TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

Part 0- MOST
1. Modeling

Prof. Dr. rer. nat. Uwe Aldmann

Institut fur Software- und
Multimediatechnik

Lehrstuhl Softwaretechnologie
Fakultat fur Informatik

Technische Universitat Dresden

(A
http://st.inf.tu-dresden.de/teaching/most ‘\)"
Version 15-0.4, 10.10.15 o

zzzzzzzzzzzz

uuuuuuuuu

Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. ABmann

http://st.inf.tu-dresden.de/teaching/most

Literature

2

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

» Obligatory:
= [HesseMayr] Wolfgang Hesse and Heinrich C. Mayr. Modellierung in der
Softwaretechnik: eine Bestandsaufnahme. Informatik Spektrum,

31(5):377-393, 2008.

» References:
= Stachowiak, Herbert. Allgemeine Modelltheorie. Springer, Wien, 1973

Original and Model

3 Model-Driven Software Development in Technical Spaces (MOST)

|s-described-by
Mapping

bepvgsent/

Original

Modeled
properties

Image

Additional ,abundant”
properties

Non-modeled ,preterite*
properties

» [HesseMayr, Stachowiak]

» Model mappings can be sequenced:

- j C i

@ © Prof. U. ABmann

4

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

A model is an abstraction of an
original [Stachowiak]

A system model is an abstraction of
a system

A direct model is an abstraction of a
reality

A world model is an abstraction of a
world

A domain model is an abstraction of
a domain of the world

5

Model-Driven Software Development in Technical Spaces (MOST)

https://openclipart.org/detail/205983/mount-kilimanjaro

@ © Prof. U. ABmann

Descriptive
Modeller

[HesseMayr]

Prescriptive
Modeler;
Specifier;
Implementer

Token Modeling

6

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

> In Token modeling, some features of the objects in original domain O are
forgotten, but never the objects themselves

= Abstraction over features
= Leading to view-based modeling, aspect-oriented modeling

1:1 Object Mapping
O —
o— i
O
- O —_—
o— —

>0
»O
»O
»O
>0
»O

Type Modeling

8

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

> In type modeling, sets of objects are abstracted

N:m<n Mapping

Type Modeling

9 Model-Driven Software Development in Technical Spaces (MOST)

» Clabjects (class-objects) are classes reified as representant objects on the
metalevel.
= In an object-oriented program, clabjects are objects that represent
classes of other objects.
» Russells Paradox “The set of all sets containing themselves as elements”
forbids infinitely many reifications
» <<instance-of>> is a composition of <<element-of>> with <<reified-to>>

<<reified-to>> _
<<class>> »| <<class-object>>

Person Person

-
-
-
-
-
-
-
-
-

ﬁ&«element—of»

__________ <<instance-of>>
John:Person |~

@ © Prof. U. ABmann

The Smalltalk Metaclass

10

Model-Driven Software Development in Technical Spaces (MOST)

» Smalltalk-80 was the first language to introduce metamodeling
» Itintroduced clabjects as class-objects and as metaclass.
» Changing the Smalltalk metaclass changes the semantics of all classes and all objects.

» InJava, class Class is the metaclass, but it is immutable

<<collection>>
extent

<<collection>>
extent

<<reified-to>>
.

ﬁk«element-of»

<<reified-to>>

ﬁ&«element—of»

<<Class>>
Person

John:Person

-
-
-
-
-
-
-
-
-
-
-
-
-*
4

@ © Prof. U. ABmann

———
-

-
-
-
-
-
-
-
-

<<Metaclass>>
Class

-
.
.
-

=
<<jnstance-of>>

Notation Clabject Hierarchy

11 Model-Driven Software Development in Technical Spaces (MOST)

» We write metaclasses (clabjects) with dashed lines, metametaclasses (clabjects)
with dotted-dashed lines

M 3 ! ModellingConcept . ! ModellingConcept |
e e e — . A m == N]
<<instance-of>> <<instance-of>>
M 2 . Class | | Class:ModellingConcept i
<<instance-of>> <<instance-of>>
M 1 Car Car:Class
c <<instance-of>> <<instance-of>>
M O carl: car1:Car

Q1: IDE and Model-Driven Software Development

12 Model-Driven Software Development in Technical Spaces (MOST)

» MDSD systematically connects the customer's problems, the system's
requirements, testing, design, coding, and documentation and develops these
models in coordination

» MDSD relies on model mappings between requirements, test cases, design, and
code

» Integrated Development Environments (IDE) provide tools for all singular
aspects, as well as model mappings

Problem R

Space
2 Space —C|>'
Customer Needs %& —C|>- / /\
Problem - A AN The
; 2. T
o2 T . Product
Q 7| ToBe

@ © Prof. U. ABmann

Solution

Software @ aE , oo
Requirements o e /N 5, U
o N9
l: == S ~‘~\ ‘| /
; ~\ . '. AN
Test Design ' '
Code User
/ Docs
[
/

13

Q2: Tools in an Integrated Development Environment
(IDE) for MDSD

[

Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. ABmann

S

[Requirements Tool] [Coding Tool] [Testing Tool]
[Model mappings] [Model slicing] [Model composition]
Reachability analysis (traceability) Attribute analysis
Reasoning

|

engine

J |

Relational GRS XML
engine engine englne engine

Metamodel
Repository
(M2)

Test Case
Repository

Requwements
Repository

Design
Repository
(PIM, Arch)

Implementation
Repository
(PSI, Code)

The End

14

Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. ABmann

	7. Werkzeuge zur Anforderungsanalyse
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 8
	Slide 9
	Slide 10
	Notation
	Introduction to Requirements Management
	Slide 13
	Slide 14

