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» Obligatory:
= [HesseMayr] Wolfgang Hesse and Heinrich C. Mayr. Modellierung in der
Softwaretechnik: eine Bestandsaufnahme. Informatik Spektrum,

31(5):377-393, 2008.

» References:
= Stachowiak, Herbert. Allgemeine Modelltheorie. Springer, Wien, 1973
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A model is an abstraction of an
original [Stachowiak]

A system model is an abstraction of
a system

A direct model is an abstraction of a
reality

A world model is an abstraction of a
world

A domain model is an abstraction of
a domain of the world
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https://openclipart.org/detail/205983/mount-kilimanjaro
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Token Modeling
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> In Token modeling, some features of the objects in original domain O are
forgotten, but never the objects themselves

= Abstraction over features
= Leading to view-based modeling, aspect-oriented modeling
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Type Modeling
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> In type modeling, sets of objects are abstracted

N:m<n Mapping




Type Modeling
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» Clabjects (class-objects) are classes reified as representant objects on the
metalevel.
= In an object-oriented program, clabjects are objects that represent
classes of other objects.
» Russells Paradox “The set of all sets containing themselves as elements”
forbids infinitely many reifications
» <<instance-of>> is a composition of <<element-of>> with <<reified-to>>

<<reified-to>> _
<<class>> »| <<class-object>>

Person Person
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John:Person |~
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The Smalltalk Metaclass
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» Smalltalk-80 was the first language to introduce metamodeling
» Itintroduced clabjects as class-objects and as metaclass.
» Changing the Smalltalk metaclass changes the semantics of all classes and all objects.

» InJava, class Class is the metaclass, but it is immutable
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Notation Clabject Hierarchy
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» We write metaclasses (clabjects) with dashed lines, metametaclasses (clabjects)
with dotted-dashed lines

M 3 ! ModellingConcept . ! ModellingConcept |
e e e — . A m == N ]
<<instance-of>> <<instance-of>>
M 2 . Class | | Class:ModellingConcept i
<<instance-of>> <<instance-of>>
M 1 Car Car:Class
c <<instance-of>> <<instance-of>>
M O carl: car1:Car




Q1: IDE and Model-Driven Software Development
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» MDSD systematically connects the customer's problems, the system's
requirements, testing, design, coding, and documentation and develops these
models in coordination

» MDSD relies on model mappings between requirements, test cases, design, and
code

» Integrated Development Environments (IDE) provide tools for all singular
aspects, as well as model mappings
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Q2: Tools in an Integrated Development Environment
(IDE) for MDSD
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[ Requirements Tool ] [ Coding Tool ] [ Testing Tool ]
[ Model mappings ] [ Model slicing ] [ Model composition ]
Reachability analysis (traceability) Attribute analysis
Reasoning
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The End
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