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@ Object-Oriented Analysis vs Object-Oriented Design
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@ Extended to Model-Driven Architecture (MDA)

> Horizontal product line: one product idea in several markets
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él ) Adding Extensions to Abstract Models in the MDA

> In the following, we extend the MDA (below) with configuration
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@ Configuration of Variabilities in Vertical Product Lines

>

MDA for Vertical Product Lines

Vertical product line: several products in one or several markets
» The VIM (variant independent model) is the common model of the product family
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31.1 PRODUCT LINES
WITH FEATURE TREES
AND FEATURE MODELS



@ Feature Models for Product configuration

» Feature models are used to express
variability in Product Lines
» alternative,

» mandatory,
» optional features, and
» their relations

» A variant model represents a concrete product (variant)
from the product line

» The variant model results from a selection of a subgraph of the feature
model

» The variant model can be used to parameterize and drive the product
instantiation process



@ Feature Models

> The Feature Tree Notation is derived from And-Or-Trees

Group of AND

Features
EIEl @ Mandatory Optional Group of
Alternative (XOR)
Feature Feature OR Features
Features
FeatureA FeatureB FeatureC FeatureD

PhD Thesis, Czarnecki (1998)
based on FODA-Notation by Kang et al. (1990)
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> A1l or A2 or A3
> B1; B2 xor B3
> B4; optional B5
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@ Mapping Features to Model Fragments (Model Snippets)

» Bridging the gap between configuration and solution space

> Need for mapping of features from feature models to artifacts of
the solution space

» Possible artifacts
» Models defined in DSLs
» Model fragments (snippets)
» Architectural artifacts (components, connectors, aspects)
» Source code
> Files

» But how can we achieve the mapping... ?



31.2 PRODUCT-LINE
CONFIGURATION WITH
FEATURE MODELS



Different Approaches of Variant Selection
Additive approach

» Map all features to model fragments (model snippets)
» Compose them with a core model based on the presence of the

feature in the variant model

Core —_—

Core

» Pros:
» conflicting variants can be modeled correctly
» strong per-feature decomposition

» Cons:
» traceability problems

» increased overhead in linking the different fragments



@ Different Approaches of Variant Selection (2)
Subtractive approach

> Model all features in one model

> Remove elements based on absence of the feature in the variant

model

Core —>

Core

» Pros:
» no need for redundant links between artifacts
» short cognitive distance

» Cons:
» conflicting variants can't be modeled correctly
» huge and non-concise models
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The Mapping Problem between Features and Solution
Elements

Problem Space
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@ Mapping Features to Models

» FeatureMapper - a tool for mapping of feature models to modeling
artifacts developed at the ST Group

» Screencast and paper available at http:/ /featuremapper.org

» Advantages:
» Explicit representation of mappings
» Configuration of large product lines from selection of variants in feature trees
» Customers understand
» Consistency of each product in the line is simple to check
» Model and code snippets can be traced to requirements



FeatureMapper
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> We chose an explicit Mapping Representation in our tool

FeatureMapper

> Mappings are stored in a mapping model that is based on a

mapping metamodel

Feature Model

Mapping Features to Models
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From Feature Mappings to Model Transformations
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Visualisation of Mappings (1)

Visualisations play a crucial role in Software Engineering

e It's hard to impossible to understand a complex system unless you look at it from

different points of view

In many cases, developers are interested only in a particular
aspect of the connection between a feature model and realising
artefacts

e How a particular feature is realised?

e Which features communicate or interact in their realisation?

e Which artefacts may be effectively used in a variant?

Solution of the FeatureMapper: MappingViews, a visualisation
technique that provides four basic visualisations

e Realisation View

e Variant View

e (Context View

e Property-Changes View



Realisation View

> For one Variant Model, the realisation in the solution space is
shown
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Variant View

> The variant view shows different variant realisations (variant

models) in parallel
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Context View

» The Context View draws the variants with different colors
Aspect-separation: each variant forms an aspect
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Feature Model

System

Arbitrary
Depth

Property-Changes View

Recorded change-set of

Mapping changing the cardinality of the

reflexive association of Group to
itself from 1 to many
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@ Textual Languages Support (1)

> Unified handling of modeling languages and textual languages by
lifting textual languages to the modelling level with the help of
EMFText

> All >80 languages from the EMFText Syntax Zoo are supported,
including Java 5

> http://emftext.org

_emftext

concrete syntax mapper

)



Textual Languages Support (2)

> Aspect-related color markup of the code

& MM FeatureMapping - ContactManagementjava/src/org/featuremapper/examples/contactmanagement/Contact.java - Eclipse Platform
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1
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public String toString() {
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result.append{"Name: " + namel;
result.append("Relationships: " + relationships);
return result.toString();
¥
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Mapping-based Derivation of Transformations

> Transformations in the solution space build the product

Feature Model

Mapping Model
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31.3 MULTI-STAGE
CONFIGURATION



@ FEASIPLE: A Multi-Stage Process Architecture for PLE

» Chose one variant on each level
> Feature Tree as input for the configuration of the model weavings

' ™ s Ty
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@ FEASIPLE: A Multi-Stage Process Architecture for PLE

» Goal: a staged MDSD-framework for PLE where each stage

produces the software artifacts used for the next stage
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» Characteristic feature 1:
» Variability on each stage

Advantages of FEASIPLE
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> Characteristic feature 2:

Advantages of FEASIPLE

> Different modeling languages, component systems and
composition languages per stage
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> Characteristic feature 3:

Advantages of FEASIPLE

» Different composition mechanisms per stage
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> Characteristic feature 4:

Advantages of FEASIPLE

» Composition mechanisms are driven by variant selection
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Multi-Staged Derivation of Transformations

> How do we compose transformations? Between different stages?

_____________________
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@ TraCo: A Framework for Safe Multi-Stage
Composition of Transformations

> TraCo encapsulates transformations into composable components

e Arranges them with composition programs of parallel and sequential transformation
steps (multi-threaded transformation)

Functional variant

Platform variant

Vi j—‘eature Selection
Mi M?p
SA1 Solution Artefact

T1 Transformation

Context variant
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Steps in Multi-Staged Derivation of Transformations

Transformations are represented as composable components

Definition and Composition of Transformation Steps
e A Composition System is needed (course CBSE): Allows for reuse of arbitrary existing transformation
techniques
Validation of each transformation and composition step
e Type-checking
e Invariant- and constraint-checking
e Correctness of port and parameter binding
e Static and dynamic analysis

Execution of composition program

Component instance

T~

/

Component

[ Adapter J

: references

v
Connectors
Actual
Transformation Constant value
Code




Multi-Staged Derivation of Transformations

> Implemented in our tool TraCo
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@ Composition Programs can be Configured
Metacomposition

~+Anything you can do, I do meta" (Charles Simonyi)

> The composition program shown in the last slide can be subject to
transformation and composition

> If we build a product line with TraCo, platform variability can be
realised by different transformation steps

> A TraCo composition program can be used with FeatureMapper
e Multi-Staged transformation steps
e Even of composition programs

> More about metacomposition in CBSE course
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The final frontier: Ensuring Well-formedness of SPLs

Motivation: Make sure that well-formedness of all participating

models is ensured
e Feature Model

(CaerineMIGHEEN ® Package Explorer -

ﬁ@ﬁ|.|ﬁeee|}q='m_ |F':¢'
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@ Case Studies with FeatureMapper, TraCo, and
FEASIPLE

> Simple Contact Management Application Software Product Line
e FeatureMapper used to map features to UML2 model elements
e Both static and dynamic modelling

> Simple Time Sheet Application Software Product Line
e FeatureMapper used to tailor ISC composition programs
e ISC used as a universal variability mechanism in SPLE
e Meta Transformation

> SalesScenario Software Product Line
e FeatureMapper used to tailor models expressed in Ecore-based DSLs
e was developed in project feasiPLe (http://www.feasiple.de)

> TAOSD AOM Crisis Management System
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Summary

Configuration of product lines with mapping of feature models to
solution spaces

Mapping of Features to models in Ecore-based languages

using FeatureMapper

Visualisations of those mappings using MappingViews

Derivation of solution models based on variant select

Realisation View
Variant View

Context View
Property-Changes View

mapping

Multi-Staged derivation using TraCo
Ensuring well-formedness of SPLs

http:/ /featuremapper.org
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> Many slides are courtesy of Florian Heidenreich

The End



