TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Softwaretechnologie II

15 Exhaustive Graph Rewrite Systems (XGRS) for
Refactorings and Other Transformations

Prof. Dr. Uwe ABmann 1) Termination of EARS
Softwarstechnologie 2) Termination of AGRS
Technische Universitat Dresden
Version 15-0.4, 02.01.16 3) SGRS

4) XGRS

5) Refactoring Example

(c) Prof. U. ABmann Model Structurings

Uwe Aßmann, 31.01.2014
Wir brauchen hier ein Metamodell.
und ein Beispiel.

Obligatory Literature

 [ABmMann00] Uwe ARBmann. Graph rewrite systems for program optimization. ACM
Transactions on Programming Languages and Systems (TOPLAS), 22(4):583-637, June

2000.
- http://portal.acm.org/citation.cfm?id=363914

 Alexander Christoph. Graph rewrite systems for software design transformations. In M.
Aksit, editor, Proceedings of Net Object Days 2002, Erfurt, Germany, October 2002.

 Alexander Christoph. GREAT - a graph rewriting transformation framework for designs.
Electronic Notes in Theoretical Computer Science (ENTCS), 82 (4), April 2003.

* Alexander Christoph. Describing horizontal model transformations with graph rewriting
rules. In Uwe ABmann, Mehmet Aksit, and Arend Rensink, editors, MDAFA, volume 3599

of Lecture Notes in Computer Science, pages 23-107. Springer, 2004.

e Tom Mens. On the Use of Graph Transformations for Model Refactorings. GTTSE 2005,
Springer, LNCS 4143

- http://www.springerlink.com/content/5742246115107431/

@ (c) Prof. U. ABmann

http://portal.acm.org/citation.cfm?id=363914
http://www.springerlink.com/content/5742246115107431/

Remember: Rename Refactorings in Programs

Refactor the name Person to Human, using bidirectional use-def-use links:

Definition

—.. Reference (Use)

e

class Human { .. }

class Course {
Human teacher = new Human(“Jim”);
Human student = new Human(“John”);

Refactoring as Graph Transformation

 Refactoring works always in the same way:
- Change adefinition

- Find all dependent references

Change them

Recurse handling other dependent definitions

 Refactoring can be supported by Graph Rewrite Tools

- The Use-Def-Use-graph (UDUG) forms the basis of refactoring tools
- Build up the UDUG with graph analysis (EARS)

- Rewrite it with graph rewriting (XGRS)

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Softwaretechnologie II

15.1 Termination and Confluence of EARS

A Fujaba GRS (in one activity of
the storyboard)

may terminate and deliver a
unique result.

(c) Prof. U. ABmann Model Structurings

Problems with GRS

With graph rewriting for model and program analysis, refactoring, and transformation,
there are some problems:

* Termination: The rules of a GRS G are applied in chaotic order to the
manipulated graph. When does G terminate for a start graph?

- ldea: can we ,forcedly” terminate the rewriting?

- ldea: identify a termination graph which stops the rewriting when completed

* Non-convergence (indeterminism): when does a GRS deliver a deterministic
solution (unique normal form)?

- Can we automatically select a “standard” normal form?

- ldea: unigue normal forms by rule stratification

@ (c) Prof. U. ABmann

Additive Termination

 Atermination subgraph is a subgraph of the manipulated graph, which is step by step
completed

e Conditions in the additive case:
- nodes of termination (sub-)graph are not added (remain unchanged)

- itsedges are only added
* |fthe termination graph is complete, the system terminates

@ (c) Prof. U. ABmann

@ (c) Prof. U. ABmann

Transitivising (Flattening) the Inheritance Hierarchy

e Does this rule terminate?

- Yes, because EARS complete graphs and shorten paths

- “is-a”is the termination subgraph

* Fujaba GRS rule “FlattenlnheritanceHierarchy”:

Flattenlnheritance

Hierarchy()

N Croos D Y,

[Christoph04]

(c) Prof. U. ABmann
Tl
=
D
2]
-
3
Q
=
@)
Q
w
2]

=

Run-Time Derivation (Snapshots):
Transitivising the Inheritance Hierarchy

Ex.: A simple class inheritance tree (acyclic) is “shortened”

“is-a” is completed step by step

Object:Class

>

Object:Class

Transitivising the Inheritance Hierarchy

 Ex.:Asimple class inheritance tree (acyclic) is “shortened”

(Person:Class

(Student:Class Professor:Class
Freshman:Class

(Person:Class

(Student:Class Professor:Class
Freshman:Class

@ (c) Prof. U. ABmann

Transitivising the Inheritance Hierarchy

* Ifeveryindirect path is shortened, rewriting stops

Object:Class

Professor:Class

Freshman:Class

END

@ (c) Prof. U. ABmann

=
Example: Collect Subexpressions

e EARS alsowork on bipartite graphs

* Query to build up the use-definition-use graph (UDUG) between Statements and
Expressions:

"Find all subexpressions which are reachable from a statement"

"/ / F-Datalog:
ExprsOfStmt{Stmt.Statement,Expr:Expr]) - Child[Stmt,Expr).

ExprsOfStmt{Stmt.Statement,Expr:Expr) -
Child(Stmt,Expr2), Descendant(Expr2,Expr).

/ / Descendant is transitive closure of Child
Descendant(Expr1:Expr.Expre2:Expr] :- Child[Expr1,Expr2).
Descendant(Expr1:Expr,Expre:Expr) - Descendant(Expr1,Expr3),

Child[Expr3,Expr2).

* Features of graph rewrite system:
- terminating, strong confluent
- convergent (unique normal form)

— recursive

@ (c) Prof. U. ABmann

Uwe Aßmann, 20.01.2011
Regel 3 ok?

EARS CollectExpressions

/ <<create>> \

Collect

®

- /
Expressions() Stmt: Stater®~

Two transitive closures, specified as path abbreviations

ExprsOfStmt
Stmt:Statement)- -
Child

<<create>>
ExprsOfStmt

<<Zcreate>>
Descendant
Expr1:Expr)
<<create>>
Descendant

@ (c) Prof. U. ABmann

Expr1 :Expr\~ :
\Q/ Descendant Exprd:Expr e

@ (c) Prof. U. ABmann

Execution of ,,Reachable Subexpressions”

e Startsituation

@ (c) Prof. U. ABmann

Execution of ,,Reachable Subexpressions”

* Why do such graph rewrite systems terminate? Answer: ExprsOfStmt and Descendants
are termination subgraphs, completed step by step

tmt
Nescendants

Const Var

Descendants

@ (c) Prof. U. ABmann

Execution of ,,Reachable Subexpressions”

xtmt
Nescendants

Const Var

bscendants

Execution of ,,Reachable Subexpressions”

@ (€) Prof. U. ABmann

‘ Var
N -

1 C_x

4

bscendants

Execution of ,,Reachable Subexpressions”

EARS - Simple Edge-Additive GRS
_ Sofwaretechnologev

 EARS (Edge addition rewrite systems) only add edges to graphs
— They can be used for the construction of graphs

* For the building up analysis information about a program or a model
* For abstractinterpretation on an abstract domain represented by a graph

* terminating: terminating on the finite lattice of subgraphs of the manipulated graph

- Added edges form the termination subgraph
* strongly confluent: direct derivations can always be interchanged.
e congruent: unique normal form (result)
» ==>|f 3 Fujaba activity contains an EARS, it terminates and delivers a unique result

@ (c) Prof. U. ABmann

Name and Type Analysis with EARS
__ Softwaretechnologien

* EARS are very useful for program analysis problems
e Uses of names must be linked to their definitions

- procedures, methods

- classes, types

 Name analysis looks up used names in the context

— Search

— Lookupintables

— Reachability analysis: if a definition of a used name is reachable, then it forms a use-def edge in
the use-def graph

@ (c) Prof. U. ABmann

Data-flow Analysis with EARS

* EARS are very useful for program analysis problems

* Every distributive data-flow problem (abstract interpretation problem) on finite-height
powerset lattices can be represented by an EARS

- defined/used-data-flow analysis
- partial redundancies
— local analysis and preprocessing:

e EARS are equivalent to binary F-Datalog

» EARS work for other analysis problems, which can be expressed with F-Datalog-
queries
— equivalence classes on objects
- alias analysis
— program flow analysis

@ (c) Prof. U. ABmann

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Softwaretechnologie II

15.2 Termination of Additive GRS (AGRS)

* Sometimes, during
refactoring and
transformations, we must
allow for node additions,
nodes which should
represent new information

(c) Prof. U. ABmann Model Structurings

@ (c) Prof. U. ABmann

Example: Allocation of Register Objects for Storing the Result of
Expressions in Statements

* Query: ' Allocate a register object for every subexpression of a
statement which has a result and link the expression to the

statement'’

if ExprsOfStmt[(Stmt,Expr), HasResult[Expr)

then
ObjectExprs(Stmt,Expr],
RegisterObject := new Register;
UsedReg(Expr,RegisterObject) @
' ExprsOfStmt
Cowr > >
* Features: terminating ﬁterljeResult UsedReg

@ (c) Prof. U. ABmann

ObjectExprs is the “termination subgraph”, i.e., the subgraph which cannot grow out of
bound

* ObjectExprsis the “termination subgraph”, i.e., the subgraph which cannot grow out of
bound

Assign

Object
EXxprs

\
A\ Pee
UsedReg

\/
UsedReg ‘
UsedReg ‘A
[obs N v
‘ UsedReg

K

@ (c) Prof. U. ABmann

A Derivation with the Termination Subgraph Will Stop

c
c
©
£
<
<
>
-
o
} =
a
~~
®
o

[ARmann00]

Edge-Accumulative Rules and AGRS

* A GRSiscalled edge-accumulative (an AGRS) if

— allrules are edge-accumulative and
— norule adds nodes to the termination-subgraph nodes of another rule.

 Edge-accumulative rules are defined on label sets of nodes and edges in rules

* This criterion statically decidable

@ (c) Prof. U. ABmann

The Termination Subgraph of the Examples

Collection of subexpressions:
T = ({Stmt,Expr}, {ExprsOfStmt, Descendant})

Allocation of register objects:
T = ({Proc,Expr}, {ObjectExprs})

@ (c) Prof. U. ABmann

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Softwaretechnologie II

15.3 Subtractive GRS (SGRS)

(c) Prof. U. ABmann Model Structurings

Subtractive Termination

 Conditions in the subtractive case:
— the nodes of the termination subgraph are not added (remain unchanged)

- itsedges are only deleted
* If the termination subgraph is empty, the system terminates
e Resultsin:

- edge-subtractive GRS (ESGRS)
- subtractive GRS (SGRS)

@ (c) Prof. U. ABmann

Constant Folding as Graph Rewrite Rule

< Plus >

<Const

o W

C)C)

Peephole Optimization as Subtractive XGRS
__ Softwaretechnologien

next
Plus 'QCF Incrincr

}

D Coms D X D =

®:

@ (c) Prof. U. ABmann

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Softwaretechnologie II

15.4 Exhaustive GRS (XGRS)

(c) Prof. U. ABmann Model Structurings

The Nature of Exhaustive Graph Rewriting (XGRS)

@ (c) Prof. U. ABmann

AGRS and SGRS make up eXhaustive Graph Rewrite Systems
(XGRS)

In an XGRs, all redexes in the termination-subgraph are consumed step by step.

* The termination-subgraph is either completed or consumed
- Edge-accumulative systems may create new redex parts in the termination-subgraph, but

* there will be at most as many of them as the number of edges in the
termination-subgraph.
— Subtractive systems do not create sub-redexes in the termination-subgraph but destroy
them.

e XGRS can only be used to specify algorithms which
- perform a finite number of actions depending on the size of the host graph.

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Softwaretechnologie II

15.5 Refactoring Example “Pull-Up Features into
Common Superclass”

[Christoph04]

(c) Prof. U. ABmann Model Structurings

FlattenClassHierarchy

@ (c) Prof. U. ABmann

Step 1:

Flattening the Inheritance Hierarchy

This rule terminates, due to path contraction and subtraction

The rule, FlattenClassHierarchy, has a unique normal form

® -

<<create>>

(&

e

v

7 <<delete>>

\

~

/

@ (c) Prof. U. ABmann

Step 2:
Pull-Up-Method Refactoring

 Additive Step: Create a new base class for common attributes; mark this as the new
“base-type” of the attribute

e The rule, Mark-Pull-Up, has a unique normal form

ﬂlewSuper.Name .= “<A.name>_<B.name>_ Base” \
NewSuper:Class

<<create>> VAV <<create>>

<<creatp>>
base-ty

C:Attribute

Mark-Pull-Up

® -

contains contains

\

Step 3

@ (c) Prof. U. ABmann

 Edge-Additive Step: alternate case: a class A has attributes that should be moved up

anyway

e The rule, Mark-Pull-Up-2, has a unique normal form

Mark-Pull-Up-2

® -

-

.

<<create>> %

base-type

contains

C:Attribute

~

Step 4

* Subtractive Step: do the real “pull-up” into the superclass

e The rule, Pull-Up-Features, has a unique normal form

/ \
Pull-Up-Attributes base-type

~

~
<<delete>> ~
. \
contains -

C:Attribute

. /

@ (c) Prof. U. ABmann

Putting it All Together

e Therulesequence

* {FlattenClassHierarchy, Mark-Pull-Up, Mark-Pull-Up-2, Pull-Up-Features }

* jisterminating (XGRS) and confluent

* has aunique result, the desired refactored class hierarchy

* We specified arefactoring with only 4 rules

@ (c) Prof. U. ABmann

The End

* Many model and program transformations can be specified by terminating XGRS

 Termination criteria build on a termination subgraph that is completed or deleted during
the transformation
 Refactorings on the UDUG can be described with graph transformations

* Fujabastoryboards allow for chaining XGRS, so that the overall chain terminates

@ (c) Prof. U. ABmann

	Program Optimization with Graph Rewrite Systems
	Slide 2
	Example: Rename Refactorings in Programs
	Refactoring
	I Termination Criteria
	Problems with GRS
	Additive Termination
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Example: Subexpressions
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	EARS - Simple AGRS
	Slide 20
	Data-flow Analysis with EARS
	Slide 22
	Example: Allocation of Register Objects
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Edge-accumulative Rules and AGRS
	The Termination Subgraph of the Examples
	Slide 30
	Subtractive Termination
	Slide 33
	Slide 34
	Slide 35
	The Nature of XGRS
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Outlook

