
Future-Proof Software-Systems: Summary

1 Prof. Dr. Frank J. Furrer - WS 2015/16

h
ttp

s
:/

/
b
lo

g
.th

e
b
ra

in
.c

o
m

Key Points FPSS
Lecture: 06.01.2016

Future-Proof Software-Systems: Summary

2 Prof. Dr. Frank J. Furrer - WS 2015/16

o Legacy System Migration/Modernization

o Software Product Lines

o Domain Software Engineering

 Part 4A: Architecting for Resilience

General Resilience Architecture Principles

January 6, 2016:

Future-Proof Software-Systems: Summary

3 Prof. Dr. Frank J. Furrer - WS 2015/16

Legacy Systems Migration/Modernization

A legacy system refers to outdated computer

systems, eroded software architectures, old

programming languages or badly supported

applications software

Future-Proof Software-Systems: Summary

4 Prof. Dr. Frank J. Furrer - WS 2015/16

h
tt

p
:/

/
w

w
w

.1
2
3
rf

.c
o
m

Liability

h
ttp

:/
/
w

w
w

.n
zz.c

h
/
a
k
tu

e
ll

Asset

A very large part of systems in today’s use are legacy systems!

bad:

• very low agility

• weak resilience

• eroded architecture

• badly or not documented

• obsolete technology (HW & SW)

• large technical debt

• lost knowledge (people left)

good:

• invaluable implicit knowledge of the
domain and the business processes

• stable operation (mature)

• good solutions/algorithms

• often: suprisingly good code

Future-Proof Software-Systems: Summary

5 Prof. Dr. Frank J. Furrer - WS 2015/16

Functionality
& Data

Legacy Software-SystemHigh resistance to change for new
business requirements (low agility)

Technology pressure

New architecture paradigms

Knowledge shortage

Weak resilience (attacks, faults, …)

Legacy systems must (at some time) be replaced or migrated

How do we replace or migrate legacy systems?

 By applying a migration strategy

Future-Proof Software-Systems: Summary

6 Prof. Dr. Frank J. Furrer - WS 2015/16

Type of Migration Current State Target State

Replacing
 Completely new

development starting
from systems
requirements

Operational software. Cost, time
and risk for a migration to high

Software has completely been
rewritten, starting from the initial
requirements

Re-Architecting
 Transforming to new

architecture paradigm
(Considerable functional
change)

Operational software.
Architecture paradigm has
changed

[e.g. monolithic architecture 
service-oriented architecture]

Software runs under the new
architecture paradigm

Re-Engineering
 Transforming to new

technology base, e.g.
new infrastructure or
software technology
(limited functional
change)

Operational code running on an
outdated execution platform or
using an obsolete software
technology

Code runs on the modern
execution platform or uses
modern software technology

Re-Factoring
 Improving existing code

(no functionality change)

Operational code, deficiencies in
the program implementation

Improved code (quality criteria)

Reverse Engineering
 No or insufficient

information (code + doc)

Operational code, massive lack
of documentation, of knowledge
and of source code

System is sufficiently understood
and documented to start
migration

Future-Proof Software-Systems: Summary

7 Prof. Dr. Frank J. Furrer - WS 2015/16

Legacy SW-System Modernization

h
tt

p
:/

/
w

w
w

.d
c
c
tr

a
in

.c
o
m

h
tt

p
:/

/
w

w
w

.m
id

c
o
n

ti
n

e
n

t.
o
rg

/
p
re

s
s
/
p
re

s
s
_r

iv
e
ts

.h
tm

l

Our world runs on Billions of legacy lines of code which
must be migrated/modernized in the next decades

 Enormous challenge for the SW-community

Future-Proof Software-Systems: Summary

8 Prof. Dr. Frank J. Furrer - WS 2015/16

Architecture Recommendations for Legacy System
Modernization

1. Unambigously specify the boundary of the system (Code &
Data) to be migrated/modernized

2. Clearly assess the state of the legacy system (code, data,
documentation, value)

3. Precisely define the migration/modernization goals (for code
& data)

4. Choose a migration/modernization strategy based on risk,
fit-for-future, cost & time and quality attributes (e.g.

certification or validation etc.)

5. Select optimum tool support [Note: Many excellent tools
available, search www]

RLegacy

Future-Proof Software-Systems: Summary

9 Prof. Dr. Frank J. Furrer - WS 2015/16

Software Product Lines

h
tt

p
:/

/
w

w
w

.p
ro

d
p
a
d
.c

o
m

/
2
0
1
3

A software product line is a set of software-intensive systems

sharing a common, managed set of features,

that satisfy the specific needs of a particular market or mission

and that are developed from a common set of core assets
[Clements02]

Future-Proof Software-Systems: Summary

10 Prof. Dr. Frank J. Furrer - WS 2015/16

Product Line
Conception

Market

Company
Strategy

Feature Model
Wave 1:
• X
• Y
Wave 2:
• Z
• R
…

Doc

Wave
1

Doc

Wave
2

Doc

Wave
3

Doc

Wave
4

F

F

F

F

F

F

Product Line
Architecture

Future-Proof Software-Systems: Summary

11 Prof. Dr. Frank J. Furrer - WS 2015/16

Economics of Product Line Development:

1 2 3 4 5 6 … # of different
systems built

Total
effort
[€, t]

Single
systems
approach

Product
line
approach

Initial effort:
● Prod line def

● Variability
● ↑ Quality

Great advantage in
cost, time-to-market
and quality

Future-Proof Software-Systems: Summary

12 Prof. Dr. Frank J. Furrer - WS 2015/16

Linda Northrop, SEI, 2008

2010s
Product
Lines

1970s
Modules

2000s
Services

1990s
Components

1980s
Objects

1960s
Subroutines

Software Re-Use Power

Future-Proof Software-Systems: Summary

13 Prof. Dr. Frank J. Furrer - WS 2015/16

Domain Software Engineering

h
tt

p
:/

/
jo

s
e
p
h

_b
e
rr

ig
a
n

.t
ri

p
o
d
.c

o
m

Domain Software Engineering [DSE] =

an architectural methodology

for evolving a software system

that closely aligns to business domains

Future-Proof Software-Systems: Summary

14 Prof. Dr. Frank J. Furrer - WS 2015/16

h
tt

p
:/

/
w

w
w

.s
u

th
e
rl

a
n

d
w

e
s
to

n
.c

o
m

Divergence =

Mismatch between

Business Needs

and IT-Implementation

The Challenge: Divergence & Complexity

h
ttp

:/
/
b
lo

g
.d

ig
ita

l.te
le

fo
n

ic
a
.c

o
m

Complexity =

Property of an IT-system which

makes it difficult to formulate its

overall behaviour, even when given

complete information about its

parts and their relationships

Future-Proof Software-Systems: Summary

15 Prof. Dr. Frank J. Furrer - WS 2015/16

h
tt

p
:/

/
w

w
w

.s
u

th
e
rl

a
n

d
w

e
s
to

n
.c

o
m

Divergence

h
tt

p
:/

/
m

a
y
rs

o
m

.c
o
m

Business Units:

• Vocabulary

• Concepts

• Customs

• Knowledge

• Tradition

• …

IT Units:

• Terminology

• Classes

• Programming

• Constraints

• Experience

• …

Error-prone Transformation

Future-Proof Software-Systems: Summary

16 Prof. Dr. Frank J. Furrer - WS 2015/16

h
tt

p
:/

/
w

w
w

.s
u

th
e
rl

a
n

d
w

e
s
to

n
.c

o
m

DivergenceBusiness Units

Business needs
Requirements

IT Units

Specifications

Development

Integration

Deployment

Misunderstandings, Loss of Precision

Future-Proof Software-Systems: Summary

17 Prof. Dr. Frank J. Furrer - WS 2015/16

h
ttp

:/
/
b
lo

g
.d

ig
ita

l.te
le

fo
n

ic
a
.c

o
m

Complexity

Essential complexity Accidental Complexity

… is the inherent complexity
of the system to be built

Essential complexity for a
given problem cannot be
reduced.

… is introduced by our
development activities or by
constraints from our
environment

Future-Proof Software-Systems: Summary

18 Prof. Dr. Frank J. Furrer - WS 2015/16

h
ttp

:/
/
b
lo

g
.d

ig
ita

l.te
le

fo
n

ic
a
.c

o
m

Complexity
Business Units

Business needs
Requirements

IT Units

Specifications

Development

Integration

Deployment

Translation: Accidental Complexity

Accidental ComplexityModeling

Accidental ComplexityIntegration

Accidental ComplexityImplementation

Future-Proof Software-Systems: Summary

19 Prof. Dr. Frank J. Furrer - WS 2015/16

We need to improve communication and understanding!

Business Units IT Units

 The promise and value of domain software engineering (DSE) The promise and value of domain software engineering (DSE)

Future-Proof Software-Systems: Summary

20 Prof. Dr. Frank J. Furrer - WS 2015/16

h
ttp

s
:/

/
c
im

x
.w

o
rd

p
re

s
s
.c

o
m

IT ImplementationCustomer/Business Needs

h
tt

p
:/

/
c
li
p
a
rt

ze
b
ra

z.
c
o
m

DSE

Which are the key elements of DSE (Domain Software Engineering?)

1. Understanding the Business/Application Domain in terms of the business

( Domain Model)

2. Use of an ubiquitous language

(Business  IT alignment)

3. Software: Implementation of Business Domain concepts

(Concepts  Business objects  Programm objects)

1. Understanding the Business/Application Domain in terms of the business

( Domain Model)

2. Use of an ubiquitous language

(Business  IT alignment)

3. Software: Implementation of Business Domain concepts

(Concepts  Business objects  Programm objects)

Universale Ausdrucksform

Future-Proof Software-Systems: Summary

21 Prof. Dr. Frank J. Furrer - WS 2015/16

The DSE concepts:

Business/Application Domain

Bounded Context

Domain Model

Anticorruption Layer

A Domain is a Sphere
of Knowledge,

Influence or Activity

The Bounded Context is
the Boundary of a Model

A Domain Model is a representation
of the Entities, Relationships and

their Properties in a specific
Application Domain

An Anti-Corruption Layer is a
method to isolate two domains or
systems, allowing systems to be
integrated without knowledge of

each other

Future-Proof Software-Systems: Summary

22 Prof. Dr. Frank J. Furrer - WS 2015/16

Formalization

highlow

«Boxes & Lines»
Text

Ontologies

h
ttp

s
:/

/
c
im

x
.w

o
rd

p
re

s
s
.c

o
m

IT OrganizationCustomer/Business

h
tt

p
:/

/
c
li
p
a
rt

ze
b
ra

z.
c
o
m

Ubiquitious Language
UL

Ubiquitous
Language

Domain
Experts

Software
Teams

UML, SysMLBoxes & Lines
with semantics

Future-Proof Software-Systems: Summary

23 Prof. Dr. Frank J. Furrer - WS 2015/16

Conclusions:

• Domain Software Engineering (DSE)
is a very promising software development methodology

• It has the potential to massively reduce divergence and
accidental complexity

• It forces a close cooperation between business units
(domain experts) and IT experts

• The base for success is an accurate, current domain
model in business terms (business concepts & objects)

• The software implementation must strongly reflect the
elements of the domain model

Architecture Recommendations for Domain Software
Engineering (DSE)

1. Gracefully build up an Ubiquituous Language between
Business/Customer and IT (Implementer)

2. Define a consistent and complete domain model
(hierarchical because of the size)

3. Push the formalization as far as possible (without losing the
business/customer)

4. Use the terminology from the domain model/ubiquitous
language in the code

5. Keep the domain model and the code implementation
strictly synchronized at all times

Future-Proof Software-Systems: Summary

24 Prof. Dr. Frank J. Furrer - WS 2015/16

RDSE

Future-Proof Software-Systems: Summary

25 Prof. Dr. Frank J. Furrer - WS 2015/16

h
tt

p
s
:/

/
w

w
w

.w
a
ll
-a

rt
.c

o
m

Part 4: Architecting for Resilience

Future-Proof Software-Systems: Summary

26 Prof. Dr. Frank J. Furrer - WS 2015/16

Resilience: Definition

Resilience is the capability of a system with specific characteristics

before, during and after a disruption

to absorb the disruption, recover to an acceptable level of
performance,

and sustain that level for an acceptable period of time

http://www.incose.org/practice/techactivities/wg/rswg/

Incident System
& Environment

 Before – Allows anticipation and corrective action to be considered
 During – How the system survives the impact of the disruption
 After – How the system recovers from the disruption

Future-Proof Software-Systems: Summary

27 Prof. Dr. Frank J. Furrer - WS 2015/16

Business
Value

Resi-
lience

Gain of
Resi-

lience

Gain of Business
Value

Managed
Evolution
Channel

Continuous development of resilience leads to a

sustainable system

(= path to future-proof SW-systems)

Resilience Evolution Trajectory

h
ttp

:/
/
e
n

.w
ik

ip
e
d
ia

.o
rg

/
w

ik
i/

C
ze

c
h

o
s
lo

v
a
k
_b

o
rd

e
r_

fo
rtific

a
tio

n
s

Future-Proof Software-Systems: Summary

28 Prof. Dr. Frank J. Furrer - WS 2015/16

Resilience = Result of the relevant

properties of the system

Confidentiality

Certifiability

Security

Availability

Integrity

Safety

Reliability

Traceability

Non-Repudiation

Fault-Tolerance

Accountability

Standards adherence

Diagnosability

Business Continuity Survivability

Fail-Save Behaviour

Real-TimeCapability

Auditability

Graceful Degradation

Recoverability

Performance

etc.

Future-Proof Software-Systems: Summary

29 Prof. Dr. Frank J. Furrer - WS 2015/16

System Quality Property Weight

0: irrelevant

10: highest importance

Primary Characteristics

1 Business Value 10

2 Agility 10

Resilience:

3 Safety 9

4 Fault-Tolerance 9

5 Compliance to laws & regulations 9

6 Integrity (Sensor Data) 9

7 Availability 8

8 Security 7

9 Diagnosability 6

Secondary Characteristics

10 Resources (Memory, CPU, …) 8

11 Compliance to industry-standards 7

12 Usability (User Interfaces) 9

etc

Example:
Automotive Domain

Quality Property
Score Card

Resilience
defined

Future-Proof Software-Systems: Summary

30 Prof. Dr. Frank J. Furrer - WS 2015/16

System

Incident

all possible incidents

Incident

Incident

Incident

Incident

Incident

Incident

Incident

Incident

Specific
Countermeasures
( Risk Analysis)



Architectural
Countermeasures

(Principles)



Adaptive
Behaviour

(«Autonomic
Computing»)



Future-Proof Software-Systems: Summary

31 Prof. Dr. Frank J. Furrer - WS 2015/16

h
tt

p
:/

/
tr

a
v
e
li
n

o
s
.c

o
m

/
c
a
s
tl

e
s

Software Resilience

 Architecture (Structure)

- governed by resilience architecture principles

Future-Proof Software-Systems: Summary

32 Prof. Dr. Frank J. Furrer - WS 2015/16

h
tt

p
:/

/
w

w
w

.m
a
ri

n
a
b
a
y
s
a
n

d
s
.c

o
m

Resilience Architecture Principles

General Resilience
Architecture Principles
(Overarching Principles)

Safety Principles

Security Principles

Integrity Principles

Availability Principles

… etc.

Future-Proof Software-Systems: Summary

33 Prof. Dr. Frank J. Furrer - WS 2015/16

 R1: Fault Containment Regions

 R2: Single Points of Failure

 R3: Multiple Lines of Defense

 R4: Fail-Safe States

 R5: Graceful Degradation

 R6: Dependable Foundation (Infrastructure)

General (Overarching)
Architecture Principles

for Resilience

Future-Proof Software-Systems: Summary

34 Prof. Dr. Frank J. Furrer - WS 2015/16

System Part A

The consequences of a fault – the ensuing error –
can propagate either by an erroneous message or
by an erroneous output action of the faulty part

System Part B

ERROR

System Part C

ERROR

Fault

Incident

ERROR

R1: Fault Containment

Future-Proof Software-Systems: Summary

35 Prof. Dr. Frank J. Furrer - WS 2015/16

System Part A

System Part B

ERROR

System Part C

ERROR

Fault

Incident

ERROR

Build error propagation boundaries around each system part

Fault Containment Region

R1: Fault Containment

Future-Proof Software-Systems: Summary

36 Prof. Dr. Frank J. Furrer - WS 2015/16

Resilience Architecture Principle R1:

Fault Containment Regions

1. Partition the system into fault containment regions

2. Build error propagation boundaries around each system part
( Interfaces)

3. Provide sufficient redundant information about the intended
behavior of the system parts (components)

R1

Justification: A fault or incident causing an error or disruption in one
part (component) of the system should not propagate to other parts of the
system and thus cause a sequence of errors and failures

R1: Fault Containment

Future-Proof Software-Systems: Summary

37 Prof. Dr. Frank J. Furrer - WS 2015/16

R2: SPoF

Information (Data)
Architecture
(Information & Data)

Technical
Architecture
(Technical
Infrastructure)

Integration
Architecture
(Cooperation
Mechanisms)

Applications
Architecture
(Functionality)

Business
Architecture
(Business Processes)

Security
Architecture

(Defense)

Safety
Architecture

(Accidents)

Performance
Architecture

(Real-Time)

System
Management
Architecture

(Control)

e
tc

.

A single point of failure (SPOF)

is a part of a system that,

if it fails,

will stop the entire system from working

Future-Proof Software-Systems: Summary

38 Prof. Dr. Frank J. Furrer - WS 2015/16

R2: SPoF Example: Computer Network

Redundancy
eliminates
SPOF

Future-Proof Software-Systems: Summary

39 Prof. Dr. Frank J. Furrer - WS 2015/16

R2: SPoF

Resilience Architecture Principle R2:

Single Points of Failure

1. Identify possible single points of failure early in the
architecture/design process (Note: single points of failure can

occur on all levels of the architecture stack)

2. Eliminate single points of failure, e.g. by introducing redundancy
or improving the architecture

R2

Justification: Any single point of failure is a great risk for a resilient
system. They must therefore consistently be avoided

Future-Proof Software-Systems: Summary

40 Prof. Dr. Frank J. Furrer - WS 2015/16

R3: Multiple Lines of Defense

2
n

d
li
n

e
o
f
d
e
fe

n
s
e

1
s
t
li
n

e
o
f
d
e
fe

n
s
e

Threats
• Safety

• Security
• Availability

• …

h
tt

p
:/

/
w

w
w

.b
u

c
k
s
ti

x
.c

o
m

Future-Proof Software-Systems: Summary

41 Prof. Dr. Frank J. Furrer - WS 2015/16

Resilience Architecture Principle R3:

Multiple Lines of Defense

1. For each threat and incident implement multiple lines of defense

2. For each line of defense use different methods, techniques and
technology

R3

Justification: If a line of defense is overcome as a consequence of an
incident, the second (third, …) line of defense may mitigate the impact of
the incident

R3: Multiple Lines of Defense

Future-Proof Software-Systems: Summary

42 Prof. Dr. Frank J. Furrer - WS 2015/16

R4: Fail Safe States

Fail-safe means that a system will not endanger

lives or property when it fails.

It will go into a fail-safe state and stop working.

h
tt

p
:/

/
w

w
w

.v
ie

w
s
e
n

d
e
r.

c
o
m

“As engineers we

sometimes find

designing systems to be

well-built is much easier

than designing it to fail

predictably”

Peter Herena, 2011

Future-Proof Software-Systems: Summary

43 Prof. Dr. Frank J. Furrer - WS 2015/16

R4: Fail Safe States

h
tt

p
s
:/

/
w

w
w

.n
p
m

js
.c

o
m

Safe
State

Operational states

Operational transitions

System
represented
as a
state machine

Future-Proof Software-Systems: Summary

44 Prof. Dr. Frank J. Furrer - WS 2015/16

R4: Fail Safe States

Resilience Architecture Principle R4:

Fail-Safe States

1. Define and specify fail-safe states in the operation of the system
(= states which do not endanger lives or property)

2. Define and implement trajectories to fail-safe states from all
possible states in case of irrecoverable faults, errors or failures

3. The trajectories to fail-safe states must be automatic, short and
dependable

R4

Justification: When a system encounters an irrecoverable fault, error
or failure a planned transition into a safe state will avoid damage

Future-Proof Software-Systems: Summary

45 Prof. Dr. Frank J. Furrer - WS 2015/16

R5: Graceful Degradation

Availability

Availability

100 %

50 %

Component
Failures

Tolerable Failures Impacting Failures
System
Failure

Graceful
Degradation

Failure
[hopefully to a

safe state]

Graceful Degradation is with
respect to a specific resilience

property

Future-Proof Software-Systems: Summary

46 Prof. Dr. Frank J. Furrer - WS 2015/16

R5: Graceful Degradation

FF

F

F

F

F

F

FF

F

F

F
F

F
F

F

F

F

F

F
F

reduced level of
functionality
or resilience

Fault Tolerance:
succesful redundancy

Graceful Degradation = Fault Tolerance Engineering

Future-Proof Software-Systems: Summary

47 Prof. Dr. Frank J. Furrer - WS 2015/16

R5: Graceful Degradation

Resilience Architecture Principle R5:

Graceful Degradation

1. Investigate the possibility for graceful degradation in your planned

system (= Business task)

2. Architect and implement proven graceful degradation technologies

(for specific resilience properties, such as availability, performance,

safety, security, …)

3. Compensate failures by redundancy

R5

Justification: The value of many systems is significantly improved if
after a failure of a component the system operates in a (planned)
degraded mode instead of stopping service

Future-Proof Software-Systems: Summary

48 Prof. Dr. Frank J. Furrer - WS 2015/16

R6: Dependable Foundation (Infrastructure)

Use a resilience infrastructure as part of a dependable

foundation for resilient software-systems

Resilience Infrastructure:

Set of proven resilience technologies and services

supporting the resilience properties (availability,

security, performance, …) of software systems

h
tt

p
s
:/

/
w

w
w

.n
p
m

js
.c

o
m

Resilience Engineer Roles:

• Security Engineer

• Safety Engineer

• Availability/Performance Engineer

• … (all required resilience properties)

Future-Proof Software-Systems: Summary

49 Prof. Dr. Frank J. Furrer - WS 2015/16

R6: Dependable Foundation (Infrastructure)

1960

Technical
Infrastructure

Application
Software

1980

Technical
Infrastructure

Application
Software

Infrastructure
Services

2000

Technical
Infrastructure

Application
Software

Infrastructure
Services

Commodities
Sourcing

2020

Technical
Infrastructure

Application
Software

Infrastructure
Services

Commodities
Sourcing

Dependable
resilience mechanisms

Future-Proof Software-Systems: Summary

50 Prof. Dr. Frank J. Furrer - WS 2015/16

R6: Dependable Foundation (Infrastructure)

Resilience Architecture Principle R6:

Dependable Foundation (Infrastructure)

1. Use a resilience infrastructure as part of a dependable foundation

for resilient software-systems

2. Only use proven resilience technologies and services supporting

the resilience properties (availability, security, performance, …)

3. Whenever possible use industry-standard based resilience

techniques (But avoid vendor lock-in)

R6

Justification: An implementation of proven resilience techniques in the
form of industry-standard products forms a valuable, trustable resilience
foundation

Future-Proof Software-Systems: Summary

51

Planned dates (oral exams):

Wednesday, February 3, 15:00 – 18:00

Thursday, Februar 4, 09:00 – 11:30

 Prof. Dr. Frank J. Furrer - WS 2015/16

Exams Winter Term 2015/16

Please write an email to katrin.heber@tu-dresden.de (Secretary
of the Chair of Software Technology). She will schedule your
timing of the exam.

Alternate date: If none of these dates suits you, there will be
another exam time after the beginning of the Summer Term
2016. The date will be announced later. Please register with
katrin.heber@tu-dresden.de

Future-Proof Software-Systems: Summary

52 Prof. Dr. Frank J. Furrer - WS 2015/16

13:00 BEGRÜSSUNG

Dekan der Fakultät Informatik &

Prof. Dr. Uwe Aßmann | Technische
Universität Dresden

13:15 ANTRITTSVORLESUNG

SOFTWARE

– Gratwanderung zwischen
Erfolgsgeschichten und Katastrophen?

Prof. Dr. Frank J. Furrer | Technische
Universität Dresden

14:15 KAFFEEPAUSE

15:00 Emergenz in Cyber-Physical System of
Systems (CPSoS)

Was führt zu emergentem Verhalten in Cyber-
Physical System of Systems?

Prof. Dr. Hermann Kopetz | Technische
Universität Wien

15:45 Gotische Kathedralen und Software-
Architekturen

– Gibt es da irgendeinen Zusammenhang?

Prof. Dr. Manfred Nagl | RWTH Aachen

16:30 Building correct cyberphysical systems

– and how to improve current practice

Prof. Dr. Susanne Graf | VERIMAG Grenoble

Antrittsvorlesung Prof. Dr. Frank J. Furrer
21. Janaury 2016 / 13:00 – 14:15

http://st.inf.tu-dresden.de/fjfurrer/

Future-Proof Software-Systems: Summary

53 Prof. Dr. Frank J. Furrer - WS 2015/16

 Part 4B: Architecting for Resilience

• Specific Resilience Architecture Principles

• Autonomic Computing

January 20, 2016:

