
Fakultät Informatik, Institut für Software- und Multimediatechnik, Lehrstuhl für Softwaretechnologie

20 Design Methods - An Overview

Prof. Dr. U. Aßmann
Technische Universität Dresden

Institut für Software- und Multimediatechnik

Gruppe Softwaretechnologie

http://st.inf.tu-dresden.de/teaching/swt2

Wintersemester 14/15, 16.12.2014

Lecturer: Dr. Sebastian Götz

1.Design Methods
2.Overview of Design Methods

1.Functional Design
2.Action-Based Design
3.Component-Based Design
4.Data-Oriented Design
5.Object-oriented Design
6.Transformative Design
7.Generative Design
8.Model-Driven Software

Development
9.Formal Methods

3.Architectural Styles
4.Design Heuristics and Best Practices

Obligatory Readings

 S. L. Pfleeger and J. Atlee:
Software Engineering: Theory and Practice.
Pearson. 2009.

• Chapter 5 (Designing the Architecture)

 C. Ghezzi, M. Jazayeri and D. Mandrioli:
Fundamentals of Software Engineering.
Prentice Hall. 1992.

• Chapter 4 (Design and Software Architecture)

TU Dresden, Prof. U. Aßmann Design 2

Secondary Reading

 D. Budgen:
Software Design (2nd Edition).
Addison-Wesley. 2003.

 M. Shaw and D. Garlan:
Software Architecture: Perspectives on an Emerging
Discipline. Prentice Hall, 1996.

TU Dresden, Prof. U. Aßmann Design 3

Goals

 Get an overview on the available design methods to arrive at a

design, starting from a requirements specification

 Understand that software engineers shouldn't get stuck by a

specific design method

TU Dresden, Prof. U. Aßmann Design 4

What is Design?

 “The purpose of design is simply to produce a solution to a
problem.” [Budgen, p. 18]

 "The design is the creative process of figuring out how to implement
all of the customer’s requirements.” [Pfleeger, p. 224]

 “Design is the activity that acts as a bridge between requirements
and the implementation of the software.” [Ghezzi, p. 67]

 Goal: This lecture presents some systematic ways how to come to
a workable solution for a given problem

TU Dresden, Prof. U. Aßmann Design 5

Contents of the Software Requirements Specification (SRS) (rep.)

TU Dresden, Prof. U. Aßmann Design

 Overview of Product

 Background, Environment

 Interfaces of the System (context model)
 I/O interfaces, data formats (screens, protocols, etc.), Commands

 Overview of data flow through system, Data dictionary

 Functional requirements

 Non-functional requirements

 Error handling

 Prioritization

 Possible extensions

 Acceptance test criteria

 Documentation guideline

 Literature

 Glossary

6

20.1 DESIGN METHODS

TU Dresden, Prof. U. Aßmann Design 7

A Software Design Method

… has 2 components:

1. Representation part (notation, language)

 Set of notations in (informal) textual, (semi-formal) diagrammatic, or
mathematic (formal) form

2. Process part (“Vorgehensmodell”, “Prozessmodell”)

 “… describing how […] transformations between the representation forms
are to be organized […].”

… most design methods provide a third component:

1. Set of heuristics

 “[…] provide guidelines on the ways in which the activities defined in the
process part can be organized […]”

TU Dresden, Prof. U. Aßmann Design 8

[Budgen, p. 34]

20.1.1 DESIGN
REPRESENTATION

TU Dresden, Prof. U. Aßmann Design 9

20.1.1 Design Representation

TU Dresden, Prof. U. Aßmann Design

Programming
Languages

Executable
Specification

Languages

Paper
Specification

Languages

Text Diagrams Math

Parseable natural
language

Informal

Natural language

Pseudo-code

Flow chart

Data-flow Diagram

Entity-Relationship

Diagram ER

UML

Structure Diagram

Workflow languages

(BPEL)

Choregraphe

Colored Petri nets

State machines

Vienna Development

Language

Z

B

C

Java

Python

Process algebras

(CSP, CCS)

10

Modelica

Matlab

Simulink

20.1.2 DESIGN
PROCESSES

TU Dresden, Prof. U. Aßmann Design 11

20.1.2 Design Process

 A design process is a structured algorithm (or workflow) to
achieve a workable solution from a requirement specification

 A sequence of steps

 A set of milestones

 The design process starts from the system’s interfaces (context
model) and refines its internals

 Every design process

 Contains several central generic steps

TU Dresden, Prof. U. Aßmann Design 12

[Budgen, p. 29]

Operations/Actions of Design Methods

 Many methods have actions like elaboration, refinement, checking,
and structuring

 Manual operations

 Split (decompose, introduce hierarchies, layers, reducibility)

 Merge (coalesce)

 Automatic operations

 Graph analysis methods

 Graph structuring methods, e.g., by graph transformations or edge addition
rewrite systems

 Remember: text-based specifications can be transformed into graphs

TU Dresden, Prof. U. Aßmann Design 13

The Design Problem

 How to get a workable solution starting with a requirements
specification?

TU Dresden, Prof. U. Aßmann Design 14

Requirements
Specification

Architecture
Specification

Design
Specification

?

?

Architectural Styles

 An architecture style provides

 Certain types of components

 Certain types of connections/connectors

 Invariants/constraints among them

 Architectural styles provide a vocabulary to talk about the coarse-
grain structure of a system

 Good for documentation and comprehension

 Good for maintenance

 Architectural styles compared to design patterns

 Design patterns describe the relationship between several classes or objects
of an application, but not of the entire system

 Architectural styles describe what kinds of building blocks and glue exists

TU Dresden, Prof. U. Aßmann Design 15

What Is In a Style ?

 A style can be approached by answering 7 questions [Shaw/Garlan]

1. What is the design vocabulary/the types of components and connectors?

2. What are the allowable structural patterns?

3. What is the underlying computational model?

4. What are the essential invariants of the style?

5. What are some common examples of its use?

6. What are the advantages and disadvantages of using that style?

7. What are some of the common specializations?

 Example: Pipes and Filters

TU Dresden, Prof. U. Aßmann Design 16

> cat server.log | grep timeout | wc -l

The Design Problem

 How do I derive a design for the system?

 How do I find the best architectural style for the system?

 How do I derive a detailed design?

 In design meetings, the basic design questions are posed in a
structured way

 Select a design method

 Pose the design method's basic question

 Perform the design method's process

 Perform the design method's steps

 If process gets stuck, change design method and try another one

However, be aware, which design method and process you use

TU Dresden, Prof. U. Aßmann Design 17

20.2 OVERVIEW OF
DESIGN METHODS

TU Dresden, Prof. U. Aßmann Design 18

20.2 Overview of Design Methods

 Methods can be grouped according to their focus of decomposition
and the design notation they use.

 Function-oriented: function in focus

 Action-oriented, event-action-oriented: Action in focus

 Data-oriented: A data structure is in focus

 Component-oriented (structure-oriented): parts in focus

 Object-oriented: objects (data and corresp. actions) in focus

 Transformational: basic action is the transformation

 Generative: basic action is a special form of transformation, the
generation. Also using planning.

 Formal methods: correct refinement and formal proofs in focus

 Refinement-based: basic action is the point-wise and regional refinement,
with verification of conformance

 Aspect-oriented methods: refinement according to viewpoints and
concerns

TU Dresden, Prof. U. Aßmann Design 19

Function-Oriented Design (Operation-oriented, Modular Design)

 Design with functional units which transform inputs to outputs

 Minimal system state

 Information is typically communicated via parameters or shared
memory

 No temporal aspect to functions

 Functions/operations are grouped to modules or components

 Divide: finding subfunctions

 Conquer: grouping to modules

 Examples

 Parnas' change-oriented design (information-hiding based design, see ST-1)

 Use: when the system has a lot of different functions

TU Dresden, Prof. U. Aßmann Design

What are the functions of the software?

20

Action-Oriented Design

 Action-oriented design is similar to function-oriented design, but
actions require state on which they are performed (imperative,
state-oriented style)

 Divide: finding subactions

 Conquer: grouping to modules

 Examples:

 Petri Nets

 Use-case-based development

 Data-flow based development SA, SADT

 Use: when the system maps to a state space, in which actions form
the transitions

TU Dresden, Prof. U. Aßmann Design

What are the actions the system should perform?

21

Result 1: Call-Based Architectural Style

 Components denote procedures that call each other

 Control flow is symmetric (calls and symmetric returns)

 Data-flow can be

 parallel to the call (push-based system): caller pushes data into callee

 antiparallel, i.e., parallel to the return (pull-based system): caller drags out
data from callee

 Aka “Client-Server” in loosely coupled or distributed systems

TU Dresden, Prof. U. Aßmann Design

Module

Module

Module

System

call

return

call

return

call
return

call

return

call

return

22

Result 2: Data-Flow Based Systems (Pipe-and-Filter,
Channels, Streams)

 If data flows in streams, call-based systems are extended to stream-based
systems

 Components: processes, connectors: streams

 Control flow is asynchronous, continuous

 Data-flow graph of connections, static or dynamic binding

 Data-flow can be parallel to the control-flow (push-based system) or
antiparallel (pull-based system)

TU Dresden, Prof. U. Aßmann Design

architectural glue code

Filter

Pipe

Example: Linux shell: cat server.log | grep timeout | wc -l

23

Examples

Data-flow based systems:

 Image processing systems

 Microscopy, object recognition

 Digital signal processing systems

 Video and audio processing, e.g., telephony

 Batch-processing systems

Call-based systems:

 Object-oriented frameworks

TU Dresden, Prof. U. Aßmann Design 24

Event-Condition-Action-Oriented Design

 Event-condition-action rules (ECA rules)

 On which event, under which condition, follows which action?

 Divide: finding rules for contexts

 Conquer: grouping of rules to rule modules

 Example:

 Business-rule-based design

 Use: when the system maps to a state space, in which actions form
the transitions and the actions are guarded by events

TU Dresden, Prof. U. Aßmann Design

What are the events that may occur and

how does my software react on them?

25

Arch. Style: Event-based Architectural Style (Implicit
Invocation Style)

 Components: processes or procedures

 Connectors: Anonymous communication by events

 Asynchronous communication

 Dynamic topology: Listeners can dynamically register and unregister

 Listeners are implicitly invoked by events

TU Dresden, Prof. U. Aßmann Design

On Event
If Condition
then Action

On Event
If Condition
then Action

On Event
If Condition
then Action

26

JBoss Rules

<rule name="Free Fish Food Sample">

<parameter identifier="cart">

<java:class>org.drools.examples.java.petstore.ShoppingCart</java:class>

</parameter>

<parameter identifier="item">

<java:class>org.drools.examples.java.petstore.CartItem</java:class>

</parameter>

<java:condition>cart.getItems("Fish Food Sample").size() == 0</java:condition>

<java:condition>cart.getItems("Fish Food").size() == 0</java:condition>

<java:condition>item.getName().equals("Gold Fish")</java:condition>

<java:consequence>

System.out.println("Adding free Fish Food Sample to cart");

cart.addItem(new org.drools.examples.java.petstore.CartItem("Fish Food Sample", 0.00)
);

drools.modifyObject(cart);

</java:consequence>

</rule>

TU Dresden, Prof. U. Aßmann Design 27

Event-Bus

 Basis of many interactive application frameworks (XWindows, Java
AWT, Java InfoBus,)

 See design pattern Observer with Change Manager

TU Dresden, Prof. U. Aßmann Design

EventBus (Mediator)

Subject Subject Subject

Observer Jrules-
based
Observer

ECA-rule
based
Observer

28

Arch. Style: Workflow-Based Systems

 A workflow describes the actions on certain events and conditions

 Formed by a decision analysis, described by ECA rules

 Instead of a data-flow graph as in pipe-and-filter systems, or a
control-flow graph as in call-based systems

 A control-and-data flow graph steers the system

 The data-flow graph contains control-flow instructions (if, while, ..)

 This workflow graph is similar to a UML activity diagram, with pipes and
switch nodes

 Often transaction-oriented

TU Dresden, Prof. U. Aßmann Design

Workflow

?

?

29

Application Domains of Workflow Architectures

 Business software

 The big frameworks of SAP, Peoplesoft, etc. all organize workflows in
companies

 Production planning software

 Web services are described by workflow languages (BPEL)

 More in course “Component-based Software Engineering”

TU Dresden, Prof. U. Aßmann Design 30

Arch. Style: Communicating State Machines

 Processes can be modeled with state machines that react on
events, perform actions, and communicate

 Model checking can be used for validation of specifications

 Languages:

 Esterelle, Lotos, SDL

 UML and its statecharts

 Heteregenous Rich Components (HRC)

 EAST-ADL

TU Dresden, Prof. U. Aßmann Design 31

Applications

 Protocol engineering

 Automatic derivation of tests for systems

 Telecommunication software

 Embedded software

 In cars

 In planes

 In robots

TU Dresden, Prof. U. Aßmann Design 32

Data-Oriented Design

 Data-oriented design is grouped around a input/output/inner data
structure

 or a language for a data structure (regular expressions, finite automata,
context-free grammars, ...)

 The algorithm of the system is isomorphic to the data and can be
derived from the data

 Input data (input-data driven design)

 Output data (output-data driven design)

 Inner data

 Divide: finding sub-data structures

 Conquer: grouping of data and algorithms to modules

 Example:

 Jackson Structured Programming (JSP)

 ETL processing in information systems

TU Dresden, Prof. U. Aßmann Design

How does the data look like?

33

Data-Flow Style: Regular Batch Processing
(ETL Processing)

 Regular Batch Processing is a specific batch-processing style. In
such an application, regular domains are processed:

 Regular string languages, regular action languages, or regular state spaces

 The form of the data can be described by a

 Regular expression, regular grammar, statechart, or JSP diagram tree

 Often transaction-oriented

 Example:

 Record processing in bank and business applications:

 Bank transaction software

 Database transaction software for business

 Business report generation for managers (controlling)

TU Dresden, Prof. U. Aßmann Design 34

Arch. Style: Repository Systems

 Processing is data-oriented

 Free coordination of components

 Can be combined with call-based style

 Often also state-oriented

TU Dresden, Prof. U. Aßmann Design

Repository

Read/write

35

Example: Repository Style in a Compiler

 The algorithms are structured along the syntax of the programs

 The Design Pattern “Visitor” separates data structures from
algorithms

TU Dresden, Prof. U. Aßmann Design

Lexical
Analyser

Parser

Semantic
Analysis

Optimizer

Transformation
Phase

Code
generator

Repository

36

Repository Style in a Integrated Development Environment

 IDE store programs, models, tests in their repository

TU Dresden, Prof. U. Aßmann Design

Lexical
Analyser

Parser

Semantic
Analysis Refactoring

Pretty
Printer

Repository

Diagram
Visualizer

Unit Testing

37

Information Systems – Queries on a Repository

 Algorithms are structured along the relational data

 Data warehouse applications provide querying on multidimensional
data

TU Dresden, Prof. U. Aßmann Design

Query 1 Query
Optimizer

Query3

Repository

Query 2

38

Blackboard Style

 The blackboard is an active repository (i.e., an active component)
and coordinates the other components

 by event notification or call

 Dominant style in expert systems

TU Dresden, Prof. U. Aßmann Design

Blackboard

Read/write

39

Fire/trigger

Component-Based Design

 Focus is on the HAS-A (PART-OF) relation

 Focus is on parts, i.e., on an hierarchical structure of the system

 Divide: finding subcomponents (parts)

 Conquer: grouping of components to larger components

 Example:

 Design with architectural languages (such as EAST-ADL)

 Design with classical component systems (components-off-the-shelf, COTS),
such as CORBA, EJB or AutoSAR

 However, many component models exist

 Separate course “Component-based software engineering (CBSE)”

TU Dresden, Prof. U. Aßmann Design

What are the components (parts) of the system,

their structure, and their relations?

40

Object-Oriented Design

 Data and actions are grouped into objects, and developed together

 Divide: finding actions with their enclosing objects

 Conquer: group actions to objects

TU Dresden, Prof. U. Aßmann Design

What are the "objects" of the system?

What are the actions and attributes of the objects?

41

Object-Oriented Design Methods

 CRC cards (ST-1)

 Verb substantive analysis (ST-1)

 Collaboration-based design and CRRC (ST-1)

 Booch method

 Rumbaugh method (OMT)

 (Rational) Unified Process (RUP, or Unified Method)

 uses UML as notation

 Often, OO is used, when the real world should be simulated
(simulation programs)

TU Dresden, Prof. U. Aßmann Design 42

Arch. Style: Object-Oriented Call-Based Architectural Style

 Control flow is symmetric (calls and returns)

 Control flow is not fixed (dynamic architecture via polymorphism)

 Control-flow can be sequential or parallel

 Data-flow can be parallel the call (push-based system) or
antiparallel, i.e., parallel to the return (pull-based system)

TU Dresden, Prof. U. Aßmann Design

Class

Subclass

Subclass

System

call

return

call

return

call

return

dispatch

43

Arch. Style: Object-Oriented Process Systems

 Object-oriented systems can be parallel

 Actors are parallel communicating processes

 Processes talk directly to each other

 Unstructured communications

TU Dresden, Prof. U. Aßmann Design 44

Arch. Style: Process Tree Systems (UNIX-Like)

 Processes (parallel objects) are organized in a tree

 and talk only to their descendants

TU Dresden, Prof. U. Aßmann Design 45

Transformational Design

 We start with an initial, abstract design that meets the
requirements
 The context model and the top-level architecture

 The implementation is achieved by an iterative transformation
process, starting from an initial design

 Refinement-based development

 Refactoring-based development uses symmetry operations (refactorings)

 Semi-automatically deriving a final design

 Divide: find steps from the initial to the final design

 Conquer: chain the steps

 Note: this design method is orthogonal to the others, because it
can be combined with all of them

TU Dresden, Prof. U. Aßmann Design

How should I transform the current design to a better version and

finally, the implementation?

46

Model-Driven Architecture as Transformational Design Method

TU Dresden, Prof. U. Aßmann Design

Domain model,
Requirements specification

Platform Independent Model (PIM)

Platform Specific Model (PSM)

Implementation

Model mappings

Computationally Independent
Model (CIM)

47

Generative Design

 (aka Generative Programming)

 Specify the solution in

 a "formal method", a specification language

 a template which is expanded (generic programming)

 In UML, which is generated into code by a CASE tool

 Generate a solution with a generator tool that plans the solution

 Planning the composition of the solution from components

 Synthesizing the solution

 Divide: depends on the specification language

 Conquer: also

 Fully generative programming is called Automatic Programming

TU Dresden, Prof. U. Aßmann Design

How can I derive the implementation from the design automatically?

48

Generative Specifications

 Developing a specification in one of these languages is simpler than
writing the code

 Grammar-oriented development (grammarware)

Finite automata from regular grammars

Large finite automata from modal logic (model checkers)

Parsers from Context-free grammars

Type checkers, type inferencers from Attribute grammars

Type checkers and interpreters from Natural semantics

TU Dresden, Prof. U. Aßmann Design

Specification

Code

49

Automatic Programming

 In automatic programming, a planner plans a way to generate the
code from the requirement specifications

• Using a path of transformations

 A.P. is generative, and transformative, and formal method.

TU Dresden, Prof. U. Aßmann Design 50

Model-Driven Software Development (MDSD)

 MDSD blends Transformational and Generative design

 Models

• represent partial information about the system

• Are not directly executable

• But can be used to generate parts of the code of a system

 Model-driven architecture (MDA® of OMG) blends
Transformational Design and Generative Design

 See also Chapter “Model-Driven Architecture”

TU Dresden, Prof. U. Aßmann Design 51

Formal Methods

 A formal method is a design method that

 Has a formal (mathematical) specification of the requirements

 Develops a formal specification of the design

 The design can be verified against the requirements specification

 A formal method allows for proving a design correct

 Very important for safety-critical systems

 Formal methods are orthogonal to the other methods: every
method has the potential to be formal

 Important in safety-critical application areas (power plants, cars,
embedded and real-time systems)

 Ex. Petri nets (separate chapter), B, Z, VDM, CSP, CML, …

TU Dresden, Prof. U. Aßmann Design

How can I prove that my design is correct with regard to the

requirements?

52

20.3 ARCHITECTURAL
STYLES SPECIFIC TO
LAYERS

TU Dresden, Prof. U. Aßmann Design 53

Layered Architecture

 A general approach to reduce the complexity of large systems is to
decompose it into layers

 Layers can be combined with many architectural styles

 Dominating style for large systems

TU Dresden, Prof. U. Aßmann Design 54

Example: 4-Tier Architectures in GUI-based Applications (BCED)

 Already presented in ST-1

 Acyclic USES Relation, divided into 3 (resp. 4) layers:

 GUI (graphic user interface)

 Middle layer (Application logic and middleware, transport layer)

 Data repository (database)

TU Dresden, Prof. U. Aßmann Design

Data Repository Layer (database, memory)

Middleware (memory access, distribution)

Graphical user interface

Application logic (business logic)

55

Example: Operating Systems

TU Dresden, Prof. U. Aßmann Design

Kernel

User SpaceUNIX:

Kernel

User Space
Apple-UNIX:

Microkernel (Mach)

Kernel

User SpaceWindows NT/XP:

Hardware Abstraction Layer (HAL)

56

Architectural Styles Can Be Layer Specific

TU Dresden, Prof. U. Aßmann Design 57

Data Repository Layer (database, memory)

Middleware (memory access, distribution)

Graphical user interface

Application logic (business logic)

Event-based

Data-based

Action-based
Test-

driven

Trans-

formative

MDA

Aspect-

oriented

Formal methods

Domain-Specific Architectural Styles

 Often an application domain needs its own style, its reference
architecture

 It's hard to say something in general about those

TU Dresden, Prof. U. Aßmann Design 58

Important

 An architectural style results from a specific development method

 Functional, modular design: call-based style

 Action design: data-flow style, workflow style, regular processing, process
trees

 Object-oriented design: object-oriented call-based systems, client-server,
actors (process systems)

 Uses-oriented design: layered systems

 Specific layers need specific styles

 Reliable systems need specific styles

 The dedicated engineer knows when to apply what

TU Dresden, Prof. U. Aßmann Design 59

Summary: Most Important Architecture Styles

 Data flow styles

 Sequential pipe-and-filter

 Data flow graph/network

 Workflow systems (mixed with
control flow)

 Call-style

 Modular systems

 Abstract data types

 Object-oriented systems

 Client/service provider

 Hierarchical styles

 Layered architecture

 Interpreter

 Checker-based Architectures

TU Dresden, Prof. U. Aßmann Design

 Interacting processes (actors)

 Threads in a shared memory

 Distributed objects

 Event-based systems

 Agenda parallelism

 Data-oriented (Repository
architectures)

 Transaction systems (data bases)

 Query-based systems

 Blackboard (expert systems)

 Transformation systems (compilers)

 Generative systems (generators)

 Data based styles

 Compound documents

 Hypertext-based

60

Scenario

 You are a project manager in Miller Car Radios, Inc

 Your boss comes into your office and says:

“Our competitor Smith Car Radios has a new satellite radio. Their
sales are growing, and our customers demand it, too. How quickly
can you deliver me a satellite radio?”

TU Dresden, Prof. U. Aßmann Design 61

Which Design Method for the Satellite Radio?

 Real world objects must be simulated

 Object-oriented design?

 Events in the real world

 Event-condition-action based design?

 Flow of data from the satellite to the radio to the user

 Data-oriented design? data-flow architecture!

TU Dresden, Prof. U. Aßmann Design 62

20.4 DESIGN HEURISTICS
AND BEST PRACTICES

General Strategies in Design Processes

TU Dresden, Prof. U. Aßmann Design 63

Heuristic: Lazy or Eager Design

 In case of a difficult design decision

 (when elaborating, refining, refactoring or changing representation)

 …defer it (lazy design)

 Iterative Software development methods such as Extreme Programming

 …decide it (eager design)

 …anticipate further developments in the design (anticipatory design)

 Time-boxed design: (SCRUM XP process)

 Do iterations in fixed time-slots (1 month)

 Fix requirements only for one time-slot

 Have it running under all circumstances

 Update requirements with customer after the time-slot

TU Dresden, Prof. U. Aßmann Folie

64 von 18

Design

Heuristic: Divide and Conquer Strategy

 Divide et impera (from Alexander the Great)

 divide: problems into subproblems (simplification)

 To find solutions in terms of the abstract
machine we can employ. When this mapping
is complete, we can conquer

 conquer: solve subproblems (hopefully easier)

 compose (merge): compose the complete
solution from the subsolutions

 Reuse of partial solutions is possible
(then the tree is a dag)

 Where do we begin?

 Stepwise refinement (top-down)

 Assemblage (bottom-up)

 Design from the middle (middle-out, yo-yo)

.......

.......

.......

??

TU Dresden, Prof. U. Aßmann Folie

65 von 18

Design

Stepwise Refinement (Top-Down, Classic Divide-and-Conquer)

 Pointwise refinement

 Fragment refinement

 Control refinement (operation refinement)

 We guess the solution of the problem in
terms of a higher-level abstract machine

 We refine their operations until the given
abstract machine is reached

 Data refinement

 We may also refine the data structures
of the abstract machine

 Syntactic refinement does not respect
semantics of the original model

 Semantic refinement proves conformance of
the refined model to the original model, i.e.
whether it is semantically equivalent or richer
than the original model

 Disadvantage:

 We might never reach a realization

 Often "warehouse solutions" are
developed, that are inappropriate

.......

.......

.......

??

Folie

66 von 18

DesignTU Dresden, Prof. U. Aßmann

Stepwise Construction (Bottom-up)

 In this case we start with a given abstract machine and

 assemble more complex operations of a
higher-level abstract machine

 or assemble the more complex data
structures

 Good:

 Always realistic

 A running partial solution

 Bad:

 Design might become clumsy since
global picture was not taken into account

.......

.......

.......

??

Folie

67 von 18

DesignTU Dresden, Prof. U. Aßmann

Middle out

 Fix some subproblems in
the middle and solve them
by refinement

 Then work your way up

 Often avoids the disadvantages
of top-down and bottom-up

.......

.......

.......

??

Folie

68 von 18

DesignTU Dresden, Prof. U. Aßmann

Heuristic: Use Hierarchies and Reducible Graphs

 Trees

 Dags (directed acyclic graphs)

 Can be layered

 Reducible graphs

 Can be layered too, on each
layer there are cycles

 Every node can be refined
independently and abstracts
the lower levels

TU Dresden, Prof. U. Aßmann Folie

69 von 18

Design

Heuristics on Size

 Limit yourself to a small number of items
 Never use more than 5 items

 on an abstraction level of a specification or model

 KISS (keep it simple stupid)
 Remove all superfluous things, make it fit on 1 page

 Simplification takes a long time “I didn't have the time to make it shorter”

 Einstein: "Make things as simple as possible, but not simpler.”

 Abstraction is neglecting unnecessary detail

 Focus at one problem at a time and temporarily forget about others

 Display only essential information

 Change representation if development strategy changes

 This leads to design methods or decomposition methods

TU Dresden, Prof. U. Aßmann Folie

70 von 18

Design

Heuristics on Abstraction

 Separation of Concerns (SoC)

 Different concepts should be separated so that they can be specified
independently

 Dimensional specifications: specify from different viewpoints

 If separated, then concerns can be varied independently

 Example of SoC: Separate Policy and Mechanism

 Mechanism: The way how to technically realize a solution

 Policy: The way how to parameterize the realization of a solution

 If separated, then policy and mechanism can be varied independently

TU Dresden, Prof. U. Aßmann Folie

71 von 18

Design

What Have We Learned?

 There is no single “way to the system”

 Every project has to find its path employing an appropriate design method

 The basic design questions are posed over and over again, until a
design is found

 Select a design method

 Pose the design method's basic question

 Perform the design method's process

 Perform the design method's steps: elaborate, refine, structure, change
representation, ...

 If process gets stuck, change design method and try another one!

 Architectural styles are the result of a design process

 They give us a way to talk about a system on a rather abstract level

 Architectural styles can be distinguished by the relation of data-flow and
control-flow (parallel vs antiparallel)

 .. and the type of system structuring relation they use

TU Dresden, Prof. U. Aßmann Design 72

The End

TU Dresden, Prof. U. Aßmann Design 73

