
Fakultät Informatik Institut für Software- und Multimediatechnik, Lehrstuhl für Softwaretechnologie

Winter term 2015/2016 - Model-Driven Software Development in Technical Spaces

Exercise 3: Model Transformations

The purpose of this exercise is to understand how to realize a model to text transformation. For this, two

approaches shall be realized. The first approach represents template-based code generation. The second

is using a model-to-model transformation and EMFText.

Task 1: Template-based Code Generation

• Use the integrated DSL for class diagrams and state charts from the last exercise.

• Download and understand the tool Acceleo (http://www.eclipse.org/acceleo/)

• Write Acceleo templates, which generate valid Java code for programs written using the integrated

DSL. Hint: use the state pattern to translate state charts into code.

Task 2: Model-to-Model Transformations and JaMoPP

• Again, use the integrated DSL from the last exercise.

• Download and understand the tool ATL (http://www.eclipse.org/atl/).

• Download and understand the EMFText Language JaMoPP (http://www.jamopp.org/).

• Write an ATL transformation from your integrated DSL to JaMoPP. Hint: again, the state pattern

can be useful.

Example

Listing 1: Example DSL Instance for Class Model+Statechart

class Door {

boolean isOpen;

void open ();

void close ();

void lock ();

void unlock ();

statechart {

state open;

state closed;

state locked;

transition open (close() [isOpen] / isOpen=false) closed

transition closed (open() [! isOpen] / isOpen=true) open

transition closed (lock() [] / ) locked

transition locked (unlock () [] / ) closed

}

}

1



Listing 2: Exemplary Java Code Generated from Listing 1

abstract class Door {

private boolean isOpen;

public abstract Door open ();

public abstract Door close ();

public abstract Door lock ();

public abstract Door unlock ();

public Door(boolean open) { isOpen=open; }

public void setOpen(boolean open) { isOpen=open; }

public boolean isOpen () { return isOpen; }

}

class OpenDoor extends Door {

//...

}

//...

2


