or graph parser to AST also

 Through name analysis, they become abstract syntax graphs (ASG)

 Through def-use-analysis, they become Use-def-Use Graphs (UDUG)

 Control-flow Analysis -> CFG, CLG

 Data-Flow Analysis -> DFG

TU Dresden, Prof. U. Aßmann Model Consistency 29

.......

AST

.......

ASG

.......

UDUG

.......

CFG, CLG

.......

DFG

12.3 TYPES OF GRAPHS IN
SPECIFICATIONS

Lists, Trees, DAGs, Graphs

Structural constrains on graphs

(background information)

TU Dresden, Prof. U. Aßmann Model Consistency 30

Modeling Graphs on Two Abstraction Levels

 In modeling, we deal mostly with directed graphs (digraphs)
representing unidirectional relations

 lists, trees, DAGs, overlay graphs, reducible (di-)graphs, graphs

 There are two different abstraction levels; we are interested in the
logical level:
 Logical level (conceptual, abstract, often declarative, problem oriented)

 Methods to specify algorithms on graphs:

 Relational algebra

Datalog, description logic

Graph rewrite systems, graph grammars

 Recursion schemas

 Physical level (implementation level, concrete, often imperative, machine
oriented)

 Representations: Data type adjacency list, boolean (bit)matrix,
binary decision diagrams (BDDs)

 Imperative algorithms

 Pointer based representations and algorithms

TU Dresden, Prof. U. Aßmann Model Consistency 31

Essential Graph Definitions

 Fan-in

 In-degree of a node under a certain relation

 Fan-in(n) = 0: n is root node (source)

 Fan-in(n) > 0: n is reachable from other nodes

 Fan-out

 Out-degree of node under a certain relation

 Fan-out(n) = 0: n is leaf node (sink)

 An inner node is neither a root nor a leaf

 Path

 A path p = (n1, n2,…,nk) is a sequence of nodes of length k

TU Dresden, Prof. U. Aßmann Model Consistency 32

Lists

 One source (root)

 One sink

 Every other node has fan-in 1, fan-out 1

 Represents a total order (sequentialization)

 Gives

 Prioritization

 Execution order

TU Dresden, Prof. U. Aßmann Model Consistency 33

root

sink

Trees

 One source (root)

 Many sinks (leaves)

 Every node has fan-in <= 1

 Hierarchical abstraction:

 A node represents or abstracts
all nodes of a sub tree

 Example

 Structured Analysis (SA) function trees

 Organization trees (line organization)

TU Dresden, Prof. U. Aßmann Model Consistency 34

.......

.......

.......

root

sinks

Directed Acyclic Graphs

 Many sources

 A jungle (term graph) is a dag with
one root

 Many sinks

 Fan-in, fan-out arbitrary

 Represents a partial order

 Less constraints than in a total order

 Weaker hierarchical abstraction
feature

 Can be layered

 Example

 UML inheritance DAGs

 Inheritance lattices

TU Dresden, Prof. U. Aßmann Model Consistency 35

.......

.......

.......

roots

sinks

Skeleton Trees with Overlay Graphs
(Trees with Secondary Graphs)

 Skeleton tree with overlay graph
(secondary links)

 Skeleton tree is primary

 Overlay graph is secondary: “less important”

 Advantage of an Overlay Graph

 Tree can be used as a conceptual hierarchy

 References to other parts are possible

 Example

 XML, e.g., XHTML. Structure is described
by Xschema/DTD, links form the
secondary relations

 AST with name relationships after
name analysis (name-resolved trees,
abstract syntax graphs)

TU Dresden, Prof. U. Aßmann Model Consistency 36

.......

.......

.......

roots

sinks

Reducible Graphs (Graphs with Skeleton Trees)

 A reducible graph is a graph with cycles, however, only
between siblings

 No cycles between hierarchy levels

 Graph can be “reduced” to one node

 Advantage

 Tree can be used as a conceptual hierarchy

 Example

 UML statecharts

 UML and SysML component diagrams

 Control-flow graphs of Modula, Ada, Java
(not C, C++)

 SA data flow diagrams

 Refined Petri Nets

TU Dresden, Prof. U. Aßmann Model Consistency 37

.......

.......

.......

roots

sinks

Reduction of a Reducible Graph

TU Dresden, Prof. U. Aßmann Model Consistency 38

B1

B2

B3

B4

B1a

B3a

B1a

B3a

B1b

Layerable Graphs with Skeleton DAGs

 Like reducible graphs, however, sharing between different parts of
the skeleton trees

 Graph cannot be “reduced” to one node

 Advantage

 Skeleton can be used to layer the graph

 Cycles only within one layer

 Example

 Layered system architectures

TU Dresden, Prof. U. Aßmann Model Consistency 39

.......

.......

.......

Wild Unstructured (Directed) Graphs

 Wild, unstructured graphs are the
worst structure we can get

 Wild, unstructured, irreducible cycles

 Unlayerable, no abstraction possible

 No overview possible

 Many roots

 A digraph with one source is called flow graph

 Many sinks

 Example

 Many diagrammatic methods in
Software Engineering

 UML class diagrams

TU Dresden, Prof. U. Aßmann Model Consistency 40

.......

.......

.......

Strength of Assertions in Models

TU Dresden, Prof. U. Aßmann Model Consistency 41

List: strong assertion: total order

Graph: the worst case

Dag: still layering possible

Tree: still abstraction possible

Sequential

Partial order

Layered

Hierarchies

Unstructured

Ease of

Understanding

Strength of Assertions in Models

 Saying that a relation is

 A list: very strong assertion, total order!

 A tree: still a strong assertion: hierarchies possible, easy to think

 A dag: still layering possible, still a partial order

 A layerable graph: still layering possible, but no partial order

 A reducible graph: graph with a skeleton tree

 A graph: hopefully, some structuring or analysis is possible. Otherwise, it’s
the worst case

 And those propositions hold for every kind of diagram in Software
Engineering!

 Try to model reducible graphs, dags, trees, or lists in your
specifications, models, and designs

 Systems will be easier, more efficient

TU Dresden, Prof. U. Aßmann Model Consistency 42

Structuring Improves Worst Case

TU Dresden, Prof. U. Aßmann Model Consistency 43

List: strong assertion: total order

Graph: the worst case

Dag: still layering possible

Tree: still abstraction possible

Sequential

Partial order

Layered

Hierarchies

Unstructured

Structured
Structured graph (reducible,

skeleton dag)

Ease of

Understanding

UnstructuredGraph with analyzed features

12.4 METHODS AND
TOOLS FOR ANALYSIS OF
GRAPH-BASED MODELS

TU Dresden, Prof. U. Aßmann Model Consistency 44

The Graph-Logic Isomorphism

 In the following, we will make use of the graph-logic isomorphism:

 Graphs can be used to represent logic

 Nodes correspond to constants

 (Directed) edges correspond to binary predicates over nodes (triple statements)

 Hyperedges (n-edges) correspond to n-ary predicates

 Consequence:

 Graph algorithms can be used to test logic queries on graph-based specifications

 Graph rewrite systems can be used for deduction

TU Dresden, Prof. U. Aßmann Model Consistency 45

Victoria

Silvia

Carl Gustav

married

father

mother

// fact base
married(CarlGustav,Silvia).

married(Silvia, CarlGustav).

father(CarlGustav,Victoria).

mother(Silvia,Victoria).

// Normalized English
CarlGustav is married to Silvia.

Silvia is married to CarlGustav.

CarlGustav is father to Victoria.

Silvia is mother to Victoria.

Graphs and Fact Data Bases

 Graphs can also be noted textually

 Graphs consist of nodes, relations

 Relations link nodes

TU Dresden, Prof. U. Aßmann Model Consistency 46

 Fact data bases consist of
constants (data) and
predicates

 Nodes of graphs can be
regarded as constants, edges
as predicates between
constants (facts):

GustavAdolf

Adam

Sibylla

isParentOf

isParentOf

// Facts

isParentOf(Adam,GustavAdolf).

isParentOf(Adam,Sibylla).

// OWL Triples

Adam isParentOf GustavAdolf.

Adam isParentOf Sibylla.

Queries on Graph-Based Models Make Implicit Knowledge Explicit

 Since graph-based models are a mess, we try to analyze them

 Knowledge is either

 Explicit, i.e., represented in the model as edges and nodes

 Implicit, i.e., hidden, not directly represented, and must be analyzed

 Query and analysis problems try to make implicit knowledge
explicit

 E.g., does the graph have one root? How many leaves do we have? Is this
subgraph a tree? Can I reach that node from this node?

 Determining features of nodes and edges

 Finding certain nodes, or patterns

 Determining global features of the model

 Finding paths between two nodes (e.g., connected, reachable)

 Finding paths that satisfy additional constraints

 Finding subgraphs that satisfy additional constraints

TU Dresden, Prof. U. Aßmann Model Consistency 47

Queries for Checking Consistency (Model Validation)

 Queries can be used to find out whether a graph is consistent (i.e.,
valid, well-formed)

 Due to the graph-logic isomorphism, constraint specifications can be phrased
in logic and applied to graphs

 Business people call these constraint specifications business rules

 Example:

 if a car is exported to England, steering wheel and pedals should be on the
right side; otherwise on the left

TU Dresden, Prof. U. Aßmann Model Consistency 48

12.4.1 Layering Graphs: How to Analyze a System for
Layers

 With the “Same Generation” Problem

 How to query and search in a DAG

 How to layer a DAG – a simple structuring problem

TU Dresden, Prof. U. Aßmann Model Consistency 49

Layering of Systems

 To be comprehensible, a system should be structured in layers

 Several relations in a system can be used to structure it, e.g., the

 Call graph: layered call graph

 Layered definition-use graph

TU Dresden, Prof. U. Aßmann Model Consistency 50

 A layered architecture is the dominating
style for large systems

 Outer, upper layers use inner, lower

layers (layered USES relationship)

 Legacy systems can be analyzed for

layering, and if they do not have a

layered architecture, their structure can

be improved towards this principle

Layering of Acyclic Graphs

 Given any acyclic relation, it can be made layered

 Same Generation analysis creates layers for trees or DAGs

 Example: layering a family tree:

 Who is whose contemporary?

 Who is ancestor of whom?

TU Dresden, Prof. U. Aßmann Model Consistency 51

Victoria
Madeleine

Ralf

Silvia

Sibylla

GustavAdolf

Walter

Alice

Desiree

Adam

Carl Gustav

Pattern and Rules

 Parenthood can be described by a graph pattern

 We can write the graph pattern also in logic:

isParentOf(Parent,Child1) && isParentOf(Parent,Child2)

 And define the rule
if isParentOf(Parent,Child1) && isParentOf(Parent,Child2)

then sameGeneration(Child1,Child2)

TU Dresden, Prof. U. Aßmann Model Consistency 52

Parent

Child 1

Child 2

Parent

Child 1

Child 2

isParentOf

isParentOf

isParentOf

isParentOf

<<create>>

sameGeneration

Impact of Rule on Family Graph

TU Dresden, Prof. U. Aßmann Model Consistency 53

CarlGustav

VictoriaMadeleine

Ralf

Silvia

Sibylla

GustavAdolf

Walter

Alice

Desiree

Adam

CarlGustav

VictoriaMadeleine

Ralf

Silvia

Sibylla

GustavAdolf

Walter

Alice

Desiree

Adam

Rule set “Same Generation“

 Base rule: Beyond sisters and brothers we can link all people of
same generation

 Additional rule (transitive): Enters new levels into the graph

TU Dresden, Prof. U. Aßmann Model Consistency 54

Parent

Child 1

Child 2

Parent

Child 1

Child 2

Parent 1 Child 1

Parent 2 Child 2

Parent 1 Child 1

Parent 2 Child 2

Impact of Transitive Rule

TU Dresden, Prof. U. Aßmann Model Consistency 55

Carl

Gustav

VictoriaMadeleine

Ralf

Silvia

Sibylla

GustavAdolf

Walter

Alice

Desiree

Adam

”Same Generation” Introduces Layers

 Computes all nodes that belong to one layer of a dag

 If backedges are neglected, also for an arbitrary graph

 Algorithm:

 Compute Same Generation

 Go through all layers and number them

 Applications:

 Compute layers in a call graph

 Find out the call depth of a procedure from the main procedure

 Restructuring of legacy software (refactoring)

 Compute layers of systems by analyzing the USES relationships (ST-I)

 Insert facade classes for each layer (Facade design pattern)

 Every call into the layer must go through the facade

 As a result, the application is much more structured

TU Dresden, Prof. U. Aßmann Model Consistency 56

The Generations as Layers

TU Dresden, Prof. U. Aßmann Model Consistency 57

Adam

Gustav
Adolf

Sybille

Walter

Alice

Carl
Gustav

Madeleine

Silvia

Desiree

Ralf

Victoria

12.4.2 SEARCHING GRAPHS –
SEARCHING IN SPECIFICATIONS
WITH DATALOG AND EARS

TU Dresden, Prof. U. Aßmann Model Consistency 58

SameGeneration as a Graph Rewrite System

 The rule system SameGeneration only adds edges.

 An edge addition rewrite system (EARS) adds edges to graphs

 It enlarges the graph, but the new edges can be marked such that they
are not put permanently into the graph

 EARS are declarative

 No specification of control flow and an abstract representation

 Confluence: The result is independent of the order in which rules
are applied / all orders of applying rules lead to the same result

Recursion: The system is recursive, since relation “Same
Generation” is used and defined

 Termination: terminates, if all possible edges are added, latest,
when graph is complete

 EARS compute

 Reachability of nodes

 Paths in graphs

 “Same Generation” can be used for graph analysis

TU Dresden, Prof. U. Aßmann Model Consistency 59

Rule Systems in EARS and Datalog

 Rule systems can be noted
textually or graphically
(DATALOG vs. EARS)

 Datalog contains
• textual if-then rules, which test

predicates about the constants

• rules contain variables

TU Dresden, Prof. U. Aßmann Model Consistency 60

Child1

Parent

Child2

Child1

Parent

Child2

// conclusion

sameGeneration(Child1, Child2)

:- // say: "if"

// premise

isParentOf(Parent,Child1),

isParentOf(Parent,Child2).

// premise

if isParentOf(Parent,Child1) &&

isParentOf(Parent,Child2)

then

// conclusion

sameGeneration(Child1,Child2)

Same Generation Datalog Program

TU Dresden, Prof. U. Aßmann Model Consistency 61

isParentOf(Adam,GustavAdolf).

isParentOf(Adam,Sibylla).

.....

if isParentOf(Parent,Child1), isParentOf(Parent,Child2)
then sameGeneration(Child1, Child2).

if sameGeneration(Parent1,Parent2),

isParentOf(Parent1,Child1), isParentOf(Parent2,Child2)

then

sameGeneration(Child1, Child2).

Solving Path Problems With Datalog

TU Dresden, Prof. U. Aßmann Model Consistency 62

A SMPP problem (searching for Single source a set of Multiple targets)

descendant(Adam,X)?

X={ Silvia, Carl-Gustav, Victoria,}

An MSPP problem (multiple source, single target)

descendant(X,Silvia)?

X={Walter, Adam, Alice}

An MMPP problem (multiple source, multiple target)

ancestor(X,Y)?

{X=Walter, Y={Adam}

X=Victoria, Y={CarlGustav, Silvia, Sibylla, ...}

 Single Source Multiple Target Path Problem – SMPP

 Multiple Source Single Target Path Problem – MSPP

 Multiple Source Multiple Target Path Problem – MMPP

12.5 REACHABILITY
QUERIES WITH
TRANSITIVE CLOSURE IN
DATALOG AND EARS

 The Swiss-Knife of Graph Analysis

TU Dresden, Prof. U. Aßmann Model Consistency 63

Who is Descendant of Whom?

 Sometimes we need to know transitive edges, i.e., edges after
edges of the same color

 Question: what is reachable from a node?

 Which descendants has Adam?

 Answer: Transitive closure calculates reachability over nodes

 It contracts a graph, inserting masses of edges to all reachable nodes

 It contracts all paths to single edges

 It makes reachability information explicit

 After transitive closure, it can easily be decided whether a node is
reachable or not

 Basic premise: base relation is not changed (offline problem)

TU Dresden, Prof. U. Aßmann Model Consistency 64

Transitive Closure as Datalog Rule System or EARS

 Basic rule descendant(Parent,Child) :- isChildOf(Parent,Child).

 Transitive rule (recursion rule)

 left recursive: descendant(Parent,GrandCh) :-
descendant(Parent,X),isChildOf(X,GrandCh).

 right recursive: descendant(Parent,GrandCh) :-
isChildOf(Parent,X), descendant(X,GrandCh).

TU Dresden, Prof. U. Aßmann Model Consistency 65

Parent

Child

Parent

Child

Parent

Child

GrandCh Parent

Child

GrandCh

Impact of Basic Rule

TU Dresden, Prof. U. Aßmann Model Consistency 66

CarlGustav

VictoriaMadeleine

Ralf

Silvia

Sibylla

GustavAdolf

Walter

Alice

Desiree

Adam

CarlGustav

VictoriaMadeleine

Ralf

Silvia

Sibylla

GustavAdolf

Walter

Alice

Desiree

Adam

Impact of Recursion Rule

TU Dresden, Prof. U. Aßmann Model Consistency 67

CarlGustav

VictoriaMadeleine

Ralf

Silvia

Sibylla

GustavAdolf

Walter

Alice

Desiree

Adam

Impact only shown for Adam,

but is applied to other nodes too

[S|M][S|M]PP Path Problems are
Special Cases of Transitive Closure

 Single Source Single Target Path Problem, SSPP:

 Test, whether there is a path from a source to a target

 Single Source Multiple Target SMPP:

 Test, whether there is a path from a source to several targets

 Or: find n targets, reachable from one source

 Multiple Source Single Target MSPP:

 Test, whether a path from n sources to one target

 Multiple Source Multiple Target MMPP:

 Test, whether a path of n sources to n targets exists

 All can be computed with transitive closure:

 Compute transitive closure

 Test sources and targets on direct neighboarship

TU Dresden, Prof. U. Aßmann Model Consistency 68

Example: Railway Routes as Reachability Queries

 The info system of DB could be based on a graph of German
railway stations.

 Base (Facts):
 directlyLinked(Berlin, Potsdam).

 directlyLinked(Potsdam,Braunschweig).

 directlyLinked(Braunschweig, Hannover).

 Define the predicates
 linked(A,B)

 alsoLinked(A,B)

 unreachable(A,B)

 Answer the queries
 linked(Berlin,X)

 unreachable(Berlin, Hannover)

TU Dresden, Prof. U. Aßmann Model Consistency 69

Application: Inheritance Analysis as Reachability
Queries

 Base (Facts):
 class(Person). class(Human). class(Man). class(Woman).

 extends(Person, Human).

 extends(Man,Person).

 extends(Woman,Person).

 Define the predicates
 superScope(A,B) :- class(A), class(B), isA(A,B).

 transitiveSuperScope(A,B) :- superScope(A,C),

transitiveSuperScope(C,B).

 Answer the queries
 ? transitiveSuperScope(Man,X)

 >> {X=Person,X=Human}

 ? transitiveSuperScope(Woman,Y)

 >> {Y=Person,Y=Human}

TU Dresden, Prof. U. Aßmann Model Consistency 70

The End: What Have We Learned

 Graphs and Logic are isomorphic to each other

 Using logic or graph rewrite systems, models can be validated

 Analyzed

 Queried

 Checked for consistency

 Structured

 Applications are many-fold, using all kinds of system relationships

 Consistency of UML class models (domain, requirement, design models)

 Structuring (layering) of USES relationships

 Logic and graph rewriting technology involves reachability
questions

TU Dresden, Prof. U. Aßmann Model Consistency 71

Logic and edge addition rewrite systems are the Swiss army
knifes of the validating modeler

Reading

 Alexander Christoph. Graph rewrite systems for software design
transformations. In M. Aksit, editor, Proceedings of Net Object Days 2002, Erfurt,
Germany, October 2002. Springer LNCS 2591

 D. Calvanese, M. Lenzerini, D. Nardi. Description Logics for Data Modeling. In J.
Chomicki, G. Saale. Logics for Databases and Information Systems. Kluwer, 1998.

 Michael Kifer. Rules and Ontologies in F-Logic. Reasoning Web Summer School
2005. Lecture Notes in Computer Science, LNCS 3564, Springer.
http://dx.doi.org/10.1007/11526988_2

 Mira Balaban, Michael Kifer. An Overview of F-OML: An F-Logic Based Object
Modeling Language. Proceedings of the Workshop on OCL and Textual Modelling
(OCL 2010). ECEASST 2010, 36, http://journal.ub.tu-
berlin.de/eceasst/article/view/537/535

 Lam, M. S., Whaley, J., Livshits, V. B., Martin, M. C., Avots, D., Carbin, M., and Unkel,
C. 2005. Context-sensitive program analysis as database queries. In Proceedings
of the Twenty-Fourth ACM SIGMOD Symposium on Principles of Database Systems
(Baltimore, Maryland, June 13 - 15, 2005). PODS '05. ACM, New York, NY, 1-12. DOI=
http://doi.acm.org/10.1145/1065167.1065169

TU Dresden, Prof. U. Aßmann Model Consistency 72

http://journal.ub.tu-berlin.de/eceasst/article/view/537/535
http://doi.acm.org/10.1145/1065167.1065169

Query Engines on Code and Models Using Logic

 Yi, Kwangkeun, Whaley, John, Avots, Dzintars, Carbin, Michael, Lam, Monica.
Using Datalog with Binary Decision Diagrams for Program Analysis. In:
Programming Languages and Systems. Lecture Notes in Computer Science 3780,
2005, pp. 97-118 http://dx.doi.org/10.1007/11575467_8

 Thomas, Dave, Hajiyev, Elnar, Verbaere, Mathieu, de Moor, Oege.
codeQuest: Scalable Source Code Queries with Datalog, ECOOP 2006 – Object-
Oriented Programming, Lecture Notes in Computer Science 4067, 2006, Springer, pp.
2 - 27 http://dx.doi.org/10.1007/11785477_2

 Ebert, Jürgen; Riediger, Volker; Schwarz, Hannes; Bildhauer, Daniel
Using the TGraph Approach for Model Fact Repositories. In: Proceedings of the
International Workshop on Model Reuse Strategies (MoRSe 2008). S. 9--18.

 Bildhauer, Daniel; Ebert, Jürgen (2008): Querying Software Abstraction Graphs.
In: Working Session on Query Technologies and Applications for Program
Comprehension (QTAPC 2008), collocated with ICPC 2008.

TU Dresden, Prof. U. Aßmann Model Consistency 73

http://dx.doi.org/10.1007/11575467_8
http://dx.doi.org/10.1007/11785477_2
http://www.uni-koblenz.de/~dbildh
http://www.uni-koblenz-landau.de/koblenz/fb4/institute/IST/AGEbert/personen/juergen-ebert

References

 S. Ceri, G. Gottlob, L. Tanca. What You Always Wanted to Know About Datalog
(And Never Dared to Ask). IEEE Transactions on Knowledge And Data Engineering.
March 1989, (1) 1, pp. 146-166.

 S. Ceri, G. Gottlob, L. Tanca. Logic Programming and Databases. Springer, 1989.

 Ullman, J. D. Principles of Database and Knowledge Base Systems. Computer
Science Press 1989.

 Benjamin Grosof, Ian Horrocks, Raphael Volz, and Stefan Decker. Description logic
programs: Combining logic programs with description logics. In Proc. of World
Wide Web Conference (WWW) 2003, Budapest, Hungary, 05 2003. ACM Press.

 Uwe Aßmann, Steffen Zschaler, and Gerd Wagner. Ontologies, Meta-Models, and
the Model-Driven Paradigm. Handbook of Ontologies in Software Engineering.
Springer, 2006.

 http://www.uni-koblenz-
landau.de/koblenz/fb4/institute/IST/AGEbert/personen/juergen-ebert/juergen-ebert/

TU Dresden, Prof. U. Aßmann Model Consistency 74

http://www.uni-koblenz-landau.de/koblenz/fb4/institute/IST/AGEbert/personen/juergen-ebert/juergen-ebert/

Querying and Transformings Models with
Graph Rewriting

 Graph rewriting for programs and models:

 U. Aßmann. On Edge Addition Rewrite Systems and Their Relevance to
Program Analysis. In J. Cuny, H. Ehrig, G. Engels, and G. Rozenberg, editors,
5th Int. Workshop on Graph Grammars and Their Application To Computer
Science, volume 1073 of Lecture Notes in Computer Science, pages 321-335.
Springer, Heidelberg, November 1994.

 Uwe Aßmann. How to uniformly specify program analysis and
transformation. In P. A. Fritzson, editor, Proceedings of the International
Conference on Compiler Construction (CC), volume 1060 of Lecture Notes in
Computer Science, pages 121-135. Springer, Heidelberg, 1996.

 U. Aßmann. Graph Rewrite Systems for Program Optimization. ACM
Transactions on Programming Languages and Systems, June 2000.

 U. Aßmann. OPTIMIX, A Tool for Rewriting and Optimizing Programs.
Graph Grammar Handbook, Vol. II, 1999. Chapman&Hall.

 U. Aßmann. Reuse in Semantic Applications. REWERSE Summer School. July
2005. Malta. Reasoning Web, First International Summer School 2005, number
3564 in Lecture Notes in Computer Science. Springer.

 Alexander Christoph. GREAT - a graph rewriting transformation framework
for designs. Electronic Notes in Theoretical Computer Science (ENTCS), 82(4),
April 2003.

TU Dresden, Prof. U. Aßmann Model Consistency 75

