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Obligatory Reading 

► Balzert, Kapitel über Entscheidungstabellen 

► Ghezzi 6.3 Decision-table based testing 

► Pfleeger 4.4, 5.6 

 

► Red Hat. JBoss Enterprise BRMS Platform 5: JBoss Rules 5 
Reference Guide. (lots of examples for ECA Drools) 
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Goal 

 Decision analysis (Condition analysis) is a very important 
method to analyze complex decisions 

 Understand that several views on a decision tree exist (tables, BDD, 
OBDD) 

 Condition-action analysis can also be employed for 
requirements analysis 

 Understand how to describe the control-flow of methods and 
procedures and their actions on the state of a program 

 Event-condition-action-based design (ECA-based design) 
relies on condition-action analysis 
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24.1 DECISION ANALYSIS WITH 
DECISION TREES AND TABLES  
(CONDITION-ACTION ANALYSIS) 
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A House-Selling Expert System 

 Ok, I do not like bungalows, but my wife does not like that the car 
stands in free space in winter. Hmm... I rather would like to have 
the half double house... But we need anyway 2 floors, because I 
need this space for my hobbies. My wife also would like a garden…. 
 

 

► How does the system analyze the customers requirements and 
derive appropriate proposals? 
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Decision Analysis (Condition-Action Analysis) 

 Decision analysis is necessary when complex, intertwined decisions 
should be made  

• In requirements analysis and elicitation 

• In complex business cases, described with business rules 

• In testing, for specification of complex test cases 

 Decision analysis can be made in a decision algebra 

• Boolean functions and their representations:  

 Truth tables, decision trees, BDD, OBDD 

 Decision tables 

• Lattice theory, such as formal concept analysis (FCA) (not treated here) 

 Decision trees and tables collect actions based on conditions 

 Condition action analysis is a decision analysis that results in actions 

 A simple form of event-condition-action (ECA) rules 

 However, without events, only conditions 
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Which conditions provoke which actions? 
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Decision Trees 

 Decisions can be analyzed with a decision tree, a simple form of a 
decision algebra 

 A trie (Präfixbaum) is a tree which has an edge marking  

 Every path in the trie assembles a word from a language of the marking  

 A trie on lB = {0,1} is called decision tree 

 Paths denote sequences of decisions (a set of vectors over lB). A path 
corresponds to a vector over lB 

 A set of actions, each for one sequence of decisions 

 Sequences of decisions can be represented in a path in the decision tree 
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Decision Trees with Code Actions 

► The action may be code 

► The inner nodes of same tree layer correspond to a condition E[i]  

► Then, a Trie is isomorphic to an If-then-else cascade 
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if (E0) then // case E0 === true 

  if (E1) then 

      if(E2) then    A5 

      else           A4 

else         // case E0 === false 

  if (E1) then 

      if(E2) then    A3 

      else  

          if(E3) then  A2 

          else   A1 



    

Decision Tables 

► An alternative representation of decision trees are decision 
tables 

► Conditions and actions can be entered in a table 
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Process: How to Construct A Decision Table 

1) Elaborate decisions 

2) Elaborate actions 

3) Enter into table 

4) Elaborate: Construct a cross boolean product as upper right 
quadrant (set of boolean vectors) 

5) Elaborate: Construct a multiple choice quadrant (lower right) by 
associating actions to boolean vectors 

6) Consolidate 

■ Coalesce yes/no to “doesn’t matter” 

■ Introduce Else rule 

TU Dresden, Prof. U. Aßmann Decision Analysis 10 



    

Applications of Decision Tables and Trees 

 Requirements analysis: 

• Deciding (decision analysis, case analysis) 

• Complex case distinctions (more than 2 decisions) 

 Design: 

• Describing the behavior of methods 

• Describing business rules 

 Before programming if-cascades, better make first a nice decision tree or 
table 

 Formal design methods 

 CASE tools can generate code automatically 

 Configuration management of product families: 

 Decisions correspond here to configuration variants 

 Processor=i486? 

 System=linux? 

 Same application as #ifdefs in C preprocessor 
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24.2 NORMALIZING 
CONTROL FLOW WITH 
NORMALIZED BDD 
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Truth Tables 

► With action = {true, false}, boolean decision tables are truth tables  
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BDDs (Binary Decision Diagrams) 

► BDD are dags that result by merging the same subtrees of a 
decision tree into one (common subtree elimination) 
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BDDs (Binary Decision Diagrams) 

► If the action is just a boolean value boolean functions f: lBn --> lB 
can be represented 

► The decisions E[i] are regarded as boolean variables 
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OBDDs (Ordered Binary Decision Diagrams) 

 Problem: for one boolean function there are many BDD 

 Idea: introduce a standardized order for the variables 

 Result: orderd binary decision diagrams  

 In all OBDD holds  

 for all children u of parents v ord(u) > ord(v). 

 For one order of variables there is one normal form OBDD 
(canonical OBDD) 

 Leads to an efficient BDD-based comparison algorithm of 
boolean functions: 
 
 

compareBooleanFunction() = {  

Fix variable order for two BDD 

Transform both BDD into OBDD 

Compare both OBDD syntactically 

} 
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Complex BDD 
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The Influence of Variable Ordering 

 

TU Dresden, Prof. U. Aßmann Decision Analysis 18 



    

If-cascades, BDD and OBDD 

if A then 

  if B then 

      if C then true else false 

  else 

   if C then false else true  

else 

  if B then 

      if C then false else true  

  else 

   if C then true else false 
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Normalizing Wild Procedures: Normalized If-Structures with OBDD 

 There is only one canonical OBDD for one order 

 Develop normalized and factorized if-structures with it: 
1. Elaborate arbitrary decision tree 

2. Choose a variable order 

3. Transform to OBDD 

4. Transform to If structure 

5. Factor out common subtrees by subprograms 
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Acyclic control flow can be represented canonically by an OBDD 



    

Applications 

 Reengineering 

 Structuring of legacy procedures: read in control-flow; construct 
control-flow graph 

 Produce a canonical OBDD for all acyclic parts of control-flow graph 

 Pretty-print again 

 Or: produce a statechart 

 Configuration management  

 Development of canonical versions of C preprocessor nestings 

 Help to master large systems 
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24.3 EVENT-CONDITION-
ACTION BASED DESIGN 
(ECA) 
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Event-Condition-Action Design 

 Decision analysis is invoked when events occur 

 Event-condition-action (ECA) based design uses 

• ECA rules with condition-action analysis 

• Complex event processing (CEP) for recognition of complex events 
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Given some (complex) events, which conditions provoke which actions? 
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ECA with State-Based Specifications 

► An event-condition-action 
(ECA) system listens on 
channel(s) for events, 
analyses a condition, and 
executes an action 

■ Statecharts (see course ST) 

■ Petri Nets (see corr. 
Chapter) 

■ ECA rules (Drools) 

■ Condition analysis can  
be done by BDD  

■ Process:  

■ Collect all ECA rules 

■ Collect all states 

■ Link states with ECA rules as 
transitions 
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ECA with Petri Nets 

► In a Petri Net, an event-generating channel is a transition with 
fan-in=0 

► Listening to the events, the Petri Net can do condition-action 
analysis 
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ECA-based Blackboard Style 

 The ECA-blackboard has two repositories: a fact/object base and a 
rule base 

 The rule base is an active repository (i.e., an active component) 
that coordinates all other components 

 It investigates the state of the repository. If an event has occured by 
entering something in the repository (modify), components are 
fired/triggered to work on or modify the repository 
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JBOSS ECA Rule Engine 

 Drools (.drl-files) is an active repository with ECA rule processing 

 Ex. Fire Alarm Rules [JRules]: 

TU Dresden, Prof. U. Aßmann Decision Analysis 27 

rule "Status output when things are ok"  

when  

  not Alarm() 

  not Sprinkler( on == true )  

then 

  System.out.println( "Everything is ok" ); 

end 

 

rule "Raise the alarm when we have one or more fires" 

when 

  exists Fire() // tests whether a Fire object exists 

then 

  insert( new Alarm() );  

  System.out.println( "Raise the alarm" ); 

end 



    

Ex. Fire Alarm 

 Create a blackboard and fill the object base 
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// make a new blackboard 

KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();  

// add a .drl-file to the rule base 

kbuilder.add( ResourceFactory.newClassPathResource( "fireAlarm.drl", 

     getClass() ), ResourceType.DRL );  

if ( kbuilder.hasErrors() ) 

  System.err.println( kbuilder.getErrors().toString() );  

// open a session with the blackboard 

StatefulKnowledgeSession ksession = kbase.newStatefulKnowledgeSession(); 

 

// allocate objects in the object/fact base 

String[] names = new String[]{"kitchen","bedroom","office","livingroom"}; 

Map<String,Room> name2room = new HashMap<String,Room>(); 

for( String name: names ) { 

  Room room = new Room( name ); name2room.put( name, room );  

  ksession.insert( room );  

  Sprinkler sprinkler = new Sprinkler( room ); ksession.insert( sprinkler ); 

}  

ksession.fireAllRules(); 

 

// output>> ”Everything is ok” 

 



    

 Raise fire by inserting a Fire object into the object base 
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Fire kitchenFire = new Fire( name2room.get( "kitchen" ) );  

Fire officeFire = new Fire( name2room.get( "office" ) ); 

 

// insert into the session 

FactHandle kitchenFireHandle = ksession.insert( kitchenFire );  

FactHandle officeFireHandle = ksession.insert( officeFire ); 

 

// investigate: 

ksession.fireAllRules(); 

 

// output>> “Raise the alarm"  



    

Other Application Areas 

 Event-based Web systems (AJAX systems) 

• Scripts in Javascript react on user-triggered events on the client side 

• Server actions are called 

 Interactive Systems 

• Event-reaction tables record event-condition-action rules 
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Extensibility of ECA Rule Systems 

 Extensibility means to add more ECA rules 

 Rules are open constructs 

 Problem: new rules should be conflict-free with the old rules 

 Harmless extension is usually not provable 

 In general, contracts of the old system cannot be retained 
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ECA-Systems are extensible, but harmlessness of  

extensions is hard to prove 
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The End: What Have We Learned 

► Decision analysis (Condition-Action analysis) is an important 
analysis  

■ to describe requirements,  

■ to describe complex behavior of a procedure 

■ Decision analysis must be encoded in a decision algebra 

► Boolean functions, decision trees, relations, graphs, automata can be 
encoded in OBDD 

► The control-flow of a procedure can be normalized with a BDD and OBDD 

► Conditions in large state spaces can be encoded in OBDD and efficiently 
checked 

► ECA-based design reacts on events and conditions with actions 
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