
1

Softwaretechnologie II, © Prof. Uwe Aßmann

23. Action-Oriented Design
Methods

1) Action-Oriented Design

2) Structured
Analysis/Design (SA/SD)

3) Workflow nets

Prof. Dr. U. Aßmann

Technische Universität Dresden

Institut für Software- und
Multimediatechnik

http://st.inf.tu-dresden.de

WS 14/15 - 10.01.15

Lecturer: Dr. Sebastian Götz

P
ro

f.
 U

. A
ß

m
an

n,
 S

of
tw

a r
e

te
ch

no
lo

g
i e

 II

2

Obligatory Reading

► Balzert, Kap. 14
► Ghezzi Ch. 3.3, 4.1-4, 5.5
► Pfleeger Ch. 4.1-4.4, 5

3

Softwaretechnologie II, © Prof. Uwe Aßmann

23.1 Action-Oriented Design

P
ro

f.
 U

. A
ß

m
an

n,
 S

of
tw

a r
e

te
ch

no
lo

g
i e

 II

4

23.1 Action-Oriented Design

 Action-oriented design is similar to function-oriented design, but
admits that the system has states.
 It asks for the internals of the system

 Actions require state on which they are performed (imperative, state-oriented style)

 Actions are running in parallel

 Decomposition strategy:

• Divide: finding subactions

• Conquer: grouping to modules and processes

• Result: reducible action system

 Example: all function-oriented design methods can be made to
action-oriented ones, if state is added

What are the actions the system should perform?
What are the subactions of an action?
Which state does an action change?

What are the actions the system should perform?
What are the subactions of an action?
Which state does an action change?

5

Softwaretechnologie II, © Prof. Uwe Aßmann

23.2 Action-Oriented Design with
SA/SD

Data-flow connects processes
(parallel actions)

State is implicit in the atomic
processes, not explicit in the global,

architectural specifications

P
ro

f.
 U

. A
ß

m
an

n,
 S

of
tw

a r
e

te
ch

no
lo

g
i e

 II

6

Structured Analysis and Design (SA/SD)

 Why should you still learn SA/SD ?

 TIOBE index (http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html)

P
ro

f.
 U

. A
ß

m
an

n,
 S

of
tw

a r
e

te
ch

no
lo

g
i e

 II

7

Structured Analysis and Design (SA/SD)

 A specific variant of action-oriented design is process-oriented
design (data-flow based design)

• [DeMarco, T. Structured Analysis and System Specification,
Englewood Cliffs: Yourdon Press, 1978]

 Notations of SA:
 Function trees (action trees, process trees): decomposition of system functions

 Data flow diagrams (DFD), in which the actions are called processes

 Data dictionary (context-free grammar) describes the structure of the data that
flows through a DFD

 Pseudocode (minispecs) describes central algorithms (state-based)

 Decision Table and Trees describe conditions (see later)

P
ro

f.
 U

. A
ß

m
an

n,
 S

of
tw

a r
e

te
ch

no
lo

g
i e

 II

8

Why SA is Important

 Usually, action-oriented design is structured, i.e., based on
hierarchical stepwise refinement.

 Resulting systems are
 reducible, i.e., all results of the graph-reducibility techniques apply.

 parallel, because processes talk with streams

 SA and SADT are important for embedded systems because
resulting systems are parallel and hierarchic

P
ro

f.
 U

. A
ß

m
an

n,
 S

of
tw

a r
e

te
ch

no
lo

g
i e

 II

9

Structured Analysis and Design (SA/SD) – The
Development Process

► On the highest abstraction level, on the context diagram:
– Elaboration: Define interfaces of system by a top-level action tree
– Elaboration: Identify the in-out streams most up in the hierarchy
– Elaboration: Identify the highest level processes
– Elaboration: Identify stores

► Refinement: Decompose function tree hierarchically
► Change Representation: transform action tree into process

diagram (action/data flow)
► Elaboration: Define the structure of the flowing data in the Data

Dictionary
► Check consistency of the diagrams
► Elaboration: Minispecs in pseudocode

P
ro

f.
 U

. A
ß

m
an

n,
 S

of
tw

a r
e

te
ch

no
lo

g
i e

 II

10

Data-Flow Diagrams (Datenflussdiagramme,
DFD)

► DFD are a special form of Petri nets (see Chapter on PN)
► They are also special workflow languages without repository and

global state
■ DFD use local stores for data, no global store
■ Less conflicts on data for parallel processes

► Good method to model parallel systems

P
ro

f.
 U

. A
ß

m
an

n,
 S

of
tw

a r
e

te
ch

no
lo

g
i e

 II

11

DFD-Modeling

Symbole (Balzert/UML):

name
nr.

Process (Activity) Data flow channel
(also bidirectional)

(name)

Terminator
(Quelle/Senke) name

Store
(file, repository,
Speicher)

name

► Reducible (hierarchic) nets of processes linked by channels (streams, pipes)
. Context diagram: top-level, with terminators
. Parent diagrams, in which processes are point-wise refined
. Child diagrams are refined processes
. Refinement can be syntactic or semantic

► Data dictionary contains types for the data on the channels
► Mini-specs (Minispezifikationendienen) specify the atomic processes and

their transformationen
■ with Pseudocode or other high-level langauges

name
nr.

name

P
ro

f.
 U

. A
ß

m
an

n,
 S

of
tw

a r
e

te
ch

no
lo

g
i e

 II

12

Ex.: DFD "treat_Patient"

unter-
suchen
_Patient

1.33

schreiben
_Unterlagen

1.34

TerminePatient

Beschwerden

Warteliste

► UML uses ovals for activities; SA uses circles

empfangen
_Patient

1.31Patient

aufrufen
_Patient

1.32

P
ro

f.
 U

. A
ß

m
an

n,
 S

of
tw

a r
e

te
ch

no
lo

g
i e

 II

13

Action Trees and DFDs

 Action trees can be derived from function trees
 DFD are homomorphic to Action trees, but add stores and streams

 RepresentationChange: Construct an action tree and transform it to the
processes of a DFD

produce
tea

put tea
in TeaPot

add
 boiling
water

wait

composition

produce tea

store/file

action

fetch
tea from
tea box

open
TeaPot

close
TeaPot

put tea
in TeaPot

wait

add
 boiling

water

TeaPot

Cup

P
ro

f.
 U

. A
ß

m
an

n,
 S

of
tw

a r
e

te
ch

no
lo

g
i e

 II

14

Pointwise Refinement of Actions

 Subtrees in the function tree lead to reducible subgraphs in the DFD
 UML action trees can be formed from activities and aggregation

 Activity diagrams can specify dataflow
 UML 2.0 offers reducible activity diagrams

Fetch tea
from
tea box

Open
TeaPot

Close
TeaPot

put tea
in TeaPot

TeaPot

put tea
in TeaPot

TeaPot

put tea
in TeaPot

open
TeaPot

TeaPot

close
TeaPot

fetch
tea from
tea box

P
ro

f.
 U

. A
ß

m
an

n,
 S

of
tw

a r
e

te
ch

no
lo

g
i e

 II

15

Typing Edges with Types from the Data
Dictionary

 In an SA, the data dictionary collects data types describing the
context free structure of the data flowing over the edges

• Grammar: For every edge in the DFDs, the context-free grammar
contains a non-terminal that describes the flowing data items

• UML class diagram: classes describe the data items

 Grammars are written in Extended Backus-Naur Form (EBNF)
with the following rules:

Notation Meaning Example

 ::= or = Consists of A ::= B.

Sequence + Concatenation A ::= B+C.

Sequence <blank> Concatenation A ::= B C.

Selection I or [|] Alternative A ::= [B | C].

Repetition { }^n A ::= { B }^n.

Limited repetition m { } n Repetition from m to n A ::= 1{ B }10.

Option () Optional part A ::= B (C).

P
ro

f.
 U

. A
ß

m
an

n,
 S

of
tw

a r
e

te
ch

no
lo

g
i e

 II

16

Example Grammar in Data Dictionary

DataInPot ::= TeaPortion WaterPortion.
TeaAutomatonData ::= Tea | Water | TeaDrink.
Tea ::= BlackTea | FruitTea | GreenTea.
TeaPortion ::= { SpoonOfTea }.
SpoonOfTea ::= Tea.
WaterPortion ::= { Water }.

► Describes types for channels

P
ro

f.
 U

. A
ß

m
an

n,
 S

of
tw

a r
e

te
ch

no
lo

g
i e

 II

17

Adding Types to DFDs

 Nonterminals from the data dictionary become types on flow edges

 Alternatively, classes from a UML class diagram can be annotated

Tea

TeaDrink

Fetch tea
from
tea box

Open
TeaPot

Close
TeaPot

put tea
in TeaPot

TeaPot

TeaPot

Water

P
ro

f.
 U

. A
ß

m
an

n,
 S

of
tw

a r
e

te
ch

no
lo

g
i e

 II

18

Minispecs in Pseudocode

 Minispecs describes the processes in the nodes of the DFD in
pseudo code. They describe the data transformation of every
process

 Here: specification of the minispec attachment process:

procedure: AddMinispecsToDFDNodes
target.bubble := select DFD node;
do while target-bubble needs refinement

if target.bubble is multi-functional
then decompose as required;
 select new target.bubble;

 add pseudocode to target.bubble;
else no further refinement needed

endif
enddo

end

procedure: AddMinispecsToDFDNodes
target.bubble := select DFD node;
do while target-bubble needs refinement

if target.bubble is multi-functional
then decompose as required;
 select new target.bubble;

 add pseudocode to target.bubble;
else no further refinement needed

endif
enddo

end

P
ro

f.
 U

. A
ß

m
an

n,
 S

of
tw

a r
e

te
ch

no
lo

g
i e

 II

19

Good Languages for Pseudocode

 SETL (Schwartz, New York University)
 Dynamic sets, mappings, Iterators
■ http://en.wikipedia.org/wiki/SETL
■ http://randoom.org/Software/SetlX

 PIKE (pike.ida.liu.se)
 Dynamic arrays, sets, relations, mappings

 Iterators

 ELAN (Koster, GMD Berlin)
 Natural language as identifiers of procedures
■ http://en.wikipedia.org/wiki/ELAN_(programming_language)
■ One of the sources of our TUD OS L4:

http://os.inf.tu-dresden.de/L4/l3elan.html

 Smalltalk (Goldberg et al., Parc)

 Attempto Controlled English (ACE, Prof. Fuchs, Zurich)
 A restricted form of English, easy to parse

Prof. U. Aßmann Action Oriented Design

http://en.wikipedia.org/wiki/SETL
http://randoom.org/Software/SetlX
http://en.wikipedia.org/wiki/ELAN_(programming_language
http://os.inf.tu-dresden.de/L4/l3elan.html

P
ro

f.
 U

. A
ß

m
an

n,
 S

of
tw

a r
e

te
ch

no
lo

g
i e

 II

20

Structured Analysis and Design (SA/SD) -
Heuristics

► Consistency checks
■ Isomorphism rule between diagrams (e.g., between function trees

and DFD)
■ Corrections necessary in case of structure clash between input and

output formats

► Verification
■ Point-wise refinement can be proven to be correct by bisimulations of

the original and refined net

► Advantage of SA
■ Hierarchical refinement: The actions in the DFD can be refined, I.e.,

the DFD is a reducible graph
■ SA leads to a hierarchical design (a component-based system)

Prof. U. Aßmann Action Oriented Design

P
ro

f.
 U

. A
ß

m
an

n,
 S

of
tw

a r
e

te
ch

no
lo

g
i e

 II

21

Difference to Functional and Modular Design

► SA focusses on actions (parallel activities, processes), not
functions

■ Describe the data-flow through a system
■ Describe stream-based systems with pipe-and-filter architectures

► Actions are parallel processes
■ SA and SADT can easily describe parallel systems

► Function trees are interpreted as action trees (process trees) that
treat streams of data

Prof. U. Aßmann Action Oriented Design

P
ro

f.
 U

. A
ß

m
an

n,
 S

of
tw

a r
e

te
ch

no
lo

g
i e

 II

22

Implementation Hints

► Channels: implement with Design Pattern Channel (ST-1)
► If actions should be undone (in interactive editing), or replayed,

they can be encapsulated into Command objects (see design
patterns Command, Memento and Interpreter)

► If actions work on a data structure, design pattern Visitor allows
for extensible action command objects

P
ro

f.
 U

. A
ß

m
an

n,
 S

of
tw

a r
e

te
ch

no
lo

g
i e

 II

23

Result: Data-Flow-Based Architectural Style

► SA/SD design leads to dataflow-based architectural style
► Processes exchanging streams of data
► Data flow forward through the system
► Components are called filters, connections are pipes (channels,

streams)

Prof. U. Aßmann Action Oriented Design

Filter

Filter

Filter

System pipe

pipe

P
ro

f.
 U

. A
ß

m
an

n,
 S

of
tw

a r
e

te
ch

no
lo

g
i e

 II

24

Application Areas are Manifold

► Shell programming with pipes-and-filters
■ zsh
■ Microsoft Powershell

► Image processing systems
■ Image operators are filters in image data-flow diagrams

► Signal processing systems (DSP-based embedded systems)
■ The satellite radio
■ Video processing systems
■ Car control
■ Process systems (powerplants, production control, …)

► Content management systems (CMS)
■ Content data is piped through XML operators until a html page is

produced

► Stream-based business workflows for data-intensive business
applications

25

Softwaretechnologie II, © Prof. Uwe Aßmann

23.3 Workflow Nets

P
ro

f.
 U

. A
ß

m
an

n,
 S

of
tw

a r
e

te
ch

no
lo

g
i e

 II

26

Readings

► W.M.P. van der Aalst and A.H.M. ter Hofstede. Verification of
workflow task structures: A petri-net-based approach. Information
Systems, 25(1): 43-69, 2000.

► P.D. Bruza, Th. P. van der Weide. The Semantics of Data-Flow
Diagrams. Int. Conf. on the Management of Data. 1989

■ http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.9398

► Matthias Weske. Business Process Modeling. Springer-Verlag.

http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.9398

P
ro

f.
 U

. A
ß

m
an

n,
 S

of
tw

a r
e

te
ch

no
lo

g
i e

 II

27

Workflow Nets

► In general, workflows are executable sequences of actions,
sharing data from several repositories or communicating with
streams.

► Workflow nets are reducible with single sources and single sinks
(single-entry/single-exit), so that only reducible nets can be
specified

■ They extend DFD with control flow and synchronization
■ They avoid global repositories and global state
■ They provide richer operators (AND, XOR, OR), inhibitor arcs, and

synchronization protocols

► Workflow nets can be compiled to Petri Nets
► Further, specialized workflow languages exist, such as

■ YAWL Yet another workflow language
■ BPMN Business Process Modeling Notation
■ BPEL Business Process Execution Language
■ For checking of wellformedness constraints, they are reduced to PN

P
ro

f.
 U

. A
ß

m
an

n,
 S

of
tw

a r
e

te
ch

no
lo

g
i e

 II

28

Complex Transition Operators in Workflow
Nets: Join and Split Operators of YAWL

 OR

 XOR

 AND AND

XOR

OR

► All incoming places are ready
(conjunctive input, AND-join)

► One out of n incoming places
are ready (disjunctive input)

► Some out of n incoming
places are ready (selective
input)

► All outgoing places are filled
(conjunctive output, AND-split)

► One out of n outgoing places
are filled (disjunctive output)

► Some out of n outgoing places
are filled (selective output)

P
ro

f.
 U

. A
ß

m
an

n,
 S

of
tw

a r
e

te
ch

no
lo

g
i e

 II

29

Inhibitor Arcs

 AND

► An inhibitor arc prevents the firing of an operator or transition

IP IP

A

B

► Transition only fires if inhibiting
place IP is not ready.

► AND-Operator only fires if IP is
not ready.

A

B

P
ro

f.
 U

. A
ß

m
an

n,
 S

of
tw

a r
e

te
ch

no
lo

g
i e

 II

30

4-Tier Web System (Thick Client)

Data Repository Layer (database, memory)

Middleware

Graphical user interface

Application logic
(business logic)

► Workflow specifications are for the application logic layer

<<boundary>>
<<page>>

<<control>>
<<applet>>

<<entity>>
Data access
object (DAO)

<<database>>

Server

Client

http

Workflow

P
ro

f.
 U

. A
ß

m
an

n,
 S

of
tw

a r
e

te
ch

no
lo

g
i e

 II

31

5-Tier with Workflow Language

Data Repository Layer (database, memory)

Graphical user interface

Application logic
(business logic)

► In a Workflow Architectural Style, a workflow in a language
specifies the application architecture

■ All services and underlying components are called by the workflow
■ The workflow is executed by a special workflow engine

<<boundary>>
<<page>>

<<control>>

<<entity>>

<<database>>

Server

Client

Workflow-based Architecture

Services, components

P
ro

f.
 U

. A
ß

m
an

n,
 S

of
tw

a r
e

te
ch

no
lo

g
i e

 II

32

Application logic
(business logic)

5-Tier with Workflow Language and Web
Services

Data Repository Layer (database, memory)

Graphical user interface

Application logic
(business logic)

► Workflows describe the top-level application architecture
■ Services and components are called by the workflow

<<boundary>>
<<page>>

<<control>>

<<entity>>
data access
object (DAO)

<<database>>

Server

Client

Workflow

Web services

SOAP

SOAP

P
ro

f.
 U

. A
ß

m
an

n,
 S

of
tw

a r
e

te
ch

no
lo

g
i e

 II

33

What Have We Learned

► Besides object-oriented design, structured, action-oriented design
is a major design technique

– It will not vanish, but always exist for certain application areas
– If the system will be based on stream processing, action-oriented

design methods are appropriate
– Action-oriented design methods lead to reducible systems

► Don't restrict yourself to object-oriented design
► Workflow languages extend DFD with control flow and can be

compiled to Petri nets
► In a Workflow-Based Architecture, all services are described by

architectural workflows

P
ro

f.
 U

. A
ß

m
an

n,
 S

of
tw

a r
e

te
ch

no
lo

g
i e

 II

34

Appendix
Possible Exam Questions

► Which advantages has the reducibility of the SA DFD
specification?

► Show a refinement of a DFD, starting from a given function tree
► Which relation has a DFD and a CPN?
► How would you implement a DFD specification?
► What is the unique characterization of a workflow-based

architecture?
► How to extend a workflow net?

	23 Action-Oriented Design Methods
	Obligatory Reading
	23.1 Action-Oriented Design
	23.1 Action-oriented Design
	23.2 Action-Oriented Design with SA/SD
	Structured Analysis and Design (SA/SD)
	Folie 7
	Secondary Literature
	Structured Analysis and Design (SA/SD) – The Process
	Folie 10
	DFD- Modellierung
	DFD-Beispiel "behandeln_Patient"
	Function Trees (Action Trees) and DFDs
	Data Flow in UML
	Typing Edges with Types from the Data Dictionary
	Example Data Dictionary
	Adding Types to DFDs
	Minispecs in Pseudo Code
	Good Languages for Pseudocode
	Structured Analysis and Design (SA/SD) - Heuristics
	Difference to Functional and Modular Design
	Folie 22
	Result: Data-Flow-Based Architectural Style
	Examples
	Workflow Nets
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	The End

