TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik, Institut fir Software- und Multimediatechnik, Lehrstuhl fiir Softwaretechnologie

24) Condition-Action-Analysis and
Event-Condition-Action-Based Design

Prof. Dr. U. ABmann
Technische Universitat Dresden
Institut fur Software- und

Multimediatechnik 1. Decision Analysis
Gruppe Softwaretechnologie 2. Ordered BDDs
http://st.inf.tu-dresden.de 3. ECA-based Design

Wintersemester 14/15, 10.01.2015

Lecturer: Dr. Sebastian Gotz

http://st.inf.tu-dresden.de
http://st.inf.tu-dresden.de
http://st.inf.tu-dresden.de
http://st.inf.tu-dresden.de
http://st.inf.tu-dresden.de/

@ Obligatory Reading

» Balzert, Kapitel Uber Entscheidungstabellen
» Ghezzi 6.3 Decision-table based testing
» Pfleeger 4.4, 5.6

» Red Hat. JBoss Enterprise BRMS Platform 5: JBoss Rules 5
Reference Guide. (lots of examples for ECA Drools)

Eij:) Goal

> Decision analysis (Condition analysis) is a very important
method to analyze complex decisions

» Understand that several views on a decision tree exist (tables, BDD,
OBDD)
» Condition-action analysis can also be employed for
requirements analysis

» Understand how to describe the control-flow of methods and
procedures and their actions on the state of a program

» Event-condition-action-based design (ECA-based design)
relies on condition-action analysis

24.1 DECISION ANALYSIS WITH
DECISION TREES AND TABLES
(CONDITION-ACTION ANALYSIS)

) e

@ A House-Selling Expert System

» Ok, I do not like bungalows, but my wife does not like that the car
stands in free space in winter. Hmm... I rather would like to have
the half double house... But we need anyway 2 floors, because I
need this space for my hobbies. My wife also would like a garden....

» How does the system analyze the customers requirements and
derive appropriate proposals?

@ Decision Analysis (Condition-Action Analysis)

» Decision analysis is necessary when complex, intertwined decisions
should be made

e In requirements analysis and elicitation
e In complex business cases, described with business rules
e In testing, for specification of complex test cases

» Decision analysis can be made in a decision algebra

e Boolean functions and their representations:
= Truth tables, decision trees, BDD, OBDD
= Decision tables

e |attice theory, such as formal concept analysis (FCA) (not treated here)
» Decision trees and tables collect actions based on conditions

» Condition action analysis is a decision analysis that results in actions
» A simple form of event-condition-action (ECA) rules
» However, without events, only conditions

Which conditions provoke which actions?

él) Decision Trees

» Decisions can be analyzed with a decision tree, a simple form of a

decision algebra

» A trie (Prafixbaum) is a tree which has an edge marking
» Every path in the trie assembles a word from a language of the marking

» A trieon IB = {0,1} is called decision tree
» Paths denote sequences of decisions (a set of vectors over IB). A path
corresponds to a vector over IB
» A set of actions, each for one sequence of decisions
» Sequences of decisions can be represented in a path in the decision tree

O

» The action may be code

Decision Trees with Code Actions

» The inner nodes of same tree layer correspond to a condition EJi]
» Then, a Trie is isomorphic to an If-then-else cascade

if (EO) then // case E0 === true
if (E1)
if (E2) A5
else A4
else // case E0 === false
if (E1)
if (E2) A3
else
A2
else Al

e EO

--------------- 0// \1\

0 1 El

________ 0 \\;L(V\{

00 01 10 n | B2

__WZ_____\\:L_ _______________________________________

— — A3 A4 A5 o
Al A2

O

» An alternative representation of decision trees are decision

>

Decision Tables

tables
Conditions an_c_I actions can be entered in a table Boolean
Condition EO yes yes no no ____— cross product
Condition E1 yes no yes no
Action Al X X —— Multiple choice
. quadrant
Action A2 X X
EO
__________________{)__/ ____________ S
0 1 E1l
--------- y\\le//\{
00 01 10 11
"""" AL A2 AT A2

@ Process: How to Construct A Decision Table

1) Elaborate decisions
2) Elaborate actions
3) Enter into table

4) Elaborate: Construct a cross boolean product as upper right
quadrant (set of boolean vectors)

5) Elaborate: Construct a multiple choice quadrant (lower right) by
associating actions to boolean vectors

6) Consolidate
Coalesce yes/no to “doesn’t matter”
Introduce Else rule

@ Applications of Decision Tables and Trees

» Requirements analysis:

e Deciding (decision analysis, case analysis)

e Complex case distinctions (more than 2 decisions)
» Design:

e Describing the behavior of methods

e Describing business rules

» Before programming if-cascades, better make first a nice decision tree or
table

» Formal design methods
» CASE tools can generate code automatically

» Configuration management of product families:
» Decisions correspond here to configuration variants
» Processor=i4867
» System=linux?
» Same application as #ifdefs in C preprocessor

24.2 NORMALIZING
CONTROL FLOW WITH
NORMALIZED BDD

@ Truth Tables

>

With action = {true, false}, boolean decision tables are truth tables

Condition E1 Yes

Value of F=0 X X

Value of F = 1 X X

EO Bl F
Yes Yes 0

Yes No 1

No Yes 0

No No 1

@ BDDs (Binary Decision Diagrams)

>

BDD are dags that result by merging the same subtrees of a
decision tree into one (common subtree elimination)

@ BDDs (Binary Decision Diagrams)

» If the action is just a boolean value boolean functions f: IB" --> IB
can be represented

» The decisions E[i] are regarded as boolean variables

@ OBDDs (Ordered Binary Decision Diagrams)

» Problem: for one boolean function there are many BDD
» Idea: introduce a standardized order for the variables
» Result: orderd binary decision diagrams

» In all OBDD holds
» for all children u of parents v ord(u) > ord(v).

» For one order of variables there is one normal form OBDD
(canonical OBDD)

» Leads to an efficient BDD-based comparison algorithm of
boolean functions:

compareBooleanFunction () = {
Fix variable order for two BDD
Transform both BDD into OBDD
Compare both OBDD syntactically

Complex BDD

@ The Influence of Variable Ordering

@ If-cascades, BDD and OBDD

if A then
if B then
if C then true else false
else
if C then false else true
else

if B then

if C then false else true

A
else 0.7 1
A
if C then true else false =~ ---------ooortormmmmmooee \ ------------- 5
0 - L 1 I?O
Variable order is [A,B,C] 0 1

i) Normalizing Wild Procedures: Normalized If-Structures with OBDD

» There is only one canonical OBDD for one order

» Develop normalized and factorized if-structures with it:
Elaborate arbitrary decision tree

Choose a variable order

. Transform to OBDD

Transform to If structure

Factor out common subtrees by subprograms

nhwhE

Acyclic control flow can be represented canonically by an OBDD

@ Applications

» Reengineering

» Structuring of legacy procedures: read in control-flow; construct
control-flow graph

» Produce a canonical OBDD for all acyclic parts of control-flow graph
» Pretty-print again
» Or: produce a statechart
» Configuration management
» Development of canonical versions of C preprocessor nestings
» Help to master large systems

24.3 EVENT-CONDITION-
ACTION BASED DESIGN
(ECA)

@ Event-Condition-Action Design

» Decision analysis is invoked when events occur

» Event-condition-action (ECA) based design uses
e ECA rules with condition-action analysis
e Complex event processing (CEP) for recognition of complex events

Given some (complex) events, which conditions provoke which actions?

O

» An event-condition-action

(ECA) system listens on
channel(s) for events,

analyses a condition, and

executes an action

ECA with State-Based Specifications

Tar

offnen()
schlieBen()

Statecharts (see course ST) verriegeln()

Cl¢s

Petri Nets (see corr.
Chapter)

ECA rules (Drools)

Condition analysis can
be done by BDD

Process:

Collect all ECA rules
Collect all states

Link states with ECA rules as

transitions

entriegeln()

entriegeln(),
schlieRen()/
beepO

<<Steuerungsmachine>>

geschlossen

verriegeln/
amp.rotesLicht
An()

[l abgesperrt

entriegeln/
amp.grinesLi
\ ~ chtAn()
offnen,

offn en()/ ‘. schlief3en

offnen() schllelféen/ . K
verriegeln() amphgzngsuc verm/ageln

entrleg eln)

offen l)

In a Petri Net, an event-generating channel is a transition with

fan-in=0
Listening to the events, the Petri Net can do condition-action

>

>

analysis

« Process:

Collect all ECA
rules

Collect all states

Link states with
ECA rules as

subnets reacting

on event-
generating
channels

ECA with Petri Nets

offnen()

schlie3en()
verriegeln()
entriegeln()

SchlieBknopf driicken
Offne-Knopf driicken

Offne-Knopf
driicken

entriegeln(),
schlieen()

offnen(),
verriegeln(),
entriegeln()

/\ geschl

ossen

\

<<Steuerungsmachine>>

schliel3en

Schlieknopf
driicken

O

ECA-based Blackboard Style

» The ECA-blackboard has two repositories: a fact/object base and a

rule base

» The rule base is an active repository (i.e., an active component)
that coordinates all other components

» It investigates the state of the repository. If an event has occured by
entering something in the repository (modify), components are
fired/triggered to work on or modify the repository

modify"

c
/

Fireltrigger

. Z

/
/
/-
Repository] /
(fact base, J / Rule bgse
object base) /

]

/

el) JBOSS ECA Rule Engine

» Drools (.drl-files) is an active repository with ECA rule processing
» EX. Fire Alarm Rules [JRules]:

rule "Status output when things are ok"
when

not Alarm()

not Sprinkler(on == true)
then

System.out.println("Everything is ok");
end

rule "Raise the alarm when we have one or more fires"
when

exists Fire() // tests whether a Fire object exists
then

insert(new Alarm());

System.out.println("Raise the alarm") ;
end

Ex. Fire Alarm

» Create a blackboard and fill the object base

// make a new blackboard

KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder() ;

// add a .drl-file to the rule base

kbuilder.add(ResourceFactory.newClassPathResource("fireAlarm.drl",
getClass()), ResourceType.DRL) ;

if (kbuilder.hasErrors())

System.err.println(kbuilder.getErrors () .toString())
// open a session with the blackboard
StatefulKnowledgeSession ksession = kbase.newStatefulKnowledgeSession() ;

// allocate objects in the object/fact base
String[] names = new String[] {"kitchen", "bedroom",6 "office","livingroom"};
Map<String,Room> name2room = new HashMap<String,Room> () ;
for(String name: names) ({
Room room = new Room(name); name2room.put(name, room) ;
ksession.insert(room) ;
Sprinkler sprinkler = new Sprinkler(room); ksession.insert(sprinkler);

}

ksession.fireAllRules () ;

// output>> ”“Everything is ok”

> Raise fire by inserting a Fire object into the object base

Fire kitchenFire = new Fire(name2room.get("kitchen"));
Fire officeFire = new Fire(name2room.get("office"));

// insert into the session
FactHandle kitchenFireHandle = ksession.insert(kitchenFire) ;
FactHandle officeFireHandle = ksession.insert(officeFire);

// investigate:
ksession.fireAllRules () ;

[// output>> “Raise the alarm" }

@ Other Application Areas

» Event-based Web systems (AJAX systems)
e Scripts in Javascript react on user-triggered events on the client side
e Server actions are called

» Interactive Systems
e Event-reaction tables record event-condition-action rules

@ Extensibility of ECA Rule Systems

» Extensibility means to add more ECA rules

» Rules are open constructs

» Problem: new rules should be conflict-free with the old rules
» Harmless extension is usually not provable

» In general, contracts of the old system cannot be retained

ECA-Systems are extensible, but harmlessness of
extensions is hard to prove

@ The End: What Have We Learned

» Decision analysis (Condition-Action analysis) is an important
analysis

- to describe requirements,

= to describe complex behavior of a procedure

Decision analysis must be encoded in a decision algebra

» Boolean functions, decision trees, relations, graphs, automata can be

encoded in OBDD
The control-flow of a procedure can be normalized with a BDD and OBDD

Conditions in large state spaces can be encoded in OBDD and efficiently
checked
» ECA-based design reacts on events and conditions with actions

