
Fakultät Informatik, Institut für Software- und Multimediatechnik, Lehrstuhl für Softwaretechnologie

24) Condition-Action-Analysis and
Event-Condition-Action-Based Design

Prof. Dr. U. Aßmann
Technische Universität Dresden
Institut für Software- und
Multimediatechnik
Gruppe Softwaretechnologie
http://st.inf.tu-dresden.de

Wintersemester 14/15, 10.01.2015

Lecturer: Dr. Sebastian Götz

1. Decision Analysis

2. Ordered BDDs

3. ECA-based Design

http://st.inf.tu-dresden.de
http://st.inf.tu-dresden.de
http://st.inf.tu-dresden.de
http://st.inf.tu-dresden.de
http://st.inf.tu-dresden.de/

Obligatory Reading

► Balzert, Kapitel über Entscheidungstabellen

► Ghezzi 6.3 Decision-table based testing

► Pfleeger 4.4, 5.6

► Red Hat. JBoss Enterprise BRMS Platform 5: JBoss Rules 5
Reference Guide. (lots of examples for ECA Drools)

TU Dresden, Prof. U. Aßmann Decision Analysis 2

Goal

 Decision analysis (Condition analysis) is a very important
method to analyze complex decisions

 Understand that several views on a decision tree exist (tables, BDD,
OBDD)

 Condition-action analysis can also be employed for
requirements analysis

 Understand how to describe the control-flow of methods and
procedures and their actions on the state of a program

 Event-condition-action-based design (ECA-based design)
relies on condition-action analysis

TU Dresden, Prof. U. Aßmann Decision Analysis 3

24.1 DECISION ANALYSIS WITH
DECISION TREES AND TABLES
(CONDITION-ACTION ANALYSIS)

TU Dresden, Prof. U. Aßmann Decision Analysis 4

A House-Selling Expert System

 Ok, I do not like bungalows, but my wife does not like that the car
stands in free space in winter. Hmm... I rather would like to have
the half double house... But we need anyway 2 floors, because I
need this space for my hobbies. My wife also would like a garden….

► How does the system analyze the customers requirements and
derive appropriate proposals?

TU Dresden, Prof. U. Aßmann Decision Analysis 5

Decision Analysis (Condition-Action Analysis)

 Decision analysis is necessary when complex, intertwined decisions
should be made

• In requirements analysis and elicitation

• In complex business cases, described with business rules

• In testing, for specification of complex test cases

 Decision analysis can be made in a decision algebra

• Boolean functions and their representations:

 Truth tables, decision trees, BDD, OBDD

 Decision tables

• Lattice theory, such as formal concept analysis (FCA) (not treated here)

 Decision trees and tables collect actions based on conditions

 Condition action analysis is a decision analysis that results in actions

 A simple form of event-condition-action (ECA) rules

 However, without events, only conditions

TU Dresden, Prof. U. Aßmann Decision Analysis

Which conditions provoke which actions?

6

Decision Trees

 Decisions can be analyzed with a decision tree, a simple form of a
decision algebra

 A trie (Präfixbaum) is a tree which has an edge marking

 Every path in the trie assembles a word from a language of the marking

 A trie on lB = {0,1} is called decision tree

 Paths denote sequences of decisions (a set of vectors over lB). A path
corresponds to a vector over lB

 A set of actions, each for one sequence of decisions

 Sequences of decisions can be represented in a path in the decision tree

TU Dresden, Prof. U. Aßmann Decision Analysis

0

000 001

01 10 11

1

00

0 1

1 1

1

0

0

0



A1 A2

A3 A4 A5

7

Decision Trees with Code Actions

► The action may be code

► The inner nodes of same tree layer correspond to a condition E[i]

► Then, a Trie is isomorphic to an If-then-else cascade

TU Dresden, Prof. U. Aßmann Decision Analysis

0

000 001

01 10 11

1

00

0 1

1 1

1

0

0

0



A1 A2

A3 A4 A5

E0

E1

E2

E3

8

if (E0) then // case E0 === true

 if (E1) then

 if(E2) then A5

 else A4

else // case E0 === false

 if (E1) then

 if(E2) then A3

 else

 if(E3) then A2

 else A1

Decision Tables

► An alternative representation of decision trees are decision
tables

► Conditions and actions can be entered in a table

TU Dresden, Prof. U. Aßmann Decision Analysis

0

01 10 11

1

00

0 1

1 1 0 0



A1 A2 A1 A2

E0

E1

Condition E0 yes yes no no

Condition E1 yes no yes no

Action A1 X X

Action A2 X X

Multiple choice

quadrant

Boolean

cross product

9

Process: How to Construct A Decision Table

1) Elaborate decisions

2) Elaborate actions

3) Enter into table

4) Elaborate: Construct a cross boolean product as upper right
quadrant (set of boolean vectors)

5) Elaborate: Construct a multiple choice quadrant (lower right) by
associating actions to boolean vectors

6) Consolidate

■ Coalesce yes/no to “doesn’t matter”

■ Introduce Else rule

TU Dresden, Prof. U. Aßmann Decision Analysis 10

Applications of Decision Tables and Trees

 Requirements analysis:

• Deciding (decision analysis, case analysis)

• Complex case distinctions (more than 2 decisions)

 Design:

• Describing the behavior of methods

• Describing business rules

 Before programming if-cascades, better make first a nice decision tree or
table

 Formal design methods

 CASE tools can generate code automatically

 Configuration management of product families:

 Decisions correspond here to configuration variants

 Processor=i486?

 System=linux?

 Same application as #ifdefs in C preprocessor

TU Dresden, Prof. U. Aßmann Decision Analysis 11

24.2 NORMALIZING
CONTROL FLOW WITH
NORMALIZED BDD

TU Dresden, Prof. U. Aßmann Decision Analysis 12

Truth Tables

► With action = {true, false}, boolean decision tables are truth tables

TU Dresden, Prof. U. Aßmann Decision Analysis

E0 E1 F

Yes Yes 0

Yes No 1

No Yes 0

No No 1

Condition E0 Yes Yes No No

Condition E1 Yes No Yes No

Value of F = 0 X X

Value of F = 1 X X

13

BDDs (Binary Decision Diagrams)

► BDD are dags that result by merging the same subtrees of a
decision tree into one (common subtree elimination)

TU Dresden, Prof. U. Aßmann Decision Analysis

0

000 001

01 10 11

1

00

0 1

1 1

1

0

0

0



A1 A2 A3

E0

E1

E2

E3

14

BDDs (Binary Decision Diagrams)

► If the action is just a boolean value boolean functions f: lBn --> lB
can be represented

► The decisions E[i] are regarded as boolean variables

TU Dresden, Prof. U. Aßmann Decision Analysis

0

000 001

01 10 11

1

00

0 1

1 1

1

0

0

0



0 1

E0

E1

E2

E3

15

OBDDs (Ordered Binary Decision Diagrams)

 Problem: for one boolean function there are many BDD

 Idea: introduce a standardized order for the variables

 Result: orderd binary decision diagrams

 In all OBDD holds

 for all children u of parents v ord(u) > ord(v).

 For one order of variables there is one normal form OBDD
(canonical OBDD)

 Leads to an efficient BDD-based comparison algorithm of
boolean functions:

compareBooleanFunction() = {

Fix variable order for two BDD

Transform both BDD into OBDD

Compare both OBDD syntactically

}

TU Dresden, Prof. U. Aßmann Decision Analysis 16

Complex BDD

TU Dresden, Prof. U. Aßmann Decision Analysis 17

The Influence of Variable Ordering

TU Dresden, Prof. U. Aßmann Decision Analysis 18

If-cascades, BDD and OBDD

if A then

 if B then

 if C then true else false

 else

 if C then false else true

else

 if B then

 if C then false else true

 else

 if C then true else false

TU Dresden, Prof. U. Aßmann Decision Analysis

B

C C C

B

C

0 1

1 1

1

0

0

0

A

0 1

A

B

C

0

1
0 1 1 0

1 0

B

C C

B

0 1

1 1
0 0

A

0 1

A

B

C
1 1

0 0

Variable order is [A,B,C]

19

Normalizing Wild Procedures: Normalized If-Structures with OBDD

 There is only one canonical OBDD for one order

 Develop normalized and factorized if-structures with it:
1. Elaborate arbitrary decision tree

2. Choose a variable order

3. Transform to OBDD

4. Transform to If structure

5. Factor out common subtrees by subprograms

TU Dresden, Prof. U. Aßmann Decision Analysis 20

Acyclic control flow can be represented canonically by an OBDD

Applications

 Reengineering

 Structuring of legacy procedures: read in control-flow; construct
control-flow graph

 Produce a canonical OBDD for all acyclic parts of control-flow graph

 Pretty-print again

 Or: produce a statechart

 Configuration management

 Development of canonical versions of C preprocessor nestings

 Help to master large systems

TU Dresden, Prof. U. Aßmann Decision Analysis 21

24.3 EVENT-CONDITION-
ACTION BASED DESIGN
(ECA)

TU Dresden, Prof. U. Aßmann Decision Analysis 22

Event-Condition-Action Design

 Decision analysis is invoked when events occur

 Event-condition-action (ECA) based design uses

• ECA rules with condition-action analysis

• Complex event processing (CEP) for recognition of complex events

TU Dresden, Prof. U. Aßmann Decision Analysis

Given some (complex) events, which conditions provoke which actions?

23

ECA with State-Based Specifications

► An event-condition-action
(ECA) system listens on
channel(s) for events,
analyses a condition, and
executes an action

■ Statecharts (see course ST)

■ Petri Nets (see corr.
Chapter)

■ ECA rules (Drools)

■ Condition analysis can
be done by BDD

■ Process:

■ Collect all ECA rules

■ Collect all states

■ Link states with ECA rules as
transitions

TU Dresden, Prof. U. Aßmann Decision Analysis

Tür

abgesperrt

verriegeln/
amp.rotesLicht

An()

entriegeln/
amp.grünesLi

chtAn()

geschlossen

schließen/
amp.gelbesLic

htAn()

öffnen()/
- öffnen(),

verriegeln()
,

entriegeln()
/
-

öffnen,
schließen

,
verriegeln

/
-

entriegeln(),
schließen()/

beep()

offen

öffnen()
schließen()
verriegeln()
entriegeln()

<<Steuerungsmachine>>

24

ECA with Petri Nets

► In a Petri Net, an event-generating channel is a transition with
fan-in=0

► Listening to the events, the Petri Net can do condition-action
analysis

TU Dresden, Prof. U. Aßmann

Decision Analysis

Tür

öffnen()
schließen()
verriegeln()
entriegeln()

<<Steuerungsmachine>>

25

Schließknopf

drücken offe

n

Öffne-Knopf

drücken

öffnen(),
verriegeln(),
entriegeln()

geschl

ossen

öffnen()

schließen

entriegeln(),
schließen()

Schließknopf drücken
Öffne-Knopf drücken

■ Process:

■ Collect all ECA
rules

■ Collect all states

■ Link states with
ECA rules as
subnets reacting
on event-
generating
channels

ECA-based Blackboard Style

 The ECA-blackboard has two repositories: a fact/object base and a
rule base

 The rule base is an active repository (i.e., an active component)
that coordinates all other components

 It investigates the state of the repository. If an event has occured by
entering something in the repository (modify), components are
fired/triggered to work on or modify the repository

TU Dresden, Prof. U. Aßmann Development

C1
C3 C2

C4

Fire/trigger

26

Rule base
Repository

(fact base,

object base)

modify

JBOSS ECA Rule Engine

 Drools (.drl-files) is an active repository with ECA rule processing

 Ex. Fire Alarm Rules [JRules]:

TU Dresden, Prof. U. Aßmann Decision Analysis 27

rule "Status output when things are ok"

when

 not Alarm()

 not Sprinkler(on == true)

then

 System.out.println("Everything is ok");

end

rule "Raise the alarm when we have one or more fires"

when

 exists Fire() // tests whether a Fire object exists

then

 insert(new Alarm());

 System.out.println("Raise the alarm");

end

Ex. Fire Alarm

 Create a blackboard and fill the object base

TU Dresden, Prof. U. Aßmann Decision Analysis 28

// make a new blackboard

KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();

// add a .drl-file to the rule base

kbuilder.add(ResourceFactory.newClassPathResource("fireAlarm.drl",

 getClass()), ResourceType.DRL);

if (kbuilder.hasErrors())

 System.err.println(kbuilder.getErrors().toString());

// open a session with the blackboard

StatefulKnowledgeSession ksession = kbase.newStatefulKnowledgeSession();

// allocate objects in the object/fact base

String[] names = new String[]{"kitchen","bedroom","office","livingroom"};

Map<String,Room> name2room = new HashMap<String,Room>();

for(String name: names) {

 Room room = new Room(name); name2room.put(name, room);

 ksession.insert(room);

 Sprinkler sprinkler = new Sprinkler(room); ksession.insert(sprinkler);

}

ksession.fireAllRules();

// output>> ”Everything is ok”

 Raise fire by inserting a Fire object into the object base

TU Dresden, Prof. U. Aßmann Decision Analysis 29

Fire kitchenFire = new Fire(name2room.get("kitchen"));

Fire officeFire = new Fire(name2room.get("office"));

// insert into the session

FactHandle kitchenFireHandle = ksession.insert(kitchenFire);

FactHandle officeFireHandle = ksession.insert(officeFire);

// investigate:

ksession.fireAllRules();

// output>> “Raise the alarm"

Other Application Areas

 Event-based Web systems (AJAX systems)

• Scripts in Javascript react on user-triggered events on the client side

• Server actions are called

 Interactive Systems

• Event-reaction tables record event-condition-action rules

TU Dresden, Prof. U. Aßmann Decision Analysis 30

Extensibility of ECA Rule Systems

 Extensibility means to add more ECA rules

 Rules are open constructs

 Problem: new rules should be conflict-free with the old rules

 Harmless extension is usually not provable

 In general, contracts of the old system cannot be retained

TU Dresden, Prof. U. Aßmann Decision Analysis

ECA-Systems are extensible, but harmlessness of

extensions is hard to prove

31

The End: What Have We Learned

► Decision analysis (Condition-Action analysis) is an important
analysis

■ to describe requirements,

■ to describe complex behavior of a procedure

■ Decision analysis must be encoded in a decision algebra

► Boolean functions, decision trees, relations, graphs, automata can be
encoded in OBDD

► The control-flow of a procedure can be normalized with a BDD and OBDD

► Conditions in large state spaces can be encoded in OBDD and efficiently
checked

► ECA-based design reacts on events and conditions with actions

TU Dresden, Prof. U. Aßmann Decision Analysis 32

