TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik, Institut fir Software- und Multimediatechnik, Lehrstuhl fiir Softwaretechnologie

31. Feature Models and MDA for

Product Lines

Prof. Dr. U. ABmann

Technische Universitat Dresden

Institut fur Software- und Multimediatechnik
Lehrstuhl Softwaretechnologie
http://st.inf.tu-dresden.de

Wintersemester 2014/15, 25. Januar 2015

Lecturer: Dr. Sebastian Gotz

N =

. Feature Models
. Product Linie Configuration

with Feature Models

. Multi-Stage Configuration

http://st.inf.tu-dresden.de/

D

Literature

» Florian Heidenreich, Jan Kopcsek, and Christian Wende. FeatureMapper:
Mapping Features to Models. In Companion Proceedings of the 30th
International Conference on Software Engineering (ICSE'08), Leipzig,

Germany, May 2008.

e http://featuremapper.org/files/ICSE08-FeatureMapper--Mapping-Features-to-

Models. pdf

» Paul C. Clements, Linda M. Northrop: Software Product Lines:

Practices and Patterns. Addison-Wesley Professional, 2001.
» Sven Apel, Don Batory, Christian Kastner, Gunter Saake:

Feature-Oriented Software Product Lines — Concepts and

Implementation. Springer, 2013.

. Software
: Product Lines

. V. 44/ - Practices
and
e Patterns

Paul Clements
Linda Northrop

Feature-Oriented
Software
Product Lines

Concepts and Implementation

References

[ABmMO03] U. ABmann. Invasive Software Composition. Springer, 2003.

[Cza05] K. Czarnecki and M. Antkiewicz. Mapping Features to Models: A
Template Approach Based on Superimposed Variants. In R. Gliick and M. Lowry,
editors, Proceedings of the 4th International Conference on Generative
Programming and Component Engineering (GPCE'05), volume 3676 of LNCS,
pages 422-437. Springer, 2005.

[Cza06] K. Czarnecki and K. Pietroszek. Verifying Feature-Based Model
Templates Against Well-Formedness OCL Constraints. In Proceedings of the 5th
International Conference on Generative Programming and Component
Engineering (GPCE'06), pages 211-220, New York, NY, USA, 2006. ACM.

[HeiO8a] F. Heidenreich, J. Kopcsek, and C. Wende. FeatureMapper: Mapping
Features to Models. In Companion Proceedings of the 30th International
Conference on Software Engineering (ICSE'08), pages 943-944, New York, NY,
USA, May 2008. ACM.

[HeiO8b] Florian Heidenreich, Ilie Savga and Christian Wende. On Controlled
Visualisations in Software Product Line Engineering. In Proc. of the 2nd Int'l
Workshop on Visualisation in Software Product Line Engineering (ViSPLE
20083, collocated with the 12th Int'l Software Product Line Conference (SPLC
2008), Limerick, Ireland, September 2008.

[Hei09] Florian Heidenreich. Towards Systematic Ensuring Well-Formedness of
Software Product Lines. In Proceedings of the 1st Workshop on Feature-
Oriented Software Development (FOSD 2009) collocated with
MODELS/GPCE/SLE 2009. Denver, Colorado, USA, October 2009. ACM Press

@ Object-Oriented Analysis vs Object-Oriented Design

requirements
specification

textual
requirements
(stories)

context analysis
model model

architectural design

detailed design

@ Extended to Model-Driven Architecture (MDA)

> Horizontal product line: one product idea in several markets

requirements
specification

textual
requirements
(stories)

context analysis

model model
(CIM)

domain
model

Platform
independent
model

Platform-1
specific model

Platform-(1,.., n)
specific model

textual
requirements
(stories)

requirements
specification

context
model

Feature
Model

Product Lines (Product Families)

Product 1

analysis
Mode

Product 2

Product n

él) Adding Extensions to Abstract Models in the MDA

> In the following, we extend the MDA (below) with configuration

Platform independent
model (PIM)

"

Platform-1-specific
extension (PSE)

%

Model
weaving

]

~~

Platform-1 specific

Platform-2 specific

model (PIM) extension (PSE)

N\

Model
weaving

|

~~

Platform-(1+2) specific
model (PSM)

@ Configuration of Variabilities in Vertical Product Lines

>

MDA for Vertical Product Lines

Vertical product line: several products in one or several markets
» The VIM (variant independent model) is the common model of the product family

[Domain Model)

Analysis Model)

Configuration
With
FeatureModel

-
>
\ Product Design

Variants

(Framework, VIM)

Model
weaving
>
- [Product PIM
PSM \

Configuration
With
FeatureModel

Extensions Model

weaving

T Product PSM " br

[Product Llne Model]

31.1 PRODUCT LINES
WITH FEATURE TREES
AND FEATURE MODELS

@ Feature Models for Product configuration

» Feature models are used to express
variability in Product Lines
» alternative,

» mandatory,
» optional features, and
» their relations

» A variant model represents a concrete product (variant)
from the product line

» The variant model results from a selection of a subgraph of the feature
model

» The variant model can be used to parameterize and drive the product
instantiation process

@ Feature Models

> The Feature Tree Notation is derived from And-Or-Trees

Group of AND

Features
EIEl @ Mandatory Optional Group of
Alternative (XOR)
Feature Feature OR Features
Features
FeatureA FeatureB FeatureC FeatureD

PhD Thesis, Czarnecki (1998)
based on FODA-Notation by Kang et al. (1990)

D

> A1l or A2 or A3
> B1; B2 xor B3
> B4; optional B5

> B1; B7
Al
_
@)
B1||B2| | B3

A2

B4

BS

A3

B6

Example

B7

@ Mapping Features to Model Fragments (Model Snippets)

» Bridging the gap between configuration and solution space

> Need for mapping of features from feature models to artifacts of
the solution space

» Possible artifacts
» Models defined in DSLs
» Model fragments (snippets)
» Architectural artifacts (components, connectors, aspects)
» Source code
> Files

» But how can we achieve the mapping... ?

31.2 PRODUCT-LINE
CONFIGURATION WITH
FEATURE MODELS

Different Approaches of Variant Selection
Additive approach

» Map all features to model fragments (model snippets)
» Compose them with a core model based on the presence of the

feature in the variant model

Core —_—

Core

» Pros:
» conflicting variants can be modeled correctly
» strong per-feature decomposition

» Cons:
» traceability problems

» increased overhead in linking the different fragments

@ Different Approaches of Variant Selection (2)
Subtractive approach

> Model all features in one model

> Remove elements based on absence of the feature in the variant

model

Core —>

Core

» Pros:
» no need for redundant links between artifacts
» short cognitive distance

» Cons:
» conflicting variants can't be modeled correctly
» huge and non-concise models

D

The Mapping Problem between Features and Solution
Elements

Problem Space

FeatureA

AN

FeatureB FeatureC

AN

Solution Space

0 [

FeatureD FeatureE

:ﬂj T

@ Mapping Features to Models

» FeatureMapper - a tool for mapping of feature models to modeling
artifacts developed at the ST Group

» Screencast and paper available at http:/ /featuremapper.org

» Advantages:
» Explicit representation of mappings
» Configuration of large product lines from selection of variants in feature trees
» Customers understand
» Consistency of each product in the line is simple to check
» Model and code snippets can be traced to requirements

FeatureMapper

anom FeatureMapping - ContactManagement/solution/ClassDiagram.umldi - Eclipse - [Users/Florian/Documents/workspace2
[®g) MappingView &3 = B || &, ClassDiagram.umidi 3 =8
e X | ® | = 6@9 l;"=. I:IE J & - f(;antacEManagement."s|::IutlDn."CIasstgram.umldl
ContactManagement/mapping/ContactManagementipp ContactList
<+ Constraint OWL
@ Feature ContactManagement +50Urce
EE' Group 0 1] +list
@Feature Addresses * ! "
+targe
(E) Feature Relationships " g
. +target Group
@ Feature ContactOpportunities
(E) Feature Notes .
(E) Feature Groups 1 “N#source
r’EG 0
& Croup +50Urce
Feature MultipleAssi T i i
(E) Feature Mu .lp eAssignmen +target contacts +relationships
(E) Feature ArbitraryDepth L= Ls
@ Feature Synchronisation ’ -
v . L. +target
& Croup 1 Adiress = Contact Relationship
(E) Feature GMail +name +role
(E) Feature Highrise % dress +contact +source
(E) Feature MabilePhone 7 +relationships
Person Company
+forename
+5Urname i
T
Current Expression {ﬁ? e e e) i
Feature Relationships) .) " ="
[g Solution Space View | gl Associated Elements View 53
Feature Element Resaurce
Assigned Feature Expression & X Feature Relationships m
Feature Relationships #° <Association> Associationb @ ContactManagement/solution/ClassDiagram.uml

Feature Addresses Feature Relationships <Association> Association7] ContactManagementsolution/ClassDiagram.uml

Feature Relationships Q <Class> Relationship @ ContactManagement/solution/ClassDiagram.uml 4
Feature Relationships [= <Property> role) ContactManagement/solution/ClassDiagram.uml |
B
A
ea o Cl " D

D

> We chose an explicit Mapping Representation in our tool

FeatureMapper

> Mappings are stored in a mapping model that is based on a

mapping metamodel

Feature Model

Mapping Features to Models

Mapping Model

Solution Models

FeatureA

AN

FeatureB

FeatureC

.- FeatureC

— FeatureC

K FeatureC

— DO
— EQ
—» Q]
— FO

—
A
||

1

4

7

D

From Feature Mappings to Model Transformations

Feature Model

F

eatured

AN

FeatureB

FeatureC

s

FeatureD

t

Variant Model §

Featured

AN

FeatureB

FeatureC

FeatureD

s

Mapping
T
7 Solution Models
| Featurec |—¥ DOm H
| FeatureC |—P E O l\] L —
|| = e (BT
'.-.\1 — . El [
| | FeatureC — FOL 1.|E—.
o | -
{L 7 Variant
/ NI
|
HaN
[i » Transformation | '\ D | I
o E] [|
. . U

Visualisation of Mappings (1)

Visualisations play a crucial role in Software Engineering

e It's hard to impossible to understand a complex system unless you look at it from

different points of view

In many cases, developers are interested only in a particular
aspect of the connection between a feature model and realising
artefacts

e How a particular feature is realised?

e Which features communicate or interact in their realisation?

e Which artefacts may be effectively used in a variant?

Solution of the FeatureMapper: MappingViews, a visualisation
technique that provides four basic visualisations

e Realisation View

e Variant View

e (Context View

e Property-Changes View

Realisation View

> For one Variant Model, the realisation in the solution space is
shown

Feature Model

System

Mapping

Relationship

N

FeatureB

Relationship

ContactList

Group

1”t
+role

Relationship

1“1-

+relationships

Relationship | — | N +relationships
Address I Contact Lrce
Fnam 1
contar \Ij +target
e ——
Person Company
+ forename
Fsumame
Cl

Variant View

> The variant view shows different variant realisations (variant

models) in parallel

Feature Model

System

AN

Address Relationship

Mapping

Relationship —>

Relationship —>

o

ContactList

-

+source +list
is
* Aarget

iub\

Fsource

Address

1 1.7 Contact

§

+name

+address J +contgct

1 +source

1
+target

Person
+forename
+surname

Company

% +relationships

1.*

1.”

l \le_/‘/‘ +relationships

Relationship
+role

Context View

» The Context View draws the variants with different colors
Aspect-separation: each variant forms an aspect

Feature Model

System

Group 4—-==:::i::::::::

Mapping

Group

T

ContactList

+source

“target

Group

Address

+target ~

1 1

Contact

°9 00 @9

+address +contact

+name

T

*| +contacts

1 +source

1
+target

Person

+forename
+surname

Company

+relationships

1.%

1.*

Relationship
+role

+relationships

)

Feature Model

System

Arbitrary
Depth

Property-Changes View

Recorded change-set of

Mapping changing the cardinality of the

reflexive association of Group to
itself from 1 to many

Arbitrary
Depth) O

E <Class = Group
= «Association Associationd
(=l <Property = source | Group
=& =Property = target ; Groop [0,,%]
01% «ljteral Unlimited Matural = *
0. Zliteral Integer= 0

Mame Expression
= H ownedEnd Property source
H uppervalue Literal Unlimited Matural
H lowervalue Likeral Integer
= E ownedEnd Property target
= E uppervalue Literal Unlimited Matural
= = Property value

Arbitrary Depth

=1
= H lowervalue Literal Integer
= & Property walue
-0 arhitrary Depkh
=1

@ Textual Languages Support (1)

> Unified handling of modeling languages and textual languages by
lifting textual languages to the modelling level with the help of
EMFText

> All >80 languages from the EMFText Syntax Zoo are supported,
including Java 5

> http://emftext.org

_emftext

concrete syntax mapper

)

Textual Languages Support (2)

> Aspect-related color markup of the code

& MM FeatureMapping - ContactManagementjava/src/org/featuremapper/examples/contactmanagement/Contact.java - Eclipse Platform

=

[Project Explor | [P MappingView 23

E}B&f‘.|ﬁ@9@?='n§ I

ContactManagement]ava/mapping/ContactManage

< Constraint OWL
() Feature ContactManagement
EE Group 0
(E) Feature Addresses
@ Feature Relationships
@ Feature ContactOpportunities
@ Feature Motes
@ Feature Groups
55 Group 0
® Feature MultipleAssignment
® Feature ArbitraryDepth
@ Feature Synchronisation
‘EECroup 1
@ Feature GMail
® Feature Highrise
(E) Feature MobilePhone

Current Expressicn

Feature Relationships

Assigned Feature Expression

=

]

JF

|& *Contact.java 22 =0
package org.featuremapper.examples.contactmanagement;
import jova.util.LinkedHashSet;
import java.util.Set;
public class Contact {
private String name;
private Set<Relationship> relationships;
public Contact(%tring name) {
this.name = nome;
his.relationships = new LinkedHashSet<Relationship>();
1
public void addRelationship({Relationship relationship) {
this.relationships.add(relationship);
public String toString() {
final StringBuffer result = new StringBuffer();
result.append{"Name: " + namel;
result.append("Relationships: " + relationships);
return result.toString();
¥
_ 1
@ Solution Space View @ Associated Elements View &3 q—l Error Log =08

Feature
Feature Relationships
Feature Relationships
Feature Relationships
Feature Relationships
Feature Relationships
Feature Relationships
Feature Relationships

Feature Relatinnshins

@
@
@
]
]
Fs
rey

Element

Class Method toString
Class Method getTarget
Class Method getSource
Class Method getRole
Constructor Relationship
Field role

Field source
.]

™

-

Resource

[J] ContactManagementlava,s
[J] ContactManagementlava,s
[J] ContactManagementlava,s
m ContactManagement|ava/s
[J] ContactManagementlava,s
[J] ContactManagementlava,/s *

L 4
[11 ContactManaaementlava /s
4k

[J] Compilation Unit
‘= Classifier Import
‘= Classifier Import
(3 Class Contact
& Field name
& Field relationships
@ Constructor Contact
@ Class Method addRelationship
@ Class Method toString

00

v:uﬁ

D

Mapping-based Derivation of Transformations

> Transformations in the solution space build the product

Feature Model

Mapping Model

FeatureA —{ FeatureC
FeatureC
FeatureB FeatureC -

FeatureC

%\\
.

o

~

—» D)
> EQ
—» cQ—
— FO—

Solution Models

1

/

<out>>

—>

Variant Model ¥ <<in>>
FeatureA /
QA! <in>>
3 Derivation
FeatureB FeatureC -
/ Of Transformations
FeatureD \

/

31.3 MULTI-STAGE
CONFIGURATION

@ FEASIPLE: A Multi-Stage Process Architecture for PLE

» Chose one variant on each level
> Feature Tree as input for the configuration of the model weavings

' ™ s Ty
VIM
- l
—
Variants I VSM
?—I PIM
Platforms \G')\/ I PSM
\ CTIM
Z7
Contexts \GD/ CTSM
N ,x

\) J’

Product

@ FEASIPLE: A Multi-Stage Process Architecture for PLE

» Goal: a staged MDSD-framework for PLE where each stage

produces the software artifacts used for the next stage

-

~

I(,.r‘_

VIM
VP1
vbo (5 —
VP30 =
Variants I VSM
VP1() Hiv
VP2 (5
VP3O
Platforms PSM
CTIM
VP1
VP2 OO i,
VP3O
Contexts CTSM

Product

D

» Characteristic feature 1:
» Variability on each stage

Advantages of FEASIPLE

o~ ™ '
VIM
VP1
VP3@
Variants I VSM
VP10 PIM
VP2 @
VP3O
Platforms — I PSM
VP1 \ CTIM
@
VP2 (O /\
VP3@
Contexts CTSM
o

v

Product

D

> Characteristic feature 2:

Advantages of FEASIPLE

> Different modeling languages, component systems and
composition languages per stage

-~ ~ s
VIM
VP1
VP2 .O
VP3@
Variants \{'D»‘<) I —
PIM
VP1 O ccslut::Tlut}HHchook:-:-
VP2 @
VP3O
Platforms — | PSM
\ , CTIM
VP1
VP2 o. TT.
VP3@ Tt
Contexts CTSM
e

v

Product

D

> Characteristic feature 3:

Advantages of FEASIPLE

» Different composition mechanisms per stage

-

~

I(,.r‘_

VIM
VP1
VP2 .O
VP3 @
Variants \@»‘<) I —
PIM
VP1 O ?—l ccslut::Tlut}HHchook:-:-
VP2 @
VP3O
Platforms — I PSM
\ , CTIM
VP1
VP2 o. TT.
VP3@
Contexts CTSM
N J e

v

Product

D

> Characteristic feature 4:

Advantages of FEASIPLE

» Composition mechanisms are driven by variant selection

-

_"\.\I

N
VP1 Vim
VP2 .O
VP3@
Variants I VSM
PIM
VP1 O ?—l ccslut::Tlut}HHchook:-:-
VP2 @
VP3O
Platforms — | PSM
\ , CTIM
VP1
VP2 o. TT.
VP3@ Teet
Contexts CTSM
\. e J

g

Product

Multi-Staged Derivation of Transformations

> How do we compose transformations? Between different stages?

functional
Feature Model

Variant Independent Model

- === ——

.

MZNFH'afos

A

Platform Independent Models

1, S
7 M
|
: context
I Feature Model
b !
e <5
! 1
1 L
! 1
! 1
1 1
! 1
! 1
1
! platform :
! Feature Model :
1
\

.

MZN',ﬁrafos

7

Platform Specific Models

.

M2C G%p#rators

<

Platform Specific Code

@ TraCo: A Framework for Safe Multi-Stage
Composition of Transformations

> TraCo encapsulates transformations into composable components

e Arranges them with composition programs of parallel and sequential transformation
steps (multi-threaded transformation)

Functional variant

Platform variant

Vi j—‘eature Selection
Mi M?p
SA1 Solution Artefact

T1 Transformation

Context variant

[

Steps in Multi-Staged Derivation of Transformations

Transformations are represented as composable components

Definition and Composition of Transformation Steps
e A Composition System is needed (course CBSE): Allows for reuse of arbitrary existing transformation
techniques
Validation of each transformation and composition step
e Type-checking
e Invariant- and constraint-checking
e Correctness of port and parameter binding
e Static and dynamic analysis

Execution of composition program

Component instance

T~

/

Component

[Adapter J

: references

v
Connectors
Actual
Transformation Constant value
Code

Multi-Staged Derivation of Transformations

> Implemented in our tool TraCo

L&} Library traco 52 =08

E}, Resource Set

=< Library ¢ Load UMLZ2
= E Component Specification AssociationsToProperties
= Port Specification inout model | UMLZ ouT

488 Implementation de.tudresden. traco.components, Associations ToProperties
% Component Specification Load UMLZ
Component Specification Store Madel . .
E Component Specification YariantInstantiation solutionModel - variantModel OUT ¢ Load Feature Model
E Zomponent Specification Load Feature Madel =
[B Component Specification Load Feature Mapping Madel < VariantInstantiation
E Component Specification PlatformInstantiation = B
E Component Specification Load Platform Model solutionModel mappingMDdel OuUT ¢ Load Feature Mﬂﬂﬂmﬂ Model
= E Cormponent Specification ClasszRelational (ATL)
3 Port Specification in I ¢ UMLZ
=3 Port Specification out OUT : Relational p“-n
= Part Specification in bl I
=45 Implementation de budresden. traco.adapker . atl, Atladapter -
& Implementation Parameter AtFile ¢ PlatformInstantiation
E Component Specification Nested Inner pIIT‘l QuT
4+ Model Type Mavigation psm
=< Model Type UMLZ
4+ Metamodel LML ™
4+ Model Type Feature Mapping Maodsl
< Model Type Feature Model ¢ Store Model
< Primitive Twpe String
4+ Maodel Type Relational

< Load Platform Model

a

(

Selection | Parent | List | Tree | Table | Tree with Columns

@ Composition Programs can be Configured
Metacomposition

~+Anything you can do, I do meta" (Charles Simonyi)

> The composition program shown in the last slide can be subject to
transformation and composition

> If we build a product line with TraCo, platform variability can be
realised by different transformation steps

> A TraCo composition program can be used with FeatureMapper
e Multi-Staged transformation steps
e Even of composition programs

> More about metacomposition in CBSE course

[|
1
1 Loading Functional Platform
: Variability Add EJB Semantics Variability
. !
|
— Domain Load Domain Model P VIM to VSM - Doma|SI\I>I/ILodeI to —P Ag%%gﬁ;;o —P UML to Java
@,
Actions Model to
—»{ Simplelmpl UML » UMLtoJava
Load Actions Model P VIM to VSM O O
| > Actions Model to
SimpleDelegateUML - UML to Java
Actions _|
¢ ¢ > Addes
Persistence
(@ _p Semantics \’
Actions to EJB UML \L[.\ T UML to Java
/'
/Add Local Memory
@) Semantics @
Actions to EJB
> Delegate UML |JI > UML to Java
Application ApplicI;:\ct)iacl)%State VIM to VSM P ApplicationState —P Attribute_s to —P UML to Java
State Model Model to UML Properties
e T T - - sy - - - - - T &= &7 = = == Presentation
SWT
L -
Ensure Control IDs ——p» SWT User Interface - ISP
L Interf ; ;
User Interface oad U,\s/grd; eriace VIM to VSM Business Logic
3 O Java
IJ ;; JSP User Interface @ &8
Persistence
] <> In-Memory
Load Navigation Navigation Model to .
Meda VIM to VSM > e 0 EJB Persistence
Navigation Mixed
= [> EJB + In-Memory
Navigation Model to
> g ISP > EJB + EJB Persistence

The final frontier: Ensuring Well-formedness of SPLs

Motivation: Make sure that well-formedness of all participating

models is ensured
e Feature Model

(CaerineMIGHEEN ® Package Explorer -

ﬁ@ﬁ|.|ﬁeee|}q='m_ |F':¢'

° Mapplng Model [ContactManagement/solution/FOSD09.featuremapping

e Solution Models
Well-formedness rules are descri

Constraints are enforced during r

<= Constraint OWL
v (E) Feature ContactManagement
v 7 Group 0
(E) Feature Addresses
(E) Feature Relationships
@ Feature ContactOpportunities
(E) Feature Notes
v (F) Feature Groups
v £8 Group 0
@ Feature MultipleAssignmen
(E) Feature ArbitraryDepth
v (F) Feature Synchronisation

5 Soluton Space view () Associated Slementa MiswyED, © Propertes

Feature Elerment
v Feature Flood

/v Feature Flood =
Feature Flood =l <Property> handicap : HandicapKind [1..*]

Feature Flood D/ <Association> A_<rescueMission>_<rope>
Feature Flood =l <Enumeration Literal> MENTAL
Feature Flood = <Enumeration Literal> SURD

Feature Flood El < (Class> HandicappedVictim

=l Properties &3

Resource

org.featuremapper.example.!
#) org.featuremapper.example.!
#) org.featuremapper.example.r
i org.featuremapper.example.!

oy arg@uremapper.example.'

— | =¥l = Ba
B 5

Property Value
Constrained Feature: @ Feature MultipleAssignment, Feature Highrise

Expression i= conflicts
Language 1= 0OWL

@ Case Studies with FeatureMapper, TraCo, and
FEASIPLE

> Simple Contact Management Application Software Product Line
e FeatureMapper used to map features to UML2 model elements
e Both static and dynamic modelling

> Simple Time Sheet Application Software Product Line
e FeatureMapper used to tailor ISC composition programs
e ISC used as a universal variability mechanism in SPLE
e Meta Transformation

> SalesScenario Software Product Line
e FeatureMapper used to tailor models expressed in Ecore-based DSLs
e was developed in project feasiPLe (http://www.feasiple.de)

> TAOSD AOM Crisis Management System

YV VYV

Summary

Configuration of product lines with mapping of feature models to
solution spaces

Mapping of Features to models in Ecore-based languages

using FeatureMapper

Visualisations of those mappings using MappingViews

Derivation of solution models based on variant select

Realisation View
Variant View

Context View
Property-Changes View

mapping

Multi-Staged derivation using TraCo
Ensuring well-formedness of SPLs

http:/ /featuremapper.org

IE Address

E < Class > Group
=" «<association> Associationd

(= =Property = source | Group
=& <Property> target ; Group [0.,%]

01% =|jteral Unlimited Matural= *

A0, <literal Integer = 0

+relationships

+role

* T_Relationship f|

+relationships

D

> Many slides are courtesy of Florian Heidenreich

The End

