
 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

4. Classical Metamodelling in Technical Spaces

Prof. Dr. rer. nat. Uwe Aßmann

Institut für Software- und
Multimediatechnik

Lehrstuhl Softwaretechnologie

Fakultät für Informatik

Technische Universität Dresden

http://st.inf.tu-dresden.de/teach
ing/most

Version 15-1.3, 23.10.15

1) Metamodelling

1) Meta-Hierarchy

2) Metametamodels (Metalanguages)

1) Meta-Object-Facility (MOF)

3) Technical spaces

4) Model Management

5) Model Analysis

6) Mega- and Macromodels

7) Pattern Languages

8) Bridging Technical Spaces

http://st.inf.tu-dresden.de/teaching/most
http://st.inf.tu-dresden.de/teaching/most

 ©
 P

ro
f.

U
. A

ß
m

an
n

2 Model-Driven Software Development in Technical Spaces (MOST)

Obligatory Literature

► Kurtev, I., Bezivin, J., Aksit, M.: Technological Spaces: An Initial Appraisal. In:
International Symposium on Distributed Objects and Applications, DOA Federated
Conferences, Industrial track, Irvine. (2002)

► Model-based Technology Integration with the Technical Space Concept. Jean Bezivin
and Ivan Kurtev. Metainformatics Symposium, 2005.

► Jean Bézivin. Model Driven Engineering: An Emerging Technical Space. In R. Lämmel, J.
Saraiva, and J. Visser (Eds.): GTTSE 2005, LNCS 4143, pp. 36 – 64, 2006. Springer.

► Ed Seidewitz. What models mean. IEEE Software, 20:26-32, September 2003.
■ http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1231147&tag=1

 ©
 P

ro
f.

U
. A

ß
m

an
n

3 Model-Driven Software Development in Technical Spaces (MOST)

Other Literature

► Gaševic, Dragan, Djuric, Dragan, Devedžic, Vladan. Model Driven Engineering and Ontology
Development, 2nd ed., 2009, ISBN 978-3-642-00281-6

 http://www.springer.com/computer/swe/book/978-3-642-00281-6?cm_mmc=Google-_-
Book%20Search-_-Springer-_-0

► [MOF] Metaobject Facility. OMG. 1.4 and 2.0. www.omg.org

► [Nill] C. Nill. Analysis and Design Modeling Using Metaphorical Modeling Entities. A Modeling Language
for the Tools and Materials Approach. Diplomarbeit Technische Universität Dresden, 2006.

► [Atkinson/Kühne] Colin Atkinson and Thomas Kühne. Model-driven development: A metamodeling
foundation. IEEE Software, 20(5):36-41, 2003.

► [Favre] Jean-Marie Favre. Foundations of model (driven) (reverse) engineering: Models. Technical report,
ADELE Team, Laboratoire LSR-IMAG Université Joseph Fourier, Grenoble, France, 2004. vol. 1-3.

► [Flatscher] Rony Flatscher. Metamodeling in EIA/CDIF - meta-metamodel and metamodels. ACM Trans.
Model. Comput. Simul, 12(4):322-342, 2002.

► [Kendall] D. T. Chang and E. Kendall. Metamodels for RDF Schema and OWL. Proceedings of the First
International Workshop on the Model-Driven Semantic Web (MDSW 2004), Monterey, USA, September
21, 2004.

http://www.omg.org/

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

4.1 Metamodelling in the Classical Metapyramid

 ©
 P

ro
f.

U
. A

ß
m

an
n

5 Model-Driven Software Development in Technical Spaces (MOST)

The Metamodel Hierarchy (Metapyramid, Metahierarchy)

► Models are widely used in engineering disciplines
► Need for tool support that enables model-editing
► Domain experts want domain specific languages (DSL)

 domain specific models with types from the domain
► Do not build model editors from scratch each time

 reuse functionality
 use meta-information

M0

M1

M2

Model

Metamodel

System

Meta-

metamodel
describe

describe

describe

describe

M3

[F. Klar, TU Darmstadt]

 ©
 P

ro
f.

U
. A

ß
m

an
n

6 Model-Driven Software Development in Technical Spaces (MOST)

Remember: The Clabject Metahierarchy and Metapyramids

► We call a hierarchy of instance-of relationships a metahierarchy.

► A metapyramid is a network of instance-of relationships

<<collection>>
extent

John:Person

<<Class>>
Person

<<reified
-to>>

<<instance-of>>

<<element-of>>

<<collection>>
extent

<<Metaclass>>
Class

<<reified-
to>>

<<instance-of>><<element-of>>

<<collection>>
extent

<<Metametaclass>>
Concept

<<reified
-to>>

<<instance-of>><<element-of>>

M3

M2

M1

M0

 ©
 P

ro
f.

U
. A

ß
m

an
n

7 Model-Driven Software Development in Technical Spaces (MOST)

Notation

► We write metaclasses (clabjects) with dashed lines, metametaclasses (clabjects)
with dotted-dashed lines

<<instance-of>>

<<instance-of>>

<<instance-of>>

car1:Car

Car:Class

Class:ModellingConcept

ModellingConcept

<<instance-of>>

<<instance-of>>

<<instance-of>>

car1:

Car

Class

ModellingConcept

Clabject Hierarchy

M3

M2

M1

M0 myAudi

 ©
 P

ro
f.

U
. A

ß
m

an
n

8 Model-Driven Software Development in Technical Spaces (MOST)

 Graph-/Base Level

 Schema-/Meta-/Type Level

<<Material>>
Building

<<Material>>
Room

*1

Rpt.: Type Modeling for Application Types

► On M1, also other sets of the application world can be used as types

► Classes can carry the TAM tags

HSZ

INF

HS 04

Audimax

E023

E008

<<instance_of>>

<<schema_of>>

M1

M0

<<Tool>>
Robot

Chuck

Tiffany

Located-in

 ©
 P

ro
f.

U
. A

ß
m

an
n

9 Model-Driven Software Development in Technical Spaces (MOST)

Models in Software Engineering

Models define abstractions of realities

► Process models (Workflow models) define
workflows and other processes

► Domain models describe a domain of the
world, or a problem domain from the world of
the customer

► System models specify systems or artefacts:

 Software models define the
structure of code

 Architecture models define
computational units,
distribution, runtime issues,
design patterns or architectural
styles

 Data models define die structure
of materials and the data (e.g.
relational model)

Metamodels define types for model elements.
They define the structure of models. Their
instances are models.

► Process metamodels define concepts for
workflows

► Domain metamodels define concepts of
domains

► System metamodels define concepts of
systems

► Programming Language Metamodels define
concepts of programming languages

► Modeling Language Metamodels define
concepts of modeling languages

► Domain-specific language (DSL) metamodels
define concepts of DSL

► Pattern Language Metamodels define
stereotypes for classes

► Data metamodels define concepts for
materials

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

4.2 Metametamodels on M3

 ©
 P

ro
f.

U
. A

ß
m

an
n

11 Model-Driven Software Development in Technical Spaces (MOST)

The Metametamodel (Metalanguage)

► A Metametamodel (MMM, Metalanguage) is a structural graph schema of a language
■ Defines types for the concepts of a language (the metaclasses on M2)
■ Contains the modeling concepts for languages
■ Structural – no behavior
■ Contains wellformedness rules for the graphs on M2
■ Via its multiplicity constraints, the metametamodel defines the form of data

structure on M0 (sequence, list, table, tree, link tree, reducible graph, graph)
■ Should be minimalistic

Problem: All tools and materials heavily depend
on the MMM of the technical space

Problem: All tools and materials heavily depend
on the MMM of the technical space

 ©
 P

ro
f.

U
. A

ß
m

an
n

12 Model-Driven Software Development in Technical Spaces (MOST)

Type Level

 Schema-/Meta-/Type Level

Class has
*1

Objects, their Clabjects in Models and Metamodels

<<schema_of>>

1 *

M2

M1

Metameta-Level

Concept Relation
*1

1 *M3

<<Material>>
Building

<<Material>>
Room

*1<<Tool>>
Robot

Located-in

MaterialTool

<<schema_of>>

 ©
 P

ro
f.

U
. A

ß
m

an
n

13 Model-Driven Software Development in Technical Spaces (MOST)

Tower of Babel Problem

[Jan-Pieter
Breughel
(wikipedia)]

Tragically, no uniform
metametamodell has
appeared... (tower of
babel)

Tools depend on their
MMM

 ©
 P

ro
f.

U
. A

ß
m

an
n

14 Model-Driven Software Development in Technical Spaces (MOST)

Metametamodels - Overview

► A metametamodel describes the context-free and -sensitive structure of a
metalanguage. It can be augmented with wellformedness roles of the metalanguage.

Examples:

► Meta Object Facility – MOF
■ Complete MOF – CMOF

. UML core
■ Essential MOF – EMOF

. Ecore (Eclipse implementation of EMOF)

► GOPRR – Graph Object Property Role Relation (MetaCase.com)

► CROM of ROSI (DFG training group at TU Dresden)

► GXL – Graph eXchange Language

Problem: All tools and materials heavily depend
on the MMM of the technical space

Problem: All tools and materials heavily depend
on the MMM of the technical space

15

Chair of Software Technology - Prof. U. Aßmann

 Model-Driven Software Development in Technical Spaces (MOST)

4.2.1 Ecore and MOF as Simple
Metametamodels

 ©
 P

ro
f.

U
. A

ß
m

an
n

16 Model-Driven Software Development in Technical Spaces (MOST)

Overview of Metalanguage MOF
(CMOF: Complete MOF)

[MOF]

 ©
 P

ro
f.

U
. A

ß
m

an
n

17 Model-Driven Software Development in Technical Spaces (MOST)

UML Core

[MOF]

► UML core is subset of
MOF, and UML-CD

► It is rather
minimalistic

 ©
 P

ro
f.

U
. A

ß
m

an
n

18 Model-Driven Software Development in Technical Spaces (MOST)

MOF Central Types

[MOF]

► MOF is for modeling of material, tools,
automata (not distinguished)

 ©
 P

ro
f.

U
. A

ß
m

an
n

19 Model-Driven Software Development in Technical Spaces (MOST)

Central MOF Metaclasses with Associations

 ©
 P

ro
f.

U
. A

ß
m

an
n

20 Model-Driven Software Development in Technical Spaces (MOST)

EMOF (Essential MOF)

[MOF]

Subset of CMOFa
No (bidirectional) associations
Can be mapped to Java, C#

 ©
 P

ro
f.

U
. A

ß
m

an
n

21 Model-Driven Software Development in Technical Spaces (MOST)

EMOF Classes in Detail

[MOF]

 ©
 P

ro
f.

U
. A

ß
m

an
n

22 Model-Driven Software Development in Technical Spaces (MOST)

EMOF Data Types and Packages

[MOF]

 ©
 P

ro
f.

U
. A

ß
m

an
n

23 Model-Driven Software Development in Technical Spaces (MOST)

EMOF Types

[MOF]

 ©
 P

ro
f.

U
. A

ß
m

an
n

24 Model-Driven Software Development in Technical Spaces (MOST)

EMOF Reflection

[MOF]

offers access to the metamodel
(getMetaClass())
provides a Factory, for creation
of a Class from String

 ©
 P

ro
f.

U
. A

ß
m

an
n

25 Model-Driven Software Development in Technical Spaces (MOST)

CMOF Reflection

[MOF]

 ©
 P

ro
f.

U
. A

ß
m

an
n

26 Model-Driven Software Development in Technical Spaces (MOST)

Lcsl

M2

Ex.: Deriving a DSL from EMOF and its Implementation
Eclipse ecore

 ecore

EClassifierEClassifier ETypedElementETypedElement

EClassEClass
EParameterEParameter

RoleRole

NaturalNatural

ComponentComponent RoleOperationRoleOperation

eType

* eExceptions

* parameters

* roleTypes

* roleOperations

EAttributeEAttribute

M3
EReferenceEReference

* eAttributes

* eReferences

* naturalTypes

► lcsl is a domain-specific language for component-based modeling [C. Wende]

 ©
 P

ro
f.

U
. A

ß
m

an
n

27 Model-Driven Software Development in Technical Spaces (MOST)

Ex. EMOF/Ecore based Metamodel of Statecharts

► Ecore is the Eclipse
implementation of EMOF, provided
by the Eclipse Modeling
Framework (EMF) on M3

► Here: a metamodel of statecharts
(M2), (which is a little DSL)

► a set of states and their transitions
(M1)

28

Chair of Software Technology - Prof. U. Aßmann

 Model-Driven Software Development in Technical Spaces (MOST)

4.2.2 Lifting of a Metamodel to a
Metametamodel

 ©
 P

ro
f.

U
. A

ß
m

an
n

29 Model-Driven Software Development in Technical Spaces (MOST)

Lifting of Metamodels

► Ex. MOF is a simple DDL (Datendefinitionssprache, structural language) for graphs
 It can be used on M2 to define new languages with package merge (see

UML)
 It can be used on M3 to define metamodels on M2 as instances
 MOF is self-descriptive

A Metamodel of a data definition language in M2 is being
lifted (promoted), if it is used as metametamodel on M3

A Metamodel of a data definition language in M2 is being
lifted (promoted), if it is used as metametamodel on M3

 ©
 P

ro
f.

U
. A

ß
m

an
n

30 Model-Driven Software Development in Technical Spaces (MOST)

Self-Descriptive MOF

M3

M2

► MOF is self-descriptive (selbstbeschreibend), because the structure of MOF (M2) is
defined in the lifted MOF (M3)

► MOF is lifted, because it is used on M2 and M3

► Many other metamodels are also lifted, e.g., ERD

MOFMOF

MOFMOF

CWMCWMUMLUML

<<instanceOf>> <<instanceOf>> <<instanceOf>>

31

Chair of Software Technology - Prof. U. Aßmann

 Model-Driven Software Development in Technical Spaces (MOST)

4.2.3 More Examples of Metahierarchies and
their Metametamodels

 ©
 P

ro
f.

U
. A

ß
m

an
n

32 Model-Driven Software Development in Technical Spaces (MOST)

Software Objects

car1 car1.colorcar1.drive()

Software Classes
(meta-objects)
(Model)

Car void proc()

Class Method Attribute

Color

Metalanguage concepts
Modelling concepts
(Metametaclasses in the
metametamodel)

Language

A metamodel is a
language specification

Conceptual level

A metametamodel is a
metalanguage

Metalevels in Programming Languages
(The Metahierarchy of Programming)

car driving car color

Modelling
Concept

Language concepts
(Metaclasses in the
metamodel)

Application
concepts

World
concepts

M3

M2

M1

M0

M-1 Real World

 ©
 P

ro
f.

U
. A

ß
m

an
n

33 Model-Driven Software Development in Technical Spaces (MOST)

Software Objects

car1 car1.colorcar1.drive()

Software Classes
(meta-objects)
(Model)

Car void proc()

Class

Color

Metalanguage concepts
Modelling concepts
(Metametaclasses in the
metametamodel)

Language

A metamodel is a
language specification

Conceptual level

A metametamodel is a
metalanguage

Metalevels in Smalltalk

car driving car color

Class

Language concepts
(Metaclasses in the
metamodel)

Application
concepts

World
concepts

M3

M2

M1

M0

M-1 Real World

 ©
 P

ro
f.

U
. A

ß
m

an
n

34 Model-Driven Software Development in Technical Spaces (MOST)

Metamodel of EntityRelationship Diagrams (ERD-ML)

ER-Model

Generate-SQL-DDL-Code()

er-modell 1..1

Element

elements 0..*

Relationship

Cardinality1 : Cardinality
Cardinality2 : Cardinality

Entity

Attribute

isKey : BOOL
Type

Role1

Role1

1..1

0..*

Role2 Role2

entität

1..1
1..1

0..*

attribute typ

0..* 1..1

Attribute 0..*

► ERD is like MOF without inheritance

 ©
 P

ro
f.

U
. A

ß
m

an
n

35 Model-Driven Software Development in Technical Spaces (MOST)

Uncontrolled

Dictionary
Definition
Schema
Layer

Dictionary
Definition
Layer

Dictionary
Layer

Application-
Layer

(Program objects,
Data of the "real world")

ERD

Ex.: IRDS/MOF Metahierarchy for Data Dictionaries in the
Structured Analyse (SA)

M3

M2

M1

M0

► IRDS was defined in the 70s to model (persistent) data structures of applications

 ©
 P

ro
f.

U
. A

ß
m

an
n

36 Model-Driven Software Development in Technical Spaces (MOST)

Ex.: Metahierarchy CASE Data Interchange Format (CDIF)

► CDIF was defined in the 80s as industrial interchange format [Flatscher]

► uses entities and relationships on M3 to model CASE concepts on M2

Software Objects
fred lipstickorder

Classes
(Metaobjects)
(Model)

Person Order Material

Class Association Attribute

Entity-Relationship Diagrams (ERD)

CASE Concepts
(Metaclasses)
(Metamodel)

Meta-Concepts
(Metametaclasses)
(Metametamodel)

M1

M2

M3

M0

 ©
 P

ro
f.

U
. A

ß
m

an
n

37 Model-Driven Software Development in Technical Spaces (MOST)

Software objects
describing world objectsM0 Object level

M1 model level

M2 metamodel level

M3 metametamodel
level

Types, programs, models

Language descriptions

Modelling concepts

 UML-CD, UML-SC, UML-
AD, etc.

UML-core < MOF

model instances

Metamodelling conceptsM4 level = M3

validInstanceOf describes

validInstanceOf describes

validInstanceOf describes

validInstanceOf describes

The UML-Core/MOF Metahierarchy

► The UML language manual uses UMLcore, a subset of MOF, as metalanguage

UML diagrams

 ©
 P

ro
f.

U
. A

ß
m

an
n

38 Model-Driven Software Development in Technical Spaces (MOST)

Ex.: MOF-Metahierarchy for UML

From: UML 2.0 Infrastructure Specification; OMG Adopted Specification ptc/03-09-15

 ©
 P

ro
f.

U
. A

ß
m

an
n

39 Model-Driven Software Development in Technical Spaces (MOST)

Workflow Software Objects
fred:Client nail:MaterialorderForGoods:Order

Workflow Software Classes
(Metaobjects)
(Model)

Client Order Material

Data Function
(Web Service)

Ressource

XSD (Xschema)

Workflow Concepts
(Metaclasses)
(Metamodel)

Meta-Concepts
(Metametaclasses)
(Metametamodel)

Ex.: Metahierarchy in Workflow Systems
and Web Services (e.g., BPEL, BPMN, ARIS-EPK)

► It is possible to specify workflow languages with the metamodelling hierarchy

► BPEL and other workflow languages can be metamodeled

► BPEL is metamodeled with XSD

M1

M2

M3

M0

BPEL

 ©
 P

ro
f.

U
. A

ß
m

an
n

40 Model-Driven Software Development in Technical Spaces (MOST)

Role-Based Graph Types in MetaEdit+

► [www.metacase.com]

► The tool MetaEdit+ uses the graph schema (metalanguage) GOPRR:
 Objects and their Roles; Relationships
 Allowed Bindings between all entities:

 a binding consists of a relationship with roles and playing objects

Graph

Object

Binding

Role
Relationship

*

*

1

*

2..*

2..*
1

Port 10..1

11

0..*

http://www.metacase.com/

 ©
 P

ro
f.

U
. A

ß
m

an
n

41 Model-Driven Software Development in Technical Spaces (MOST)

Concept

typeName
typeDescription

NonProperty

decompGraph
(properties added by
types i.e.subclasses)

propertyTypeColl
propertyNameColl
propertyUniquenessColl
defaultProperty

Property

value

dataType
legalValueTest

*

Graph

relationshipSet
roleSet
objectSet
bindingSet
ExplodeSet

relationshipSet
roleSet
objectSet
bindingSet
explodeDict
decompDict
constraintSet
reportSet

Relationship ObjectRole
*

*

*

Binding Connection

relationship
connectionColl

role
objectSet
cardinality

*

*
*

Project

name
graphSet

*

Metalanguage of
MetaEdit+

The GOPRR Metalanguage:
- Graph Objects
- Object Objects
- Property Objects
- Relationship Objects
- Role Objects

Port

 ©
 P

ro
f.

U
. A

ß
m

an
n

42 Model-Driven Software Development in Technical Spaces (MOST)

GXL Graph eXchange Language – a Technical
Metametamodel

► GXL is a modern graph-language (graph-exchange format)

► Contains abstractions for elements of graphs usable for generic algorithms (e.g., flexible
navigation)

Graph

GraphElement

Edge

AttributedElement

LocalConnection Relation

to

from

contains

contains

Attribute

*

*

*

1

1

Node

RelEnd

relates-to

Richard C. Holt, Andy Schürr,Susan Elliott Sim, Andreas Winter. GXL: A graph-based standard exchange
format for reengineering. Science of Computer ProgrammingVolume 60, Issue 2, April 2006, Pages 149-170

TypedElement

 ©
 P

ro
f.

U
. A

ß
m

an
n

43 Model-Driven Software Development in Technical Spaces (MOST)

GXL-based Metamodel of Typed Attributed Graph

► GXL can be used as
metalanguage
(Metametamodel) on
M3, to type
metamodels and DSL
on M2

► For example, state
machines

► Alternatively, GXL can
also be used as DDL on
M2 (it is a lifted
metamodel)

 ©
 P

ro
f.

U
. A

ß
m

an
n

44 Model-Driven Software Development in Technical Spaces (MOST)

Packeting on all Layers

► All layers can be structed into packages

[MOF]

 ©
 P

ro
f.

U
. A

ß
m

an
n

45 Model-Driven Software Development in Technical Spaces (MOST)

Metamodel
• (Meta-)Modeling of

language constructs
• Definiton of language structure
• Domain specific semantics

• Constraints for detailed definiton of language
• Definition of erroneous states
• Rules to comply with special design guidelines

• Transformationen to repair

 erroneous models
• Conversion of incompatible models into

design compliant models
• Automatic adaption to design guidelines

Model

Abstract Syntax

Constraints

Transformation

Metamodeling – Benefits

[F. Klar, TU Darmstadt]

 ©
 P

ro
f.

U
. A

ß
m

an
n

46 Model-Driven Software Development in Technical Spaces (MOST)

Excursion: Metaprogramming

► Metaprograms (reflective programs) generate code on the basis of a metamodel of
their own language (self model)

► Metaprogram-Procedures (Semantic Macros, Hygenic Macros, Programmable Macros
[Weise/Crew], Orchestration Style Sheets) can be typed by a metamodel

■ Parameter types and return types of prodedures are metaclasses

► → See course CBSE

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

4.3 Technological & Technical Spaces

 ©
 P

ro
f.

U
. A

ß
m

an
n

49 Model-Driven Software Development in Technical Spaces (MOST)

Technological Spaces

► It is often associated to a given user community with shared know-how, educational
support, common literature and even workshop and conference regular meetings.

■ Ex. compiler community, database community, semantic web community,
automotive community

■ [Technological Spaces: an Initial Appraisal. Ivan Kurtev, Jean Bézivin, Mehmet
Aksit. CoopIS, DOA’2002 Federated Conferences, Industrial Track. (2002)
http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.109.332&rep=rep1&type=pdf]

A technological space is a working context with a set of associated
concepts, body of knowledge, tools, required skills, and possibilities.

A technological space is a working context with a set of associated
concepts, body of knowledge, tools, required skills, and possibilities.

 ©
 P

ro
f.

U
. A

ß
m

an
n

50 Model-Driven Software Development in Technical Spaces (MOST)

Technical Spaces

► [Model-based Technology Integration with the Technical Space Concept. Jean Bezivin
and Ivan Kurtev. Metainformatics Symposium, 2005.]

■ http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.106.1366&rep=rep1&type=pdf

► Ingredients of a Technical Space (Technikraum):
■ A metapyramid (or metahierarchy) with data (tools, workflows, and materials

on M0), Code and models (M1), languages (M2), and metalanguages (M3)
■ A model management unit (model algebra or model composition system)
■ A macromodel

► Be aware: A technological space may contain several technical spaces:
■ Compiler community: Grammarware, Tree-Ware, Graph-Ware
■ Database community: Relational database model, csv-tables, XML
■ Business software: Reports in TextWare, TableWare

A technical space is a metamodeling framework (in a technological space)
with a metapyramid (metahierarchy), accompanied by a set of tools that
operate on the models definable within the framework.

A technical space is a metamodeling framework (in a technological space)
with a metapyramid (metahierarchy), accompanied by a set of tools that
operate on the models definable within the framework.

 ©
 P

ro
f.

U
. A

ß
m

an
n

51 Model-Driven Software Development in Technical Spaces (MOST)

The Trick of the Metapyramid

► Tools on level M[n-1] can work on M[n]

► Tools can be lifted from the object to the class to the metaclass level to the
metametaclass level:

► Object-manipulating tools on M0 work for clabjects in models on M1
■ Graph-manipulating tools on M0 for models on M1

► Class-manipulating tools on M1 work for clabjects in metamodels on M2
■ Model-manipulating tools on M1 work for metamodels on M2

► Metaclass-manipulating tools on M2 work for clabjects in metamodels on M3
■ Metamodel-manipulating tools on M2 work for metametamodels on M3

Observation:
In the metapyramid of a technical space, tools can be applied on every level.

Observation:
In the metapyramid of a technical space, tools can be applied on every level.

 ©
 P

ro
f.

U
. A

ß
m

an
n

52 Model-Driven Software Development in Technical Spaces (MOST)

Q10: The House of a Technical Space

Mega- and MacromodelsMega- and Macromodels

Method EngineeringMethod Engineering

Model Management
Mapping, Transformation, Slicing, Composition

Model Management
Mapping, Transformation, Slicing, Composition

Technical
Space
Bridges

Technical
Space
Bridges

Technical SpaceTechnical Space

Pattern
Languages

Pattern
Languages

Model Analysis
Recognition, Querying, Metrics, Analysis

Model Analysis
Recognition, Querying, Metrics, Analysis

Metapyramid (Metahierarchy) for Token ModelingMetapyramid (Metahierarchy) for Token Modeling

 ©
 P

ro
f.

U
. A

ß
m

an
n

53 Model-Driven Software Development in Technical Spaces (MOST)

Q10: Overview of Technical Spaces in the Classical
Metahierarchy

Gramm
arware
(Strings
)

Text-
ware

Table-
ware

Treeware
(trees)

Graphw
are/Mo
delware

Role-
Ware

Ontology-
ware

Strings Text Text-
Table

Relational
Algebra

NF2 XML Link
trees

MOF Eclipse CDIF MetaEdit+ OWL-Ware

M3 EBNF EBNF CWM
(common
warehous
e model)

NF2-
language

XSD JastAdd,
Silver

MOF Ecore,
EMOF

ERD GOPPR RDFS
OWL

M2 Grammar
of a
language

Gramma
r with
line
delimiter
s

csv-
header

Relational
Schema

NF2-
Schema

XML
Schema
, e.g.
xhtml

Specific
RAG

UML-CD,
-SC,
OCL

UML,
many
others

CDIF
-
langu
ages

UML, many
others

HTML
XML
MOF UML
DSL

M1 String,
Program

Text in
lines

csv
Table

Relations NF2-tree
relation

XML-
Docume
nts

Link-
Syntax-
Trees

Classes,
Program
s

Classes,
Programs

CDIF
-
Mode
ls

Classes,
Programs

Facts (T-
Box)

M0 Objects Sequenc
es of
lines

Sequen
ces of
rows

Sets of
tuples

trees dynamic
semantic
s in
browser

Object
nets

Hierarchic
al graphs

Objec
t nets

Object nets A-Box (RDF-
Graphs)

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

4.4. Model Analysis in a Technical Space with
Model Querying, Model Metrics, and Model
Analysis

Discussing the internals of models and their model
elements

 ©
 P

ro
f.

U
. A

ß
m

an
n

55 Model-Driven Software Development in Technical Spaces (MOST)

The Internals of a Model

► Model querying searches patterns in models, described by a query or pattern
match expression.

■ Searching for a method with a specific set of parameters
► Model metrics counts patterns in models

■ Counting the depth of the inheritance hierarchy
► Model analysis analyzes hidden knowledge from the models, making implicit

knowledge explicit
■ Value flow analysis between variables in programs

Model analysis techniques reveal the inner details of models.Model analysis techniques reveal the inner details of models.

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

4.5. Model Management in a Technical Space
with Model Mapping, Transformation and
Composition

Discussing the relationships of models and their model
elements

 ©
 P

ro
f.

U
. A

ß
m

an
n

57 Model-Driven Software Development in Technical Spaces (MOST)

Mapping Tools

Model Management in a Technical Space

► A model management system manages the relationships of models, metamodels,
metametamodels of a technical space as well as the relationships of their elements

■ Model mapping subsystem
■ Model transformation subsystem
■ Model composition subsystem

Model Operator
Generator

Metamodel

Additional
info

Model
management

system

Composition
Tools Composed

Models

M2 M1

Model composition
operators

Model mappings

Mapped
Models

Transformation
Tools

Model
transformations

Transformed
Models

58

Chair of Software Technology - Prof. U. Aßmann

 Model-Driven Software Development in Technical Spaces (MOST)

4.5.1. Model Mapping

 ©
 P

ro
f.

U
. A

ß
m

an
n

59 Model-Driven Software Development in Technical Spaces (MOST)

Model Mappings

► A trace mapping records during a model elaboration, model restructuring or model
transformation, which model elements are copied from model A to model B, or created in B.

► A synchronization mapping records hot-links model elements from model A to model B.

A model mapping is a mapping between the model elements of several
models.

A model mapping is a mapping between the model elements of several
models.

RiskFactor

String name
Propability p[]
Damage d[]

run()
compute()

RiskItem

Identifier risk
Real prop[]
Real dama[]

run()
sumUp()

Propability

Real p

Damage

Euro e

A B

Identifier

Char id[]

┴

60

Chair of Software Technology - Prof. U. Aßmann

 Model-Driven Software Development in Technical Spaces (MOST)

4.5.2. Model Transformation

 ©
 P

ro
f.

U
. A

ß
m

an
n

61 Model-Driven Software Development in Technical Spaces (MOST)

Model Transformations

► From a model mapping, two (partial) model transformations (forward and
backward) may be derived.

► Deleted model elements are framed red, added elements are framed green,
modified blue

A model transformation is a program (or a specification how) to derive a
model A from a model B.

A model transformation is a program (or a specification how) to derive a
model A from a model B.

RiskFactor

String name
Propability p[]
Damage d[]

run()
compute()

RiskItem

Identifier risk
Real prop[]
Real dama[]

run()
sumUp()

Propability

Real p

Damage

Euro e

A B

Identifier

Char id[]

┴

62

Chair of Software Technology - Prof. U. Aßmann

 Model-Driven Software Development in Technical Spaces (MOST)

4.5.3. Model Composition with Model
Algebrae and Composition Systems

Component-based Model Engineering (CBME)

 ©
 P

ro
f.

U
. A

ß
m

an
n

63 Model-Driven Software Development in Technical Spaces (MOST)

Model Composition in a Technical Space

► A model composition system manages the relationships of models, metamodels,
metametamodels of a technical space with a uniform model algebra

 Operators on M1 can be generated from M2
 Operators on M2 can be generated from M3

Model Operator
Generator

Grammar

Additional
info

Model
management

algebra/system

Composition
Text Editor

Composed
Text Artefact

(Program)

Model Operator
Generator

Metamodel

Additional
info

Model
management

algebra/system

Composition
Visual Editor

Composed
Model

M2 M1

Text

Models

Text operators

Model operators

 ©
 P

ro
f.

U
. A

ß
m

an
n

64 Model-Driven Software Development in Technical Spaces (MOST)

Simple Algebra for Models (on M1) and Metamodels (on M2)

► Models and metamodels can be grouped in packages (module)
■ A simple component model and composition system (see CBSE)

► Algebraic composition technique with operators on packages:

■ use (import)
■ merge (union)
■ Instance-of (element-of-reified-set)

→ Metamodels are composed by unifying their views in the different packages

→ Metamodels can be composed from packages

Composition System

Component Model Composition Technique

Composition Language

 ©
 P

ro
f.

U
. A

ß
m

an
n

65 Model-Driven Software Development in Technical Spaces (MOST)

Ex.: EMOF Class Composition by EMOF Package Merge

[MOF]

Composition System

Component Model Composition Technique

Composition Language

Packages merge, import, instantiate

EMOF

 ©
 P

ro
f.

U
. A

ß
m

an
n

66 Model-Driven Software Development in Technical Spaces (MOST)

Ex: CMOF Package Composition from UML Core and EMOF

[MOF]

67

Chair of Software Technology - Prof. U. Aßmann

 Model-Driven Software Development in Technical Spaces (MOST)

4.5.3.a Composing UML Metamodels in the
MOF Technical Space

 ©
 P

ro
f.

U
. A

ß
m

an
n

68 Model-Driven Software Development in Technical Spaces (MOST)

Benefit of UML-Metamodeling for MDSD Tools and Model-
Driven Applications

The language report of UML uses a simple metamodel algebra for the bottom-up
composition of UML language.

The UML-metamodel is a “logic” metamodel, because it is composed:
► Definition of merge operator composing metaclasses and metaclass-packages

► Defined in composable packages
■ With a clear CMOF-package architecture
■ uniform package structure and context-sensitive semantics for all diagrams

such as Statecharts (UML-SC), Sequence Diagrams (UML-SD), etc.

► Schemata for repositories for uniform description of tools, materials, code, models
(metamodel-driven repositories)

► Exchange format (XMI)

► The UML infrastructure can be used by MDSD applications

 ©
 P

ro
f.

U
. A

ß
m

an
n

69 Model-Driven Software Development in Technical Spaces (MOST)

Coarse-Grain Structure of UML on M2

UML
Superstructure

UML
Superstructure

UML
Infrastructure

UML
Infrastructure

<<import>>

UML Infrastructure

 ©
 P

ro
f.

U
. A

ß
m

an
n

70 Model-Driven Software Development in Technical Spaces (MOST)

Core Package of the UML-Infrastructure Metamodel (M2)

From: UML 2.0 Infrastructure Specification; OMG Adopted Specification ptc/03-09-15

Basic: basic constructs for XMI Abstractions: abstract metaclasses
Constructs: Metaclasses for modeling Primitive Types: basic types

 ©
 P

ro
f.

U
. A

ß
m

an
n

71 Model-Driven Software Development in Technical Spaces (MOST)

Package Basic: Uses Types from CMOF

From: UML 2.0 Infrastructure Specification; OMG Adopted Specification ptc/03-09-15

 ©
 P

ro
f.

U
. A

ß
m

an
n

72 Model-Driven Software Development in Technical Spaces (MOST)

Package Basic: Classes

From: UML 2.0 Infrastructure Specification; OMG Adopted Specification ptc/03-09-15

 ©
 P

ro
f.

U
. A

ß
m

an
n

73 Model-Driven Software Development in Technical Spaces (MOST)

Package Composition Architecture UML 2.0 (M2)

From: UML 2.0 Infrastructure Specification; OMG Adopted Specification ptc/03-09-15

<<merge>>

<<merge>>

<<merge>>

 ©
 P

ro
f.

U
. A

ß
m

an
n

74 Model-Driven Software Development in Technical Spaces (MOST)

Metamodel Composition – the Composition System of the
UML Language Report

Composition System

Component Model Composition Technique

Composition Language

Packages merge, import, instantiate

MOF

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

4.6 Mega- and Macromodels

In a technical space, a megamodel is an infrastructure for models and
metamodels, systematically linking a set of models

In a technical space, a megamodel is an infrastructure for models and
metamodels, systematically linking a set of models

 ©
 P

ro
f.

U
. A

ß
m

an
n

76 Model-Driven Software Development in Technical Spaces (MOST)

Megamodels

► A megamodel is a model for a set or graph of models.
■ The graph of models is an instance of the megamodel (element of the of the

language)

► Usually, a technical space has one or several megamodels on M1, linking many models
on M1

■ Clearifying the relationships of the M1 models by model transformations,
model mappings, and model compositions

■ A megamodel uses the model management system of the technical space

The idea behind a mega-model is to define the set of entities and relations
that are necessary to model some aspect about
model-driven engineering (MDE).

[Favre]

The idea behind a mega-model is to define the set of entities and relations
that are necessary to model some aspect about
model-driven engineering (MDE).

[Favre]

 ©
 P

ro
f.

U
. A

ß
m

an
n

77 Model-Driven Software Development in Technical Spaces (MOST)

Macromodels – Megamodels with Consistency Rules

► A macromodel is a model for a set or graph of models fulfilling some consistency
constraints over the models and their elements

■ The graph of models is an instance of the megamodel (element of the of the
language)

■ The graph of models obeys wellformedness constraints
■ There are fine-grained relations between model elements of the models,

which also follow consistency constraints
. Trace mappings between tools, materials, automata
. Synchronization relations for updating

 ©
 P

ro
f.

U
. A

ß
m

an
n

78 Model-Driven Software Development in Technical Spaces (MOST)

Model Synchronization in Macromodels

► Model synchronization keeps a set of connected models (the crowd) in sync, i.e.,
consistent

Test
Model

Requirements
Model

Documentation

Design
Model

Implementation
Model

Code

 ©
 P

ro
f.

U
. A

ß
m

an
n

79 Model-Driven Software Development in Technical Spaces (MOST)

Model Synchronization in Macromodels

► In model synchronizsation, if an edit has occurred in a origin model, all other connected
models of a crowd (dependent models) are updated instantaneously, when one focus
model changes

Test
Model

Requirements
Model

Documentation
Design
Model

Implementation
Model

Code

 ©
 P

ro
f.

U
. A

ß
m

an
n

80 Model-Driven Software Development in Technical Spaces (MOST)

Round-Trip Engineering Changes the Model-in-Focus of the
Crowd

► But always performs model synchronization as a basic step

Test
Model

Requirements
Model

Docu
mentation

Design
Model

Implementation
Model

Code

Test
Model

Requirements
Model

Docu
mentation

Design
Model

Implementation
Model

Code

 ©
 P

ro
f.

U
. A

ß
m

an
n

81 Model-Driven Software Development in Technical Spaces (MOST)

Q12: The ReDeCT Problem and its Macromodel

► The ReDeCT problem is the problem how requirements, design, code and tests are
related (→ V model)

► Mappings between the Requirements model, Design model, Code, Test cases

► A ReDeCT macromodel has maintained mappings between all 4 models

Requirements Design Code Test

ComponentName

ComponentName

ComponentName

Node

Node

Package Bill {
 Uses Order;
 Class Counting {
 Procedure count IS
 End;
}
}

Package Order {
 Uses Bill;
 Class Ordering {
 Procedure count IS
 End;
}
}

Package TestBill {
 Uses TestOrder;
 Proc testCounting
IS
….
 End;
}
}Package TestOrder {
 Uses Bill;
 Class TestOrdering {
 Procedure testCount
IS
 End;
}
}

 ©
 P

ro
f.

U
. A

ß
m

an
n

82 Model-Driven Software Development in Technical Spaces (MOST)

Advantages of Model Mappings in Macromodels

► Error tracing
■ When an error occurs during testing or runtime, we want to trace back the

error to a design element or requirements element

► Traceability
■ We want to know which requirement (feature) influences which design,

code, and test elements, so that we can demarcate modules in the solution
space (product line development)

► Synchronization in Development:
■ Two models are called synchronized, if the change of one of them leads

automatically to a hot-update of the other

 ©
 P

ro
f.

U
. A

ß
m

an
n

83 Model-Driven Software Development in Technical Spaces (MOST)

Q9: Model Mappings and Model Weavings in the MDA
Macromodel

► Model mappings connect models horizontally (on the same level)
or vertically (crossing levels).

► Model transformations transform models horizontally or
vertically.

■ From a model mapping, a simple transformation
can be infered

► Model extensions (model merges, aadditions) extend an input
model by an extension (often done by hand)

■ Usually, some parts are still hand-written code

Weaving

Code addition

Platform-Independent Model (CIM)
Design specification

Domain model for application domain

Computationally-Independent Model (CIM)
Requirements specification

Platform-Specific Implementation
(PSI, Code)

Platform-Specific Extension (PSE)

Platform Description Model (PDM)

Handwritten code

Platform Specific Model (PSM)

► Model weavings weave two input models to an output
model, based on a crosscut specification

► Model2Text expansion (code generation by template
expansion)

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

4.7. Pattern Languages in a Technical Space

► In a TS, several pattern languages may be used to structure
the relationship of models and metamodels

► TAM can be used as Pattern Language on all levels in the
metahierarchy

► However, there may be more pattern languages associated
to a technical space

► Pattern languages can be expressed as stereotypes

 ©
 P

ro
f.

U
. A

ß
m

an
n

85 Model-Driven Software Development in Technical Spaces (MOST)

A Pattern Language Useful for all Technical Spaces
TAM Structures on M1

► On M1, application class models need to define (stereotype) tools, automata, and
materials.

 Type Level

ToolsTools

MaterialsMaterials

AutomataAutomataApplicationsApplications

M1

 ©
 P

ro
f.

U
. A

ß
m

an
n

86 Model-Driven Software Development in Technical Spaces (MOST)

TAM Structures on M1 Provide Types for Objects in
Repositories on M0

► On M1, application class models need to define (stereotype) tools, automata, and
materials.

 Schema-/Meta-/Type Level

MaterialsMaterials

ApplicationsApplications

ToolsTools

AutomataAutomata

Graph-/Base Level

Material RepositoryTool RepositoryAutomaton Repository

M1

M0

 ©
 P

ro
f.

U
. A

ß
m

an
n

87 Model-Driven Software Development in Technical Spaces (MOST)

TAM Structures on M2 Provide Language Concepts for
Stereotypes for Classes in M1

► On M2, TAM forms a DSL for stereotypes on M1

► Other pattern languages can use the same principle

 Type Level

Graph-/Base Level

Material RepositoryTool RepositoryAutomaton Repository

Metamodel Level

Material
Metaclasses

Material
Metaclasses

LanguagesLanguages Tool
Metaclasses

Tool
Metaclasses

Automata
Metaclasses
Automata

Metaclasses

Material
Classes

Material
Classes

LanguagesLanguages Tool
Classes
Tool

Classes

Automata
Classes

Automata
ClassesM1

M0

M2

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

4.8. Briding Technical Spaces

► While one tool/application may live in one TS, for the
communication with other tools/applications, technical
space bridges have to be built.

► Usually, a technical spaces has a subsystem for technical
space bridging.

 ©
 P

ro
f.

U
. A

ß
m

an
n

89 Model-Driven Software Development in Technical Spaces (MOST)

Static Semantic World
Ontologies

Abstract
Interpretation

Model Checking

Static Semantic World
Ontologies

Abstract
Interpretation

Model Checking

Structural (Syntactic)
Modeling World

Grammar
Structure

Hierarchies

Structural (Syntactic)
Modeling World

Grammar
Structure

Hierarchies

Static
Semantics

Expert

Text

Dynamic semantics

Interpretation

State systems

Simulation

Dynamic semantics

Interpretation

State systems

Simulation

Dynamics
Semantics

Expert

EBNF

EMOF
UML-CD

MOF

Petri Nets
SOS

Natural
Semantics

Domain World

Ontologies

Domain Models

Domain World

Ontologies

Domain Models

Domain
Expert

F-logic
OWL

An Application May Need Several Technical Spaces

 ©
 P

ro
f.

U
. A

ß
m

an
n

90 Model-Driven Software Development in Technical Spaces (MOST)

The End

	7. Werkzeuge zur Anforderungsanalyse
	Slide 2
	Slide 3
	Slide 4
	Motivation
	Slide 6
	Notation
	Slide 8
	Modelle in der Softwaretechnik
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Metalevels in Programming Languages (The Meta-Pyramid)
	Slide 33
	Meta-Modell des ER-Modellers
	IRDS 4-Schichten-Architektur
	Metapyramid CASE Data Interchange Format (CDIF)
	Slide 37
	Wiederholung 4 Schichten Metamodell-Hierarchie
	Slide 39
	Slide 40
	Metakonzept von MetaEdit+
	Slide 42
	Slide 43
	Slide 44
	Metamodeling – Goals
	Slide 46
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Bedeutung der UML-Metamodellierung für CASE
	Slide 69
	Core Package des UML-Metamodells
	Slide 71
	Slide 72
	Package Structure UML 2.0
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90

