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Wir brauchen hier ein Metamodell.
und ein Beispiel.
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Remember: Rename Refactorings in Programs

Refactor the name Person to Human, using bidirectional use-def-use links:

Definition

—.. Reference (Use)

e

class Human { .. }

class Course {
Human teacher = new Human(“Jim”);
Human student = new Human(“John”);



Refactoring as Graph Transformation

 Refactoring works always in the same way:
- Change adefinition

- Find all dependent references

Change them

Recurse handling other dependent definitions

 Refactoring can be supported by Graph Rewrite Tools

- The Use-Def-Use-graph (UDUG) forms the basis of refactoring tools
- Build up the UDUG with graph analysis (EARS)

- Rewrite it with graph rewriting (XGRS)
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15.1 Termination and Confluence of EARS

A Fujaba GRS (in one activity of
the storyboard)

may terminate and deliver a
unique result.
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Problems with GRS

With graph rewriting for model and program analysis, refactoring, and transformation,
there are some problems:

* Termination: The rules of a GRS G are applied in chaotic order to the
manipulated graph. When does G terminate for a start graph?

- ldea: can we ,forcedly” terminate the rewriting?

- ldea: identify a termination graph which stops the rewriting when completed

* Non-convergence (indeterminism): when does a GRS deliver a deterministic
solution (unique normal form)?

- Can we automatically select a “standard” normal form?

- ldea: unigue normal forms by rule stratification
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Additive Termination

 Atermination subgraph is a subgraph of the manipulated graph, which is step by step
completed

e Conditions in the additive case:
- nodes of termination (sub-)graph are not added (remain unchanged)

- itsedges are only added
* |fthe termination graph is complete, the system terminates
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Transitivising (Flattening) the Inheritance Hierarchy

e Does this rule terminate?

- Yes, because EARS complete graphs and shorten paths

- “is-a”is the termination subgraph

* Fujaba GRS rule “FlattenlnheritanceHierarchy”:

Flattenlnheritance

Hierarchy()

N Croos D Y,

[Christoph04]
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Run-Time Derivation (Snapshots):
Transitivising the Inheritance Hierarchy

Ex.: A simple class inheritance tree (acyclic) is “shortened”

“is-a” is completed step by step

Object:Class

>

Object:Class




Transitivising the Inheritance Hierarchy

 Ex.:Asimple class inheritance tree (acyclic) is “shortened”

( Person:Class

( Student:Class Professor:Class
Freshman:Class

( Person:Class

( Student:Class Professor:Class
Freshman:Class
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Transitivising the Inheritance Hierarchy

* Ifeveryindirect path is shortened, rewriting stops

Object:Class

Professor:Class

Freshman:Class

END

@ (c) Prof. U. ABmann



=
Example: Collect Subexpressions

e EARS alsowork on bipartite graphs

* Query to build up the use-definition-use graph (UDUG) between Statements and
Expressions:

"Find all subexpressions which are reachable from a statement"

"/ / F-Datalog:
ExprsOfStmt{Stmt.Statement,Expr:Expr]) - Child[Stmt,Expr).

ExprsOfStmt{Stmt.Statement,Expr:Expr) -
Child(Stmt,Expr2), Descendant(Expr2,Expr).

/ / Descendant is transitive closure of Child
Descendant(Expr1:Expr.Expre2:Expr] :- Child[Expr1,Expr2).
Descendant(Expr1:Expr,Expre:Expr) - Descendant(Expr1,Expr3),

Child[Expr3,Expr2).

* Features of graph rewrite system:
- terminating, strong confluent
- convergent (unique normal form)

—  recursive
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Uwe Aßmann, 20.01.2011
Regel 3 ok?


EARS CollectExpressions

/ <<create>> \

Collect

®

- /
Expressions() Stmt: Stater®~

Two transitive closures, specified as path abbreviations

ExprsOfStmt
Stmt:Statement  )- -
Child

<<create>>
ExprsOfStmt

<<Zcreate>>
Descendant
Expr1:Expr )
<<create>>
Descendant
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Expr1 :Expr\~ :
\Q/ Descendant Exprd:Expr e
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Execution of ,,Reachable Subexpressions”

e Startsituation
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Execution of ,,Reachable Subexpressions”

*  Why do such graph rewrite systems terminate? Answer: ExprsOfStmt and Descendants
are termination subgraphs, completed step by step

tmt
Nescendants

Const Var

Descendants
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Execution of ,,Reachable Subexpressions”

xtmt
Nescendants

Const Var

bscendants




Execution of ,,Reachable Subexpressions”
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Execution of ,,Reachable Subexpressions”




EARS - Simple Edge-Additive GRS
_ Sofwaretechnologev

 EARS (Edge addition rewrite systems) only add edges to graphs
— They can be used for the construction of graphs

* For the building up analysis information about a program or a model
* For abstractinterpretation on an abstract domain represented by a graph

* terminating: terminating on the finite lattice of subgraphs of the manipulated graph

- Added edges form the termination subgraph
* strongly confluent: direct derivations can always be interchanged.
e congruent: unique normal form (result)
» ==>|f 3 Fujaba activity contains an EARS, it terminates and delivers a unique result
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Name and Type Analysis with EARS
__ Softwaretechnologien

* EARS are very useful for program analysis problems
e Uses of names must be linked to their definitions

- procedures, methods

- classes, types

 Name analysis looks up used names in the context

— Search

—  Lookupintables

— Reachability analysis: if a definition of a used name is reachable, then it forms a use-def edge in
the use-def graph
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Data-flow Analysis with EARS

* EARS are very useful for program analysis problems

* Every distributive data-flow problem (abstract interpretation problem) on finite-height
powerset lattices can be represented by an EARS

- defined/used-data-flow analysis
- partial redundancies
— local analysis and preprocessing:

e EARS are equivalent to binary F-Datalog

» EARS work for other analysis problems, which can be expressed with F-Datalog-
queries
— equivalence classes on objects
- alias analysis
— program flow analysis

@ (c) Prof. U. ABmann
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15.2 Termination of Additive GRS (AGRS)

* Sometimes, during
refactoring and
transformations, we must
allow for node additions,
nodes which should
represent new information
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Example: Allocation of Register Objects for Storing the Result of
Expressions in Statements

* Query: ' Allocate a register object for every subexpression of a
statement which has a result and link the expression to the

statement'’

if ExprsOfStmt[(Stmt,Expr), HasResult[Expr)

then
ObjectExprs(Stmt,Expr],
RegisterObject := new Register;
UsedReg(Expr,RegisterObject) @
' ExprsOfStmt
Cowr > >
* Features: terminating ﬁterljeResult UsedReg
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ObjectExprs is the “termination subgraph”, i.e., the subgraph which cannot grow out of
bound




* ObjectExprsis the “termination subgraph”, i.e., the subgraph which cannot grow out of
bound

Assign

Object
EXxprs
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UsedReg
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A Derivation with the Termination Subgraph Will Stop
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Edge-Accumulative Rules and AGRS

* A GRSiscalled edge-accumulative (an AGRS) if

— allrules are edge-accumulative and
— norule adds nodes to the termination-subgraph nodes of another rule.

 Edge-accumulative rules are defined on label sets of nodes and edges in rules

* This criterion statically decidable
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The Termination Subgraph of the Examples

Collection of subexpressions:
T = ({Stmt,Expr}, {ExprsOfStmt, Descendant})

Allocation of register objects:
T = ({Proc,Expr}, {ObjectExprs})
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15.3 Subtractive GRS (SGRS)
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Subtractive Termination

 Conditions in the subtractive case:
— the nodes of the termination subgraph are not added (remain unchanged)

- itsedges are only deleted
* If the termination subgraph is empty, the system terminates
e Resultsin:

- edge-subtractive GRS (ESGRS)
- subtractive GRS (SGRS)
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Constant Folding as Graph Rewrite Rule

< Plus >

<Const

o W

C)C)




Peephole Optimization as Subtractive XGRS
__ Softwaretechnologien
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15.4 Exhaustive GRS (XGRS)
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The Nature of Exhaustive Graph Rewriting (XGRS)

@ (c) Prof. U. ABmann

AGRS and SGRS make up eXhaustive Graph Rewrite Systems
(XGRS)

In an XGRs, all redexes in the termination-subgraph are consumed step by step.

* The termination-subgraph is either completed or consumed
- Edge-accumulative systems may create new redex parts in the termination-subgraph, but

* there will be at most as many of them as the number of edges in the
termination-subgraph.
— Subtractive systems do not create sub-redexes in the termination-subgraph but destroy
them.

e XGRS can only be used to specify algorithms which
- perform a finite number of actions depending on the size of the host graph.
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15.5 Refactoring Example “Pull-Up Features into
Common Superclass”

[Christoph04]
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FlattenClassHierarchy
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Step 1:

Flattening the Inheritance Hierarchy

This rule terminates, due to path contraction and subtraction

The rule, FlattenClassHierarchy, has a unique normal form

® -

<<create>>

(&

e

v

7 <<delete>>

\

~

/
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Step 2:
Pull-Up-Method Refactoring

 Additive Step: Create a new base class for common attributes; mark this as the new
“base-type” of the attribute

e The rule, Mark-Pull-Up, has a unique normal form

ﬂlewSuper.Name .= “<A.name>_<B.name>_ Base” \
NewSuper:Class

<<create>> VAV <<create>>

<<creatp>>
base-ty

C:Attribute

Mark-Pull-Up

® -

contains contains

\




Step 3
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 Edge-Additive Step: alternate case: a class A has attributes that should be moved up

anyway

e The rule, Mark-Pull-Up-2, has a unique normal form

Mark-Pull-Up-2

® -

-

.

<<create>> %

base-type

contains

C:Attribute

~




Step 4

* Subtractive Step: do the real “pull-up” into the superclass

e The rule, Pull-Up-Features, has a unique normal form

/ \
Pull-Up-Attributes base-type

~

~
<<delete>> ~
. \
contains -

C:Attribute

. /
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Putting it All Together

e Therulesequence

* {FlattenClassHierarchy, Mark-Pull-Up, Mark-Pull-Up-2, Pull-Up-Features }

* jisterminating (XGRS) and confluent

* has aunique result, the desired refactored class hierarchy

* We specified arefactoring with only 4 rules
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The End

* Many model and program transformations can be specified by terminating XGRS

 Termination criteria build on a termination subgraph that is completed or deleted during
the transformation
 Refactorings on the UDUG can be described with graph transformations

* Fujabastoryboards allow for chaining XGRS, so that the overall chain terminates

@ (c) Prof. U. ABmann
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