
Fakultät Informatik, Institut für Software- und Multimediatechnik, Lehrstuhl für Softwaretechnologie

31. Feature Models and MDA for
Product Lines

Prof. Dr. U. Aßmann
Technische Universität Dresden
Institut für Software- und Multimediatechnik
Lehrstuhl Softwaretechnologie
http://st.inf.tu-dresden.de
Wintersemester 2014/15, 25. Januar 2015

Lecturer: Dr. Sebastian Götz

1. Feature Models
2. Product Linie Configuration

with Feature Models
3. Multi-Stage Configuration

http://st.inf.tu-dresden.de/

Literature

 Florian Heidenreich, Jan Kopcsek, and Christian Wende. FeatureMapper:
Mapping Features to Models. In Companion Proceedings of the 30th
International Conference on Software Engineering (ICSE'08), Leipzig,
Germany, May 2008.

• http://featuremapper.org/files/ICSE08-FeatureMapper--Mapping-Features-to-
Models.pdf

 Paul C. Clements, Linda M. Northrop: Software Product Lines:
Practices and Patterns. Addison-Wesley Professional, 2001.

 Sven Apel, Don Batory, Christian Kästner, Gunter Saake:
Feature-Oriented Software Product Lines – Concepts and
Implementation. Springer, 2013.

Prof. U. Aßmann Feature-driven SPLE 2

References

 [Aßm03] U. Aßmann. Invasive Software Composition. Springer, 2003.

 [Cza05] K. Czarnecki and M. Antkiewicz. Mapping Features to Models: A
Template Approach Based on Superimposed Variants. In R. Glück and M. Lowry,
editors, Proceedings of the 4th International Conference on Generative
Programming and Component Engineering (GPCE'05), volume 3676 of LNCS,
pages 422-437. Springer, 2005.

 [Cza06] K. Czarnecki and K. Pietroszek. Verifying Feature-Based Model
Templates Against Well-Formedness OCL Constraints. In Proceedings of the 5th
International Conference on Generative Programming and Component
Engineering (GPCE'06), pages 211-220, New York, NY, USA, 2006. ACM.

 [Hei08a] F. Heidenreich, J. Kopcsek, and C. Wende. FeatureMapper: Mapping
Features to Models. In Companion Proceedings of the 30th International
Conference on Software Engineering (ICSE'08), pages 943-944, New York, NY,
USA, May 2008. ACM.

 [Hei08b] Florian Heidenreich, Ilie Şavga and Christian Wende. On Controlled
Visualisations in Software Product Line Engineering. In Proc. of the 2nd Int‘l
Workshop on Visualisation in Software Product Line Engineering (ViSPLE
2008), collocated with the 12th Int‘l Software Product Line Conference (SPLC
2008), Limerick, Ireland, September 2008.

 [Hei09] Florian Heidenreich. Towards Systematic Ensuring Well-Formedness of
Software Product Lines. In Proceedings of the 1st Workshop on Feature-
Oriented Software Development (FOSD 2009) collocated with
MODELS/GPCE/SLE 2009. Denver, Colorado, USA, October 2009. ACM Press

Prof. U. Aßmann Feature-driven SPLE Slide 3

analysis
model

domain
model

use
cases

textual
requirements
(stories)

architectural design

detailed design

analysis
model

context
model

requirements
specification

Object-Oriented Analysis vs Object-Oriented Design

Prof. U. Aßmann Feature-driven SPLE 4

Extended to Model-Driven Architecture (MDA)

 Horizontal product line: one product idea in several markets

Prof. U. Aßmann Feature-driven SPLE 5

analysis
model

use
cases

textual
requirements
(stories)

Platform
independent
model

Platform-1
specific model

requirements
specification

Platform-(1,.., n)
specific model

domain
model

context
model

analysis
model
(CIM)

use
cases

textual
requirements
(stories) Product 1

Product 2

requirements
specification

Product n

domain
model

context
model

Product Lines (Product Families)

analysis
Model

Prof. U. Aßmann Feature-driven SPLE 6

Feature
Model

Model
weaving

Platform-1 specific
model (PIM)

Platform-1-specific
extension (PSE)

Platform independent
model (PIM)

Model
weaving

Platform-(1+2) specific
model (PSM)

Platform-2 specific
extension (PSE)

Adding Extensions to Abstract Models in the MDA

 In the following, we extend the MDA (below) with configuration

Prof. U. Aßmann Feature-driven SPLE 7

Variants

Variants
Variants

Analysis Model

Product Line Model
(Framework, VIM)

Product PSM

Product PIM

Domain Model

Variants

Configuration
With
FeatureModel

Configuration of Variabilities in Vertical Product Lines
(MDA for Vertical Product Lines)

► Vertical product line: several products in one or several markets

► The VIM (variant independent model) is the common model of the product family

Prof. U. Aßmann Feature-driven SPLE 8

Product Design
Variants

Configuration
With
FeatureModel

PSM
Extensions

Model
weaving

Model
weaving

Product PSM
Product PSM

31.1 PRODUCT LINES
WITH FEATURE TREES
AND FEATURE MODELS

Prof. U. Aßmann Feature-driven SPLE 9

Feature Models for Product configuration

 Feature models are used to express

variability in Product Lines

 alternative,

 mandatory,

 optional features, and

 their relations

 A variant model represents a concrete product (variant)
from the product line

 The variant model results from a selection of a subgraph of the feature
model

 The variant model can be used to parameterize and drive the product
instantiation process

Prof. U. Aßmann Feature-driven SPLE 10

OR

XOR

Feature Models

 The Feature Tree Notation is derived from And-Or-Trees

Group of AND
Features

Group of
Alternative (XOR)

Features

FeatureA FeatureB

Mandatory
Feature

Group of
OR Features

Optional
Feature

FeatureC FeatureD

PhD Thesis, Czarnecki (1998)
based on FODA-Notation by Kang et al. (1990)

Prof. U. Aßmann Feature-driven SPLE 11

Example

 A1 or A2 or A3

 B1; B2 xor B3

 B4; optional B5

 B1; B7

A1 A2 A3

B1 B2 B4 B5 B6 B7 B3

Prof. U. Aßmann Feature-driven SPLE 12

Mapping Features to Model Fragments (Model Snippets)

 Bridging the gap between configuration and solution space

 Need for mapping of features from feature models to artifacts of

the solution space

 Possible artifacts

 Models defined in DSLs

 Model fragments (snippets)

 Architectural artifacts (components, connectors, aspects)

 Source code

 Files

 But how can we achieve the mapping... ?

Prof. U. Aßmann Feature-driven SPLE 13

31.2 PRODUCT-LINE
CONFIGURATION WITH
FEATURE MODELS

Prof. U. Aßmann Feature-driven SPLE 14

Different Approaches of Variant Selection
Additive approach

 Map all features to model fragments (model snippets)

 Compose them with a core model based on the presence of the
feature in the variant model

 Pros:

 conflicting variants can be modeled correctly

 strong per-feature decomposition

 Cons:

 traceability problems

 increased overhead in linking the different fragments

Prof. U. Aßmann Feature-driven SPLE 15

Different Approaches of Variant Selection (2)
Subtractive approach

 Model all features in one model

 Remove elements based on absence of the feature in the variant
model

 Pros:

 no need for redundant links between artifacts

 short cognitive distance

 Cons:

 conflicting variants can't be modeled correctly

 huge and non-concise models

Prof. U. Aßmann Feature-driven SPLE 16

The Mapping Problem between Features and Solution
Elements

Prof. U. Aßmann Slide 17 Feature-driven SPLE

FeatureA

FeatureC FeatureB

FeatureE FeatureD

Problem Space Solution Space

D

E

A B

F G

Creation

Visualisation

Validation

Derivation

Mapping Features to Models

 FeatureMapper - a tool for mapping of feature models to modeling
artifacts developed at the ST Group

 Screencast and paper available at http://featuremapper.org

 Advantages:

 Explicit representation of mappings

 Configuration of large product lines from selection of variants in feature trees

 Customers understand

 Consistency of each product in the line is simple to check

 Model and code snippets can be traced to requirements

Prof. U. Aßmann Feature-driven SPLE 18

FeatureMapper

Prof. U. Aßmann Slide 19

Feature-driven SPLE

Mapping Features to Models

 We chose an explicit Mapping Representation in our tool
FeatureMapper

 Mappings are stored in a mapping model that is based on a
mapping metamodel

Prof. U. Aßmann Feature-driven SPLE Slide 20

FeatureA

FeatureC FeatureB

FeatureE FeatureD

D FeatureC

E FeatureC

G FeatureE

F FeatureC

FeatureE

Solution Models Feature Model Mapping Model

D

E

A B

F G

From Feature Mappings to Model Transformations

Prof. U. Aßmann Feature-driven SPLE 21

Visualisation of Mappings (1)

 Visualisations play a crucial role in Software Engineering

• It’s hard to impossible to understand a complex system unless you look at it from
different points of view

 In many cases, developers are interested only in a particular
aspect of the connection between a feature model and realising
artefacts

• How a particular feature is realised?

• Which features communicate or interact in their realisation?

• Which artefacts may be effectively used in a variant?

 Solution of the FeatureMapper: MappingViews, a visualisation
technique that provides four basic visualisations

• Realisation View

• Variant View

• Context View

• Property-Changes View

Prof. U. Aßmann Feature-driven SPLE Slide 22

Realisation View

 For one Variant Model, the realisation in the solution space is
shown

System

Relationship FeatureB

Relationship

Relationship

Feature Model Mapping

Prof. U. Aßmann Slide 23 Feature-driven SPLE

Variant View

 The variant view shows different variant realisations (variant
models) in parallel

System

Relationship

Relationship

Relationship

Feature Model Mapping

Address

Address

Prof. U. Aßmann Slide 24 Feature-driven SPLE

Context View

 The Context View draws the variants with different colors

• Aspect-separation: each variant forms an aspect

System

Relationship Address

Relationship

Relationship

Feature Model Mapping

Address

Address

Group

Group

Group

...

...

...

Prof. U. Aßmann Slide 25 Feature-driven SPLE

Other
Feature

Property-Changes View

System

Arbitrary
Depth

Arbitrary
Depth

Feature Model Mapping

Recorded change-set of
changing the cardinality of the

reflexive association of Group to
itself from 1 to many

Prof. U. Aßmann Slide 26 Feature-driven SPLE

Textual Languages Support (1)

 Unified handling of modeling languages and textual languages by
lifting textual languages to the modelling level with the help of
EMFText

 All >80 languages from the EMFText Syntax Zoo are supported,
including Java 5

 http://emftext.org

Prof. U. Aßmann Feature-driven SPLE Slide 27

Textual Languages Support (2)

 Aspect-related color markup of the code

Prof. U. Aßmann Feature-driven SPLE Slide 28

Mapping-based Derivation of Transformations

 Transformations in the solution space build the product

Prof. U. Aßmann Feature-driven SPLE Slide 29

FeatureA

FeatureC FeatureB

FeatureE FeatureD

D FeatureC

E FeatureC

G FeatureE

F FeatureC

FeatureE

Solution Models Feature Model

Mapping Model

D

E

A B

F G

Derivation

Of Transformations

<<in>> <<out>>

FeatureA

FeatureC FeatureB

FeatureD

Variant Model

D

E

A B

<<in>>
<<in>>

Variant

31.3 MULTI-STAGE
CONFIGURATION

Prof. U. Aßmann Feature-driven SPLE 30

FEASIPLE: A Multi-Stage Process Architecture for PLE

 Chose one variant on each level

 Feature Tree as input for the configuration of the model weavings

Prof. U. Aßmann Feature-driven SPLE 31

FEASIPLE: A Multi-Stage Process Architecture for PLE

 Goal: a staged MDSD-framework for PLE where each stage

produces the software artifacts used for the next stage

Prof. U. Aßmann Feature-driven SPLE 32

Advantages of FEASIPLE

 Characteristic feature 1:

 Variability on each stage

Prof. U. Aßmann Feature-driven SPLE 33

Advantages of FEASIPLE

 Characteristic feature 2:

 Different modeling languages, component systems and

composition languages per stage

Prof. U. Aßmann Feature-driven SPLE 34

Advantages of FEASIPLE

 Characteristic feature 3:

 Different composition mechanisms per stage

Prof. U. Aßmann Feature-driven SPLE 35

Advantages of FEASIPLE

 Characteristic feature 4:

 Composition mechanisms are driven by variant selection

Prof. U. Aßmann Feature-driven SPLE 36

Multi-Staged Derivation of Transformations

 How do we compose transformations? Between different stages?

Prof. U. Aßmann Feature-driven SPLE Folie 37

Variant Independent Model
functional

Feature Model

platform
Feature Model

context
Feature Model

M2C Generators

Platform Specific Code

M2M Trafos

M2M Trafos

Platform Independent Models Platform Independent Models Platform Independent Models

Platform Specific Models Platform Specific Models Platform Specific Models

VIM
Mapping

PIM
Mapping

PSM
Mapping

TraCo: A Framework for Safe Multi-Stage
Composition of Transformations

 TraCo encapsulates transformations into composable components

• Arranges them with composition programs of parallel and sequential transformation
steps (multi-threaded transformation)

Prof. U. Aßmann Feature-driven SPLE Folie 38

T1 M1 V1

SA1

SA2

T2 M2 V2

SA3

SA1*

T1* M1* V1*

SA2*

…

Tn Mn Vn

SAn

SAn-
1

V1 Feature Selection
M1 Mapping
SA1 Solution Artefact
T1 Transformation

Functional variant

Platform variant

Context variant

Steps in Multi-Staged Derivation of Transformations

1. Transformations are represented as composable components

2. Definition and Composition of Transformation Steps

• A Composition System is needed (course CBSE): Allows for reuse of arbitrary existing transformation
techniques

3. Validation of each transformation and composition step

• Type-checking

• Invariant- and constraint-checking

• Correctness of port and parameter binding

• Static and dynamic analysis

4. Execution of composition program

Prof. U. Aßmann Feature-driven SPLE Slide 39

Component

Adapter

Actual
Transformation

Code

references

Component instances

Connectors

Constant value

Multi-Staged Derivation of Transformations

 Implemented in our tool TraCo

• Component Model,

• Composition Language,

• Composition Technique

Prof. U. Aßmann Feature-driven SPLE Slide 40

Composition Programs can be Configured
(Metacomposition)

„Anything you can do, I do meta“ (Charles Simonyi)

 The composition program shown in the last slide can be subject to
transformation and composition

 If we build a product line with TraCo, platform variability can be
realised by different transformation steps

 A TraCo composition program can be used with FeatureMapper

• Multi-Staged transformation steps

• Even of composition programs

 More about metacomposition in CBSE course

Prof. U. Aßmann Feature-driven SPLE Folie 41

January 2011 Florian Heidenreich - Feature-driven SPLE Folie 42

Load Domain Model

Load Actions Model

Load
ApplicationState

Model

Load User Interface
Model

Load Navigation
Model

VIM to VSM
Domain Model to

UML
Attributes to
Properties

UML to Java

Add EJB Semantics

VIM to VSM

Actions Model to
SimpleImpl UML

Actions Model to
SimpleDelegateUML

UML to Java

UML to Java

Actions to EJB UML

Actions to EJB
Delegate UML

Add EJB
Persistence
Semantics

Add Local Memory
Semantics

UML to Java

UML to Java

VIM to VSM
ApplicationState
Model to UML

Attributes to
Properties

UML to Java

VIM to VSM

Ensure Control IDs SWT User Interface

JSP User Interface

VIM to VSM
Navigation Model to

Java

Navigation Model to
JSP

Presentation

SWT

JSP

Business Logic

Java

EJB

Persistence

Mixed

In-Memory

EJB Persistence

EJB + In-Memory

EJB + EJB Persistence

Domain

Actions

Application
State

User Interface

Navigation

Loading Functional
Variability

Platform
Variability

The final frontier: Ensuring Well-formedness of SPLs

 Motivation: Make sure that well-formedness of all participating
models is ensured

• Feature Model

• Mapping Model

• Solution Models

 Well-formedness rules are described using OCL

 Constraints are enforced during mapping time

Prof. U. Aßmann Slide 43 Feature-driven SPLE

Case Studies with FeatureMapper, TraCo, and
FEASIPLE

 Simple Contact Management Application Software Product Line

• FeatureMapper used to map features to UML2 model elements

• Both static and dynamic modelling

 Simple Time Sheet Application Software Product Line

• FeatureMapper used to tailor ISC composition programs

• ISC used as a universal variability mechanism in SPLE

• Meta Transformation

 SalesScenario Software Product Line

• FeatureMapper used to tailor models expressed in Ecore-based DSLs

• was developed in project feasiPLe (http://www.feasiple.de)

 TAOSD AOM Crisis Management System

Prof. U. Aßmann Feature-driven SPLE Slide 44

Summary

 Configuration of product lines with mapping of feature models to
solution spaces

 Mapping of Features to models in Ecore-based languages
using FeatureMapper

 Visualisations of those mappings using MappingViews

• Realisation View

• Variant View

• Context View

• Property-Changes View

 Derivation of solution models based on variant selection and
mapping

 Multi-Staged derivation using TraCo

 Ensuring well-formedness of SPLs

 http://featuremapper.org

Prof. U. Aßmann Slide 45 Feature-driven SPLE

The End

 Many slides are courtesy of Florian Heidenreich

Prof. U. Aßmann Feature-driven SPLE 46

