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Literature

► Obligatory:
■ [HesseMayr] Wolfgang Hesse and Heinrich C. Mayr. Modellierung in der 

Softwaretechnik: eine Bestandsaufnahme. Informatik Spektrum, 
31(5):377-393, 2008.

► References:
■ Stachowiak, Herbert. Allgemeine Modelltheorie. Springer, Wien,  1973
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ModelOriginal

Modeled
properties

Image

Additional „abundant“
properties

Non-modeled „preterite“
properties

Is-described-by 
Mapping

Original and Model

► [HesseMayr, Stachowiak]
► Model mappings can be sequenced:

ModelOriginal Model 2

Represents
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A model is an abstraction of an 
original [Stachowiak]

A model is an abstraction of an 
original [Stachowiak]

A system model is an abstraction of 
a system

A system model is an abstraction of 
a system

A world model is an abstraction of a 
world

A world model is an abstraction of a 
world

A domain model is an abstraction of 
a domain of the world

A domain model is an abstraction of 
a domain of the world

A direct model is an abstraction of a 
reality

A direct model is an abstraction of a 
reality
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Descriptive
Modeller

Prescriptive
Modeler;
Specifier;
Implementer

[HesseMayr]

https://openclipart.org/detail/205983/mount-kilimanjaro
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Token Modeling

► In Token modeling, some features of the objects in original domain O are 
forgotten, but never the objects themselves 

■ Abstraction over features
■ Leading to view-based modeling, aspect-oriented modeling

1:1 Object Mapping
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Type Modeling

► In type modeling, sets of objects are abstracted

N:m<n Mapping



 ©
 P

ro
f. 

U
. A

ß
m

an
n
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Type Modeling

► Clabjects (class-objects) are classes reified as representant objects on the 
metalevel.

■ In an object-oriented program, clabjects are objects that represent 
classes of other objects.

► Russells Paradox “The set of all sets containing themselves as elements” 
forbids infinitely many reifications

► <<instance-of>> is a composition of <<element-of>> with <<reified-to>>

<<class>>
Person

John:Person

<<class-object>>
Person

<<reified-to>>

<<instance-of>>

<<element-of>>
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The Smalltalk Metaclass

► Smalltalk-80 was the first language to introduce metamodeling
► It introduced clabjects as class-objects and as metaclass. 
► Changing the Smalltalk metaclass changes the semantics of all classes and all objects.
► In Java, class Class is the metaclass, but it is immutable

<<collection>>
extent

John:Person

<<Class>>
Person

<<reified-to>>

<<instance-of>>

<<element-of>>

<<collection>>
extent

<<Metaclass>>
Class

<<reified-to>>

<<instance-of>><<element-of>>
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Notation

► We write metaclasses (clabjects) with dashed lines, metametaclasses (clabjects) 
with dotted-dashed lines

<<instance-of>>

<<instance-of>>

<<instance-of>>

car1:Car

Car:Class

Class:ModellingConcept

ModellingConcept

<<instance-of>>

<<instance-of>>

<<instance-of>>

car1:

Car

Class

ModellingConcept

Clabject Hierarchy

M3

M2

M1

M0
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Q1: IDE and Model-Driven Software Development

Software
Requirements

Test
Design

User
Docs

Problem The
Product
To Be
Built

Solution
Space

Problem
Space

► MDSD systematically connects the customer's problems, the system's 
requirements, testing, design, coding, and documentation and develops these 
models in coordination

► MDSD relies on model mappings between requirements, test cases, design, and 
code

► Integrated Development Environments (IDE) provide tools for all singular 
aspects, as well as model mappings 

Code

Customer Needs
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Q2: Tools in an Integrated Development Environment 
(IDE) for MDSD

Requirements
Repository

Design
Repository
(PIM, Arch)

Implementation
Repository
(PSI, Code)

Test Case
Repository

Requirements Tool Testing Tool

Metamodel
Repository

(M2)

Reasoning
engine

GRS
engine

TRS
engine

XML
engine

Relational
engine

Coding Tool

Reachability analysis (traceability) Attribute analysis

Model mappings Model slicing Model composition

Run-time
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The End
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