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Extended to Model-Driven Architecture (MDA) 

 Horizontal product line: one product idea in several markets 
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Model  
weaving 

Platform-1 specific 
model (PIM) 

Platform-1-specific 
extension (PSE) 

Platform independent 
model (PIM) 

Model  
weaving 

Platform-(1+2) specific 
model (PSM) 

Platform-2 specific 
extension (PSE) 

Adding Extensions to Abstract Models in the MDA 

 In the following, we extend the MDA (below) with configuration  
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Variants 

Variants 
Variants 

Analysis Model 

Product Line Model 
(Framework, VIM) 
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Product PIM 

Domain Model 

Variants 

Configuration 
With 
FeatureModel 

Configuration of Variabilities in Vertical Product Lines 
(MDA for Vertical Product Lines) 

► Vertical product line: several products in one or several markets 

► The VIM (variant independent model) is the common model of the product family 
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31.1 PRODUCT LINES 
WITH FEATURE TREES 
AND FEATURE MODELS 
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Feature Models for Product configuration 

 Feature models are used to express 

variability in Product Lines 

 alternative, 

 mandatory, 

 optional features, and 

 their relations 
 

 

 

 

 

 A variant model represents a concrete product (variant) 
from the product line 

 The variant model results from a selection of a subgraph of the feature 
model 

 The variant model can be used to parameterize and drive the product 
instantiation process 
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Feature Models 

 The Feature Tree Notation is derived from And-Or-Trees 

Group of AND 
Features 

Group of 
Alternative (XOR) 

Features 

FeatureA FeatureB 

Mandatory 
Feature 

Group of 
OR Features 

Optional 
Feature 

FeatureC FeatureD 

PhD Thesis, Czarnecki (1998) 
based on FODA-Notation by Kang et al. (1990) 
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Example 

 A1 or A2 or A3 

 B1; B2 xor B3 

 B4; optional B5 

 B1; B7 

A1 A2 A3 

B1 B2 B4 B5 B6 B7 B3 
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Mapping Features to Model Fragments (Model Snippets) 

 Bridging the gap between configuration and solution space 

 

 Need for mapping of features from feature models to artifacts of 

the solution space 

 

 Possible artifacts 

 Models defined in DSLs 

 Model fragments (snippets) 

 Architectural artifacts (components, connectors, aspects) 

 Source code 

 Files 

 

 But how can we achieve the mapping... ? 
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31.2 PRODUCT-LINE 
CONFIGURATION WITH 
FEATURE MODELS 
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Different Approaches of Variant Selection 
Additive approach 

 
 Map all features to model fragments (model snippets)  

 Compose them with a core model based on the presence of the 
feature in the variant model 
 
 
 
 
 
 
 
 
 

 Pros:  

 conflicting variants can be modeled correctly 

 strong per-feature decomposition 

 Cons: 

 traceability problems 

 increased overhead in linking the different fragments 
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Different Approaches of Variant Selection (2) 
Subtractive approach  

 Model all features in one model  

 Remove elements based on absence of the feature in the variant 
model 
 
 
 
 
 

 

 

 

 
 

 Pros:  

 no need for redundant links between artifacts 

 short cognitive distance 

 Cons: 

 conflicting variants can't be modeled correctly 

 huge and non-concise models 
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The Mapping Problem between Features and Solution 
Elements 
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Mapping Features to Models 

 FeatureMapper - a tool for mapping of feature models to modeling 
artifacts developed at the ST Group 

 Screencast and paper available at http://featuremapper.org 
 

 Advantages: 

 Explicit representation of mappings  

 Configuration of large product lines from selection of variants in feature trees 

 Customers understand 

 Consistency of each product in the line is simple to check 

 Model and code snippets can be traced to requirements 
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FeatureMapper 

Prof. U. Aßmann Slide 19 

Feature-driven SPLE 

 



    

Mapping Features to Models 

 We chose an explicit Mapping Representation in our tool 
FeatureMapper 

 Mappings are stored in a mapping model that is based on a 
mapping metamodel 

Prof. U. Aßmann Feature-driven SPLE Slide 20 

FeatureA 

FeatureC FeatureB 

FeatureE FeatureD 

D FeatureC 

E FeatureC 

G FeatureE 

F FeatureC 

FeatureE 

Solution Models Feature Model Mapping Model 

D 

E 

A B 

F G 



    

From Feature Mappings to Model Transformations 
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Visualisation of Mappings (1) 

 Visualisations play a crucial role in Software Engineering 

• It’s hard to impossible to understand a complex system unless you look at it from 
different points of view 

 In many cases, developers are interested only in a particular 
aspect of the connection between a feature model and realising 
artefacts 

• How a particular feature is realised? 

• Which features communicate or interact in their realisation? 

• Which artefacts may be effectively used in a variant? 

 Solution of the FeatureMapper: MappingViews, a visualisation 
technique that provides four basic visualisations 

• Realisation View 

• Variant View  

• Context View 

• Property-Changes View 
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Realisation View 

 For one Variant Model, the realisation in the solution space is 
shown 

System 

Relationship FeatureB 

Relationship 

Relationship 

Feature Model Mapping 
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Variant View 

 The variant view shows different variant realisations (variant 
models) in parallel 

System 

Relationship 

Relationship 

Relationship 

Feature Model Mapping 

Address 

Address 
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Context View 

 The Context View draws the variants with different colors 

• Aspect-separation: each variant forms an aspect 

System 

Relationship Address 

Relationship 

Relationship 

Feature Model Mapping 

Address 

Address 

Group 

Group 

Group 

... 

... 

... 
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Other 
Feature 

Property-Changes View 

 

System 

Arbitrary 
Depth 

Arbitrary 
Depth 

Feature Model Mapping 

Recorded change-set of 
changing the cardinality of the 

reflexive association of Group to 
itself from 1 to many 
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Textual Languages Support (1) 

 Unified handling of modeling languages and textual languages by 
lifting textual languages to the modelling level with the help of 
EMFText 

 

 All >80 languages from the EMFText Syntax Zoo are supported, 
including Java 5 

 

 http://emftext.org 
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Textual Languages Support (2) 

 Aspect-related color markup of the code 
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Mapping-based Derivation of Transformations 

 Transformations in the solution space build the product 
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31.3 MULTI-STAGE 
CONFIGURATION 
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FEASIPLE: A Multi-Stage Process Architecture for PLE 

 Chose one variant on each level 

 Feature Tree as input for the configuration of the model weavings 
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FEASIPLE: A Multi-Stage Process Architecture for PLE 

 Goal: a staged MDSD-framework for PLE where each stage 

produces the software artifacts used for the next stage 
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Advantages of FEASIPLE 

 Characteristic feature 1: 

 Variability on each stage 
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Advantages of FEASIPLE 

 Characteristic feature 2: 

 Different modeling languages, component systems and 

composition languages per stage 
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Advantages of FEASIPLE 

 Characteristic feature 3: 

 Different composition mechanisms per stage 
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Advantages of FEASIPLE 

 Characteristic feature 4: 

 Composition mechanisms are driven by variant selection 
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Multi-Staged Derivation of Transformations 

 How do we compose transformations? Between different stages? 
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TraCo: A Framework for Safe Multi-Stage 
Composition of Transformations 

 TraCo encapsulates transformations into composable components 

• Arranges them with composition programs of parallel and sequential transformation 
steps (multi-threaded transformation) 
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Steps in Multi-Staged Derivation of Transformations 

1. Transformations are represented as composable components 

2. Definition and Composition of Transformation Steps 

• A Composition System is needed (course CBSE): Allows for reuse of arbitrary existing transformation 
techniques 

3. Validation of each transformation and composition step 

• Type-checking 

• Invariant- and constraint-checking 

• Correctness of port and parameter binding 

• Static and dynamic analysis 

4. Execution of composition program 

 

Prof. U. Aßmann Feature-driven SPLE Slide 39 

Component 

Adapter 

Actual 
Transformation 

Code 

references 

Component instances 

Connectors 

Constant value 



    

Multi-Staged Derivation of Transformations 

 Implemented in our tool TraCo 

 

• Component Model, 

• Composition Language, 

• Composition Technique 
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Composition Programs can be Configured 
(Metacomposition) 

„Anything you can do, I do meta“ (Charles Simonyi) 

 

 The composition program shown in the last slide can be subject to 
transformation and composition 
 

 If we build a product line with TraCo, platform variability can be 
realised by different transformation steps 

 

 A TraCo composition program can be used with FeatureMapper 

• Multi-Staged transformation steps 

• Even of composition programs 

 

 More about metacomposition in CBSE course 
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The final frontier: Ensuring Well-formedness of SPLs 

 Motivation: Make sure that well-formedness of all participating 
models is ensured  

• Feature Model 

• Mapping Model 

• Solution Models 

 

 Well-formedness rules are described using OCL 

 

 Constraints are enforced during mapping time 
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Case Studies with FeatureMapper, TraCo, and 
FEASIPLE 

 Simple Contact Management Application Software Product Line 

• FeatureMapper used to map features to UML2 model elements 

• Both static and dynamic modelling 
 

 Simple Time Sheet Application Software Product Line 

• FeatureMapper used to tailor ISC composition programs 

• ISC used as a universal variability mechanism in SPLE 

• Meta Transformation 
 

  SalesScenario Software Product Line 

• FeatureMapper used to tailor models expressed in Ecore-based DSLs 

• was developed in project feasiPLe (http://www.feasiple.de) 

 

 TAOSD AOM Crisis Management System 

Prof. U. Aßmann Feature-driven SPLE Slide 44 



    

Summary 

 Configuration of product lines with mapping of feature models to 
solution spaces 

 Mapping of Features to models in Ecore-based languages 
using FeatureMapper 

 Visualisations of those mappings using MappingViews 

• Realisation View       

• Variant View      

• Context View     

• Property-Changes View      

 

 Derivation of solution models based on variant selection and 
mapping 

 Multi-Staged derivation using TraCo 

 Ensuring well-formedness of SPLs 

 

   http://featuremapper.org 
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The End 

 Many slides are courtesy of Florian Heidenreich 
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