
Fakultät Informatik, Institut für Software- und Multimediatechnik, Lehrstuhl für Softwaretechnologie

21) Functional and Modular Design

Prof. Dr. U. Aßmann
Technische Universität Dresden
Institut für Software- und Multimediatechnik
http://st.inf.tu-dresden.de
WS 14/15 – 02.01.2015

Lecturer: Dr. Sebastian Götz

1. Functional Design
2. Modular Design

(Change-Oriented Design)
3. Use-Case Based Design

http://st.inf.tu-dresden.de

Obligatory Readings

 S. L. Pfleeger and J. Atlee:
Software Engineering: Theory and Practice.
Pearson. 2009.

• Chapter 5 (Designing the Architecture)

 C. Ghezzi, M. Jazayeri and D. Mandrioli:
Fundamentals of Software Engineering.
Prentice Hall. 1992.

• Chapter 4 (Design and Software Architecture)

 M. Shaw and D. Garlan:
Software Architecture: Perspectives on an Emerging Discipline. Prentice Hall, 1996.

Modular Design 2

21.1 FUNCTIONAL DESIGN

Modular Design 3

Function-Oriented Methods

 Examples:

 Stepwise function refinement resulting in function trees

 Modular decomposition with information hiding (Change-oriented
modularization, Parnas)

 Meyer’s Design-by-contract: Contracts are specified for functions with
pre- and postconditions

 Dijkstra’s and Bauer’s axiomatic refinement (not discussed here)

Modular Design

Which functionality will the system have?

What are the subfunctions of a function?

4

A Start for a Function Tree

 How to design the control software for a tea automaton?

Modular Design

produce

tea

Produce Tea

5

First Refinement of a Function Tree

Modular Design

add

boiling

water
wait

composition

produce
tea

Produce Tea

.. is composed of ..

Put tea in pot

Add boiling water

Wait put tea
in pot

6

Second Refinement of a Function Tree

Modular Design

put tea
in pot

add
boiling
water

wait

fetch
tea from
tea box

open
pot

close
pot

produce
tea

Produce Tea

Put tea in pot

Fetch tea from tea box

Open pot

Close pot

Add boiling water

Wait

7

Produce Tea

Put tea in pot

Fetch tea from tea box

Open pot

Close pot

Add boiling water

Boil water

Open pot

Pour water in

Close pot

Wait

Third Refinement of a Function Tree

Modular Design

put tea
in pot

add
boiling
water

wait

fetch
tea from
tea box

open
pot

close
pot

produce
tea

boil
water

open
pot

close
pot

pour
water
in pot

8

Function Trees

 Function trees can also be derived by a 1:1 mapping from a functional
requirements tree (see ZOPP requirements lecture)

 Usually, for a system several function trees are developed, starting with
top-level functions in the context model

 Stepwise Refinement works usually top-down (Hierarchic decomposition)

 Bottom-up strategy (composition) possible

 Middle-out strategy blends composition and decomposition

 Development of the “subfunction-of” (“call”) relationship: a part-of relationship for
functions: the function has which parts (subfunctions)?

 Usually implemented by call relationship (call graph)

 Syntactic stepwise refinement is indifferent about the semantics of the
refined model

 Semantic stepwise refinement proves that the semantics of the program
or model stays unchanged

 Systems developed by semantic refinement are correct by construction

 Functions are actions, if they work on visible state

 In functional design, state is disregarded

 State is important in action-oriented design, actions are usually related to state
transitions!

Modular Design 9

Function Polyhierarchies

 If subfunctions are shared, polyhierarchies result with several
roots and shared subtrees

Modular Design

put tea
in pot

add
boiling
water

wait

fetch
tea from
tea box

open
pot

close
pot

produce
tea

boil
water

open
pot

close
pot

pour
water
in pot

put
coffee
in pot

fetch
Coffee
from

tea box

produce
coffee

10

Other Trees with Other Part-Of Relationships

 Many concepts can be stepwise refined and decomposed.
Hierarchic decomposition is one of the most important
development methods in Software Enineering:

• Problem trees

• Goal trees

• Acceptance test trees

• Requirements trees

• Feature trees (function trees describing grouping, variability and
extensibility)

• Attack trees

• Fault trees

• …

 The development is always by divide and conquer.

 Think about: Which part-of relationships do they develop?

Modular Design 11

Grouping Functions to Modules to Support Cohesion

 Group functions according to cohesion: “which function belongs to
which other function?”

 Minimize coupling of modules

 Maximize cohesion: encapsulate dependencies within a module

Modular Design

Module Tea Automaton {

Produce Tea

Add boiling water

Wait

}

Module Tea Box {

Fetch tea from tea box

}

Module Water Boiler {

Boil water

}

Module Pot {

Open pot

Put tea in pot

Pour water in pot

Close pot

}

12

Grouping Functions to Modules or Classes in UML

 Functions can often be grouped to objects (object-oriented
encapsulation)

 Then, they can be actions working on the state of the object
(begin of object-orientation)

Modular Design

<<module>>

TeaAutomaton

produceTea()

addBoilingWater()

wait()

<<module>>

WaterBoiler

TeaBox

fetchTea()

Pot

open()

putIn(Tea)

pourIn(Water)

close()boilWater()

13

Heuristics and Best Practices

 Don't group too many items on one abstraction level or into one
module (slim interface principle)

 Technical modules or classes (classes that do not stem from
domain modeling) can be found in similar ways, by grouping
cohesive functions together

 Identify material modules or classes with CRUD interfaces (see
TeaBox and Pot):

 Create

 Read

 Update

 Delete

 Identify tool modules or classes with “active functions”:

• List<Material>

• Edit<Material>

• Navigate<Material>

 Identify command modules or classes (Design Pattern Command)

• Tools are specific commands, working on materials

Modular Design 14

Result: Call-Based Architectural Style

 Functional design leads to a call-based architectural style with
statically (i.e., at design time) known callees (static call graph)

Modular Design

Module

Module

Module

System

call

return

call

return

call
return

call

return

cal
l
return

15

Grouping Other Trees with other Part-Of Relationships

 Any hierarchic relationship can be grouped to modules based on
cohesion

 Problem trees problem modules

 Goal trees goal modules

 Acceptance test trees acceptance test modules

 Feature trees (describing variability, extensibility) Feature

modules

 Attack trees attack modules

 Fault trees fault modules

 ….

Modular Design 16

Why is Function-Oriented Design Important?

 Implementation of function trees in a functional language

 ... or a modular imperative language, e.g., Modula, C, or Ada.

 In some application areas, object-oriented design and languages
have severe disadvantages (e.g., due to superfluous complexity)

 Employment in safety-critical systems:

 Proofs about the behavior of a system are only possible if the architecture
and the call graph are static.

 Due to polymorphism, object-oriented systems have dynamic architectures
(don't program a nuclear power plant with Java!)

 In embedded and real-time systems:

 Object-oriented language implementations often are slower than those of
modular languages

 ... and eat up more memory

 In high-speed systems:

 Operating systems, database systems, compilers, ...

Modular Design 17

21.2 CHANGE-ORIENTED
MODULARIZATION WITH
INFORMATION HIDING
(VARIABILITY)

Modular Design 18

What is a Module?

 Software should, according to the divide-and-conquer principle,
also physically be divided into basic parts, modules
 A module groups a set of functions or actions

 A module can be developed independently

 errors can be traced down to modules

modules can be tested before assembling

 A module can be exchanged independently

 A module can be reused

 The terms module and component mean pretty much the same
 Often, a module is a programming-language supported component

 Here: a module is a simple component

 In the past, different component models have been developed

 A component model defines features of components, their
compositionality, and how large systems are built with them
(architecture)

 In course “Component-based SE”, we will learn about many different
component models

Modular Design 19

How To Modularize a System?

 Parnas principle of change-oriented modularization (information
hiding) [Parnas, CACM 1972]:

1) Determine all design decisions that are likely to change

2) Attach each of those decisions to a new module

 The design decision becomes the secret of a module (called module secret)

3) Design module interface that does not change if module secret
changes

Modular Design 20

Information Hiding

 Information hiding relies on module secrets

 Possible module secrets:

 How the algorithm works, in contrast to what it delivers

 Data formats

 Representation of data structures, states

 User interfaces (e.g., AWT)

 Texts (language e.g., gettext library)

 Ordering of processing (e.g., design patterns Strategy, Visitor)

 Location of computation in a distributed system

 Implementation language of a module

 Persistence of the data

Modular Design 21

Module Interfaces

 Should never change!

 Well, at least be stable

 Should consist only of functions

 State should be invisible behind interfaces

 Direct access to data is efficient, but cannot easily be exchanged

 e.g., empty set/get methods for accessing fields of objects

 Should specify what is

 Provided (exported)

 Required (imported)

Modular Design 22

Different Kinds of Modules

 Functional modules (without state)

 sin, cos, fib, ...

 Data encapsulators

 Hide data and state by functions (symbol table in a compiler)

 Monitors in the parallel case

 Abstract Data Types

 Lists, trees, stacks, ..

 New objects of the data type can be created dynamically

 Singletons

 Modules with a singular instance of a data structure

 Data-flow processes (stream processors, filters)

 Eating and feeding pipelines

 Objects

 Modules that can be instantiated

Modular Design 23

Conclusion of Information-Hiding Based Design

Modular Design

We have seen how important it is to focus on describing secrets rather than

interfaces or roles of modules.

When we have forgotten that, we have ended up with modules without clear

responsibilities and eventually had to revise our design.

[Parnas/Clements, The Modular Structure of Complex Systems, CACM]

24

21.3 FUNCTION-
ORIENTED DESIGN WITH
USE-CASE DIAGRAMS

Modular Design 25

Use Case Diagrams

 Use Case Diagram (UCD) can be used in functional design

 A Use Case Diagram consists of several use cases of a system

 A use case describes an application, a coarse-grain function or action of a
system, in a certain relation with actors

 A use case contains a scenario sketch

 Pseudocode text which describes the functionality

 Use Case diagrams can be used in Function-Oriented, Action-Oriented, or in
Object-Oriented Design

 From UCD, a function tree can be derived

Modular Design 26

27

Example Service Station

 A Service Station has 4 tasks [Pfleeger]

 Parking

 Refueling

 Maintenance

 Preventive Maintainance

Modular Design

Parking

Refueling

Maintenance

Preventive

Maintenance

Customer Manager

<<extends>>

27

28

Questions for Use Cases

 What is the system/subsystem?

 Who is Actor?

 A user

 An active object

 A person

 A system

 Must be external to the described system

 What are the Applications/Uses?

 What are the relations among
Use Cases

 Extends: Extend an existing
use case (Inheritance)

 Uses: Reuse of an existing
use case (Sharing)

Modular Design

 Which

 Users

 External systems

 Use

 Need

 The system for which tasks?

 Are tasks or relations to

complex?

28

Refinement Service Station

 We introduce an abstraction of the services

Modular Design

Parking
Refueling

Maintenance

Billing

Services
Customer

Manager

Credit Card

System

Preventive

Maintenance

29

Second Refinement Service Station

Modular Design

Parking
Refueling

Maintenance

Billing

Services

Customer

Manager

Credit Card

System

Printer

System
Accounting

Services

Preventive

Maintenance

30

Third Refinement Service Station

 The <<includes>> relationship allows for decomposition of a use
case. <<includes>> is a form of <<part-of>>

Modular Design

Inspection

Customer

Manager

Diagnosis

Treatment

Technician

initiates

Recording

Efforts
Accounting

Services

Maintenance

<<includes>>

31

32

Check List for Consistency

 One diagram

 Clarity

 Simplicity

 Completeness

 Match the stories of the customer?

 Missing actors?

 Several diagrams

 Which actions occur in several diagrams? Are they specified
consistently?

 Should actors from shared actions be replicated to other UCD?

Modular Design 32

How To Go On from a Use Case Diagram

 There are several ways how to reach a design from a use case
diagram

 Hierarchical refinement of the actions into UCD of second level, yielding
a reducible specification

Disadvantage of UCD: Hierarchical refinement is sometimes difficult,
because new actors have to be added

 Leads to a correction of the top-level UCD

 Action tree method: action-oriented method to refine the use case
actions with an action tree

 Collaboration diagram method: object-oriented method to analyse paths
in the use case diagram with communication (collaboration) diagrams
(see later)

Modular Design 33

Hierarchical Refinement of a Use Case

 Often, new actors have to be added during refinement

Modular Design

Second
Technician

Evaluate

inspection

data

Consult

other

experts

Technician

Consult

manual

Diagnosis

Diagnosis

new actor!!

34

Deriving a Function Tree from a Use Case

 Domain Transformation: From a UCD, set up a function or action
tree

 <<includes>> expresses a part-of hierarchy of function

 Refinement: Refine the functions by decomposition

Modular Design

Inspection Diagnosis Therapy

Watching
Inspect

Error codes

Maintenance

Recording

Efforts

Combine

inspection

results

Consult

other

experts

..other..

35

Benefits of Use Cases

 Use cases are good for

 Documentation

 Communication with customers and designers Easy

 Are started for the first layout of the structural model

 To find classes, their actions, and relations

 In eXtreme Programming (XP), use cases are called „stories“

which are written down on a card

 collected

 and implemented one after the other

 XP does not look at all use cases together, but implements one after the
other

Modular Design 36

The End

Modular Design 37

