
 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

Part 0 - MOST
1. Modeling

Prof. Dr. rer. nat. Uwe Aßmann

Institut für Software- und
Multimediatechnik

Lehrstuhl Softwaretechnologie

Fakultät für Informatik

Technische Universität Dresden

http://st.inf.tu-dresden.de/teaching/most

Version 15-0.4, 10.10.15

http://st.inf.tu-dresden.de/teaching/most

 ©
 P

ro
f.

U
. A

ß
m

an
n

2 Model-Driven Software Development in Technical Spaces (MOST)

Literature

► Obligatory:
■ [HesseMayr] Wolfgang Hesse and Heinrich C. Mayr. Modellierung in der

Softwaretechnik: eine Bestandsaufnahme. Informatik Spektrum,
31(5):377-393, 2008.

► References:
■ Stachowiak, Herbert. Allgemeine Modelltheorie. Springer, Wien, 1973

 ©
 P

ro
f.

U
. A

ß
m

an
n

3 Model-Driven Software Development in Technical Spaces (MOST)

ModelOriginal

Modeled
properties

Image

Additional „abundant“
properties

Non-modeled „preterite“
properties

Is-described-by
Mapping

Original and Model

► [HesseMayr, Stachowiak]
► Model mappings can be sequenced:

ModelOriginal Model 2

Represents

 ©
 P

ro
f.

U
. A

ß
m

an
n

4 Model-Driven Software Development in Technical Spaces (MOST)

A model is an abstraction of an
original [Stachowiak]

A model is an abstraction of an
original [Stachowiak]

A system model is an abstraction of
a system

A system model is an abstraction of
a system

A world model is an abstraction of a
world

A world model is an abstraction of a
world

A domain model is an abstraction of
a domain of the world

A domain model is an abstraction of
a domain of the world

A direct model is an abstraction of a
reality

A direct model is an abstraction of a
reality

 ©
 P

ro
f.

U
. A

ß
m

an
n

5 Model-Driven Software Development in Technical Spaces (MOST)

Descriptive
Modeller

Prescriptive
Modeler;
Specifier;
Implementer

[HesseMayr]

https://openclipart.org/detail/205983/mount-kilimanjaro

 ©
 P

ro
f.

U
. A

ß
m

an
n

6 Model-Driven Software Development in Technical Spaces (MOST)

Token Modeling

► In Token modeling, some features of the objects in original domain O are
forgotten, but never the objects themselves

■ Abstraction over features
■ Leading to view-based modeling, aspect-oriented modeling

1:1 Object Mapping

 ©
 P

ro
f.

U
. A

ß
m

an
n

8 Model-Driven Software Development in Technical Spaces (MOST)

Type Modeling

► In type modeling, sets of objects are abstracted

N:m<n Mapping

 ©
 P

ro
f.

U
. A

ß
m

an
n

9 Model-Driven Software Development in Technical Spaces (MOST)

Type Modeling

► Clabjects (class-objects) are classes reified as representant objects on the
metalevel.

■ In an object-oriented program, clabjects are objects that represent
classes of other objects.

► Russells Paradox “The set of all sets containing themselves as elements”
forbids infinitely many reifications

► <<instance-of>> is a composition of <<element-of>> with <<reified-to>>

<<class>>
Person

John:Person

<<class-object>>
Person

<<reified-to>>

<<instance-of>>

<<element-of>>

 ©
 P

ro
f.

U
. A

ß
m

an
n

10 Model-Driven Software Development in Technical Spaces (MOST)

The Smalltalk Metaclass

► Smalltalk-80 was the first language to introduce metamodeling
► It introduced clabjects as class-objects and as metaclass.
► Changing the Smalltalk metaclass changes the semantics of all classes and all objects.
► In Java, class Class is the metaclass, but it is immutable

<<collection>>
extent

John:Person

<<Class>>
Person

<<reified-to>>

<<instance-of>>

<<element-of>>

<<collection>>
extent

<<Metaclass>>
Class

<<reified-to>>

<<instance-of>><<element-of>>

 ©
 P

ro
f.

U
. A

ß
m

an
n

11 Model-Driven Software Development in Technical Spaces (MOST)

Notation

► We write metaclasses (clabjects) with dashed lines, metametaclasses (clabjects)
with dotted-dashed lines

<<instance-of>>

<<instance-of>>

<<instance-of>>

car1:Car

Car:Class

Class:ModellingConcept

ModellingConcept

<<instance-of>>

<<instance-of>>

<<instance-of>>

car1:

Car

Class

ModellingConcept

Clabject Hierarchy

M3

M2

M1

M0

 ©
 P

ro
f.

U
. A

ß
m

an
n

12 Model-Driven Software Development in Technical Spaces (MOST)

Q1: IDE and Model-Driven Software Development

Software
Requirements

Test
Design

User
Docs

Problem The
Product
To Be
Built

Solution
Space

Problem
Space

► MDSD systematically connects the customer's problems, the system's
requirements, testing, design, coding, and documentation and develops these
models in coordination

► MDSD relies on model mappings between requirements, test cases, design, and
code

► Integrated Development Environments (IDE) provide tools for all singular
aspects, as well as model mappings

Code

Customer Needs

 M
od

el
-D

ri
ve

n
So

ft
w

ar
e

D
ev

el
o

pm
en

t
in

 T
ec

h
ni

ca
l S

p
ac

es
 (M

O
ST

) ©
 P

ro
f.

U
. A

ß
m

an
n

13

Q2: Tools in an Integrated Development Environment
(IDE) for MDSD

Requirements
Repository

Design
Repository
(PIM, Arch)

Implementation
Repository
(PSI, Code)

Test Case
Repository

Requirements Tool Testing Tool

Metamodel
Repository

(M2)

Reasoning
engine

GRS
engine

TRS
engine

XML
engine

Relational
engine

Coding Tool

Reachability analysis (traceability) Attribute analysis

Model mappings Model slicing Model composition

Run-time

14

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

The End

	7. Werkzeuge zur Anforderungsanalyse
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 8
	Slide 9
	Slide 10
	Notation
	Introduction to Requirements Management
	Slide 13
	Slide 14

