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25.1 Using EARS for Deep Analysis of Models and
Mappings of Models and Code

► Graph reachability engines are analysis tools answering questions
about the deeper structure of models and programs

► EARS can be employed for regular graph reachability, context-free
graph reachability, slicing, data-fow analysis

■ And traceability for inter-model relationships
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EARS for Model Mapping

► Edge addition rewrite systems (EARS) compute direct relations for remotely reachable
parts of a graph and a model

■ They abbreviate long paths in models

► EARS can be used for reachability and model mapping:
■ Transitive closure
■ Regular path reachability
■ Context-free path reachability
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7  Model-Driven Software Development in Technical Spaces (MOST)

Model Analysis with Graph Reachability

► Use the graph-logic-isomorphism: Represent everything in a program or a model as
directed graphs

– Program code (control fow, statements, procedures, classes)

– Model elements (states, transitions, ...)

– Analysis information (abstract domains, fow info ...)

– Directed graphs with node and edge types, node attributes, one-edge condition
(no multi-graphs)

► Use edge addition rewrite systems (EARS) and other graph reachability specifcation
languages to

– Query the graphs (on values and patterns)

– Analyze the graphs (on reachability of nodes)

– Map the graphs to each other (model mapping)

► Later: Use graph rewrite systems (GRS) to construct and augment the graphs,
transform the graphs

► Use the graph-logic isomorphism to encode 

– Facts in graphs

– Logic queries in graph rewrite systems
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Specifcation Process

1)Specifcation of the data model (graph schema) with a graph-like DDL (ERD, MOF,
GXL,  UML or similar):

● Schema of the program representation: program code as objects and basic
relationships. This data, i.e., the start graph, is provided as result of the parser

● Schema of analysis information (the infered predicates over the program objects)
as objects or relationships

2)Flat model and program analysis (preparing the abstract interpretation)
● Querying graphs, enlarging graphs
● Materializing implicit knowledge to explicit knowledge 

3)Deep model and program analysis
• Reachability
• Inter-model reachability (traceability), materializing model mappings

4)Abstract Interpretation (program analysis as interpretation)
● Specifying the transfer functions of an abstract interpretation of the program with

graph rewrite rules on the analysis information

5)Model and Program transformation (optimization)
• Transforming the program representation
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9  Model-Driven Software Development in Technical Spaces (MOST)

Q14: A Simple Program (Code) Model (Schema) in MOF
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25.2. Reachability of Model Elements and Models for
Model Analysis and Mapping

► With model mapping languages, such as edge addition rewrite
systems or TGreQL
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25.2.1. Simple Reachability of Model Elements and
Models: 
Path Abbreviations in Graph Analysis

► With model mapping languages, such as edge addition rewrite
systems or TGreQL
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12  Model-Driven Software Development in Technical Spaces (MOST)

Path Abbreviations for Simple Reachability

► Path abbreviations shorten paths in the manipulated graph.

► They may collect nodes into the neighborhood of other nodes.

► Ex.: Collection of Expressions for a procedure: edge addition

-- F-Datalog notation:

AllExprs(Proc,Expr) :-

    Blocks(Proc,Block),

    Stmts(Block,Stmt),

    Exprs(Stmt,Expr).

-- if-then rules:

if  Blocks(Proc,Block),

    Stmts(Block,Stmt),

    Exprs(Stmt,Expr)

then

   AllExprs(Proc,Expr);

– regular expression notation (TGreQL):

AllExprs := Proc Blocks.Stmts.Exprs Expr

-- F-Datalog notation:

AllExprs(Proc,Expr) :-

    Blocks(Proc,Block),

    Stmts(Block,Stmt),

    Exprs(Stmt,Expr).

-- if-then rules:

if  Blocks(Proc,Block),

    Stmts(Block,Stmt),

    Exprs(Stmt,Expr)

then

   AllExprs(Proc,Expr);

– regular expression notation (TGreQL):

AllExprs := Proc Blocks.Stmts.Exprs Expr

Proc

Expr

Stmt

Block

Blocks

Exprs

Stmts
AllExprs
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Transitive Closure (TC) for Remote Reachability

► Reachability most often can be reduced to transitive closure of one or several relations.

► “Does an Stmt S reach a expresion E?”
► TC combines path abbreviation with recursion

■ Left or right recursion in F-Datalog
■ Kleene * in TgreQL
■ Thick arrow in Fujaba

S:Stmt E:Exprgen

reach

// F-Datalog
reach(S:Stmt,E:Expr) :- gen(S:Stmt,E:Expr), not killed(S:Stmt,E:Expr).
reach(S:Stmt,E:Expr) :- pred(S:Stmt,P), reach(P,E:Expr).

// F-Datalog
reach(S:Stmt,E:Expr) :- gen(S:Stmt,E:Expr), not killed(S:Stmt,E:Expr).
reach(S:Stmt,E:Expr) :- pred(S:Stmt,P), reach(P,E:Expr).

S:Stmt

P:Stmt

E:Expr

pred
reach

reach

not killed
// TGreQL
reach*(S:Stmt,E:Expr) 

// TGreQL
reach*(S:Stmt,E:Expr) 

S:Stmt E:Expr
reach
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Ex.: Relating Nodes into Equivalence Classes 

► Ex.: Computing equivalent nodes
► Context-sensitive problem, because m is not in the context of n

m:Proc

n:Proc

eq

baserule:

eq(m:Proc,n:Proc) :- 

   m.name == n.name.

– 

If (m:Proc, n:Proc) and m.name == n.name)

   eq(m,n)

}

– TgreQL regular expression:

m:Proc eq n.Proc if

m.name == n.name

baserule:

eq(m:Proc,n:Proc) :- 

   m.name == n.name.

– 

If (m:Proc, n:Proc) and m.name == n.name)

   eq(m,n)

}

– TgreQL regular expression:

m:Proc eq n.Proc if

m.name == n.name

m.name == n.name

m:Proc

n:Proc

m.name == n.name

m:Proc

n:Proc

eq

m.name == n.name
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Ex. Relating Nodes into Equivalence Classes (Here: Value
Numbering, Synt. Expression Equivalence)

► Ex.: Computing structurally
equivalent expressions

► Question: “Which expresion tres
have the same structure?”

IntConst

Expr1

IntConst2

IntConst IntConst2
eq

Plus1 Plus2

eqExpr2

Expr3

Expr4

eq

Expr1

Plus1 Plus2

eqExpr2

Expr3

Expr4

eq

eq

--- F-Datalog baserule:

eq(IntConst1,IntConst2) :- 

   IntConst1 ~ IntConst(Value),

   IntConst2 ~ IntConst(Value).

--- recursive_rule:

eq(Plus1,Plus2) :- 

   Plus1 ~ Plus(Type), 

   Plus2 ~ Plus(Type),

   Left(Plus1,Expr1), 

   Right(Plus1,Expr2),

   Left(Plus2,Expr3), 

   Right(Plus2,Expr4).

   eq(Expr1,Expr3),   

   eq(Expr2,Expr4).

--- F-Datalog baserule:

eq(IntConst1,IntConst2) :- 

   IntConst1 ~ IntConst(Value),

   IntConst2 ~ IntConst(Value).

--- recursive_rule:

eq(Plus1,Plus2) :- 

   Plus1 ~ Plus(Type), 

   Plus2 ~ Plus(Type),

   Left(Plus1,Expr1), 

   Right(Plus1,Expr2),

   Left(Plus2,Expr3), 

   Right(Plus2,Expr4).

   eq(Expr1,Expr3),   

   eq(Expr2,Expr4).
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25.3. Deep Model Analysis (Value-Flow Analysis, Data-
Flow Analysis) as General Graph Reachability

► with edge addition rewrite systems and F-Datalog
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Data-fow Analysis for Reachability and Traceability

► Value-fow analysis (data-fow analysis) is a specifc form of deep model analysis
asking reachability questions, i.e., computing  the fow of data (value fow) through the
model or program, from variable assignments to variable uses

■ Result: the value-fow graph (data-fow graph)
■ If the value fow analysis is done along the control-fow graph, it is called an

abstract interpretation of a program
. EARS can do an abstract interpretation of a program, if they are rewriting

on the control-fow graph. Then, their rules implement transfer functions of
an abstract interpreter

► Examples of reachability problems:
■ AllSuperClasses: fnd out for a class transitively all superclasses
■ AllEnclosingScopes: fnd out for a scope all enclosing scopes
■ Reaching Defnitions Analysis: Which Assignments (Defnitions) of a variable can

reach which statement?
■ Live Variable Analysis: At which statement is a variable live, i.e., will further be

used?
■ Busy Expression Analysis: Which expression will be used on all outgoing paths?

– Central part: 1 recursive system
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18  Model-Driven Software Development in Technical Spaces (MOST)

► Problem: “Which defnitions of expresions
reach which statement?”

■ Assignments of a variable,
temporary, or register

■ Usually computed for all positions
before and after a statement

► Graph rewrite rules implement an abstract
interpreter

■ On instructions or on blocks of
instructions

■ Flow information is expressed with
edges of relations “reach-*”

► Recursive system (via edge reach-begin)
■ (B reach-end E) := (E reaches end of

block B)

►

Reaching Defnition Analysis By Abstract Interpretation with
EARS

B:Stmt

P:Stmt

E:Expr

pred
reach-end

reach-begin

B:Stmt E:Expr
gen

reach-end

B:Stmt E:Exprreach-begin

reach-end

not killed

reach-end(B,E) :- gen(B,E).
reach-end(B,E) :- reach-begin(B,E), not killed(B,E).
reach-begin(B,E) :-pred(B,P), reach-end(P,E).

reach-end(B,E) :- gen(B,E).
reach-end(B,E) :- reach-begin(B,E), not killed(B,E).
reach-begin(B,E) :-pred(B,P), reach-end(P,E).
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19  Model-Driven Software Development in Technical Spaces (MOST)

► Code motion is an essential transformation to speed up the generated code. However,
it is a complex transformation:

– Discovering loop-invariant expressions by data-fow analysis

– Moving loop-invariant expressions out of loops upward

– Code motion needs complex data-fow analysis

► Busy Code Motion (BCM) moves expressions as upward (early) as possible 

► Lazy Code Motion (LCM)  
■ Moving expressions out of loops to the front of the loop, upward, but carefully:
■ Moving expressions to an optimal place so that register  lifetimes are shorter and

not too long (optimally early)
■ LCM analysis computes this optimal early place of an expression [Knoop/Steffen]

. Analyze an optimally early place for the placement of an expression

. About 6 equation systems similar to reaching-defnitions
■ Every equation system is an EARS [Aßmann00]

Code Motion Analysis
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Excerpt from LCM Analysis with Overlaps

Block Expr

social_out

NOT earliest_out
Block Expr

social_out

NOT earliest_out

Block Exprcomp_in Block Exprcomp_in

social_in

comp_soc_in

Block Expr

latest_in

NOT social_in
Block Expr

latest_in

NOT social_in

isolated_and_latest_in

► Compute an optimally early block for an expression (out of a loop)

Question: “Which expresion is not isolated (social) at the begining of a block?”

Question: “Which expresion is not isolated (social) at the begining of a block?”
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25.3.2 Regular Graph Reachability and Slicing
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Regular Graph Reachability

► If the query can be expressed as a regular expression, the query is a regular graph
reachability problem

► Kleene star is used as transitive closure operator

► TqreQL and Fujaba are languages offering Kleene *

Proc

Expr

Stmt

Block

Block*

Expr*

Stmt*

-- F-Datalog notation:

AllExprs(Proc,Expr) :-

    Block*(Proc,Block),

    Stmt*(Block,Stmt),

    Expr*(Stmt,Expr).

-- if-then rules:

if  Block*(Proc,Block),

    Stmt*(Block,Stmt),

    Expr*(Stmt,Expr)

then

   AllExprs(Proc,Expr);

– regular expression notation (TGreQL):

AllExprs := Proc Block*.Stmt*.Expr* Expr

-- F-Datalog notation:

AllExprs(Proc,Expr) :-

    Block*(Proc,Block),

    Stmt*(Block,Stmt),

    Expr*(Stmt,Expr).

-- if-then rules:

if  Block*(Proc,Block),

    Stmt*(Block,Stmt),

    Expr*(Stmt,Expr)

then

   AllExprs(Proc,Expr);

– regular expression notation (TGreQL):

AllExprs := Proc Block*.Stmt*.Expr* Expr

AllExprs
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Static Slicing: Single-Source-Multiple-Target Regular
Reachability

► [Weiser] [Tip]

► A static slice is the region of a program or model dependent from one source node
(reachable by a regular reachability query  in a dependency graph)

■ A static slice is a single-source path reachability problem (SSPP) on the
dependency graph

■ A static slice introduces path abbreviations from one entity to a region

► A forward slice is a dependent region in forward direction of the program
■ The uses of a variable
■ The callees of a call
■ The uses of a type

► A backward slice is a dependent region in backward direction of the program
■ The assignments which can infuence the value of a variable
■ The callers of a method
■ The type of a variable

► Slicing can map arbitrary entities in programs and models to other entities, based on a
regular graph expression 
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24  Model-Driven Software Development in Technical Spaces (MOST)

Reachability within Models and 
Traceability between Models

► Data-fow analysis (graph reachability, slicing) can be done
■ Intraprocedurally (within one procedure)
■ Interprocedurally (program-wide)

► Traceability is inter-model slicing and graph reachability
■ inter-model: then it creates trace relations between requirements models,

design models, and code models
■ Intra-megamodel: trace relations can trace dependencies between all models in a

megamodel, e.g., in an MDA

► A model mapping is an inter-model trace(-ability) graph
■ Model mappings are very important for the dependency analysis and traceability

in megamodels and the construction of macromodels
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25.3.3 Context-Free Graph Reachability

► If arbitrary recursion patterns are allowed in F-Datalog and EARS
queries, we arrive at context-free graph reachability.
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26  Model-Driven Software Development in Technical Spaces (MOST)

Free Recursion

► Transitive closure and regular graph reachability rely on regular recursion (linear
recursion) expressible with the Kleene-* on relations 

► Beyond that,, F-Datalog and EARS can describe other recursions 
■ Context-free recursions
■ Cross-recursions

► Then, we speak of context-free graph reachability
■ A context-free language describes graph reachability

► Applications:
■ Complex intraprocedural value fow analyses
■ Interprocedural, whole-program analysis 
■ Interprocedural IDFS framework (Reps) 
■ Model mappings in a megamodel
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25.3.4 More on the Logic-Graph Isomorphism

► [Courcelle] discovered that many problems can be expressed in
logic (on facts) and in graph rewriting (on graphs)
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28  Model-Driven Software Development in Technical Spaces (MOST)

Program and Model Analyses Covered by Graph
Reachability

► Graph Reachability Analysis can do abstract interpretation
■ If it adds analysis information to the control-fow graph
■ Slicing is a Single-Source-Multiple-Target reachability analysis

► Every abstract interpretation where a mapping of the abstract domains to graphs can
be found.

■ monotone and distributive data-fow analysis 
■ control fow analysis
■ Static-single-assignment (SSA) construction
■ Interprocedural IDFS analysis framework (Reps)
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The Common Core of Logic, Graph Rewriting and Program
Analysis

Datalog
SQL

GRS

Reachability Analysis
(data-flow analysis
abstract interpretation)

EARS

Program Analysis
(abstract interpretation)

► Graph rewriting, DATALOG and data-fow analysis have a common core: EARS

Slicing
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Relation DFA/F-DATALOG/GRS

► Abstract interpretation (Data-fow analysis), F-DATALOG and graph rewrite systems
have a common kernel: EARS

■ As F-DATALOG, graph rewrite systems can be used to query the graph.

► Contrary to F-DATALOG and query languages, edge graph rewrite systems
materialize their results instantly.

■ Therefore, they are amenable for model analysis and mappings
■ Graph rewriting is restricted to binary predicates and always yields all solutions

► General graph rewriting can do transformation, i.e. is much more powerful than F-
DATALOG.

■ Graph rewriting enables a uniform view of the entire optimization  process
■ There is no methodology on how to specify general abstract interpretations

with graph rewrite systems
■ In interprocedural analysis, instead of chaotic iteration special evaluation

strategies must be used [Reps95] [Knoop92]
■ Currently strategies have to be modeled in the rewrite specifcations explicitly

► Uniform Specifcation of Analysis and Transformation [Aßmann00]
■ If the program analysis (including abstract interpretation) is specifed with GRS,

it can be unifed with program transformation
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25.3.5 Implementation of Data-Flow Analysis  in Tools
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32  Model-Driven Software Development in Technical Spaces (MOST)

Optimix: using Effcient Evaluation Algorithms from Logic
Programming

► Tool OPTIMIX uses the „Order algorithm“ scheme [Aßmann00]
■ Generates target code of a programming language

. Code generation uses variants of nested loop join algorithm
■ Works effectively on very sparse directed graphs
■ Bottom-up evaluation, as in F-Datalog; top-down evaluation as in Prolog possible,

with resolution

► Optimizations from Datalog and F-Datalog
■ Bottom-up evaluation is normal, as in Datalog 
■ Top-down evaluation as in Prolog possible, with resolution
■ Sometimes fxpoint evaluations can be avoided
■ Use of index structures possible
■ Linear bitvector union operations can be used
■ semi-naive evaluation
■ index structures
■ magic set transformation
■ transitive closure optimizations
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33  Model-Driven Software Development in Technical Spaces (MOST)

Graph Rewrite Tools for Graph Reachability

► Fujaba  graph rewrite system www.fujaba.de 

► (e)MOFLON graph rewrite system www.mofon.de 
■ TGG for Model Mapping, similar to QVT-R
■ See chapter MOFLON 

► AGG graph rewrite system (From Berlin and Marburg)
■ http://user.cs.tu-berlin.de/~gragra/agg/

► VIATRA2 graph rewrite system on EMF
■ http://eclipse.org/gmt/VIATRA2/

► GROOVE for the construction of iInterpreters
■ http://groove.cs.utwente.nl/

http://www.fujaba.de/
http://www.moflon.de/
http://eclipse.org/gmt/VIATRA2/
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25.4 Model Mappings in In-Memory Megamodels
(Modellverknüpfung) and Their Use for Traceability

► Model mapping languages are model query languages who
enter their results again into the models as analysis
information. 

► They create model mappings which are important for
macromodels.
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36  Model-Driven Software Development in Technical Spaces (MOST)

Q2: Tools in an Integrated Development Environment (IDE)
for MDSD

Requirements
Repository

Design
Repository
(PIM, Arch)

Implementation
Repository
(PSI, Code)

Test Case
Repository

Tool Tool

Metamodel
Repository

(M2)

► Model mappings  relate different models to enable reachability analysis, trace
analysis (if models are in different repositories)  and impact analysis

► An in-memory macromodel is a megamodel where all models are loaded in memory

Reasoning
engine

GRS
engine

TRS
engine

XML
engine

Relational
engine

Tool

Reachability analysis (traceability) Attribute analysis

Model mappings Model slicing Model composition
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Q12: The ReDeCT Problem and its Macromodel  

► The ReDeCT problem is the problem how requirements, design, code and tests are
related (→  V model)

► Mappings between the Requirements model, Design model, Code, Test cases 

► A ReDeCT macromodel has maintained mappings between all 4 models

► If all models belong to one repository, we call it a mono-repository macromodel

► If the models belong to multiple repositories, we call it a multi-repository macromodel 
■ Then, Reachability means Traceability

Requirements Design Code Test

ComponentName

ComponentName

ComponentName

Node

Node

Package Bill {
 Uses Order; 
 Class Counting {
   Procedure count IS
   End; 
}
}

Package Order {
 Uses Bill; 
 Class Ordering {
   Procedure count IS
   End; 
}
}

Package TestBill {
 Uses TestOrder; 
 Proc  testCounting IS
…. 
 End; 
}
}

Package TestOrder {
 Uses Bill; 
 Class TestOrdering {
   Procedure
testCount IS
   End; 
}
}
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Advantages of Model Mappings

► Error tracing
■ When an error occurs during testing or runtime, we want to trace back the

error to a design element or requirements element

► Traceability
■ We want to know which requirement (feature) infuences which design,

code, and test elements, so that we can demarcate modules in the solution
space (product line development)

► Synchronization in Development:
■ Two models are called synchronized, if the change of one of them leads

automatically to a hot-update of the other

► Cohesion of Distributed Information:
■ Two related model elements may contain distributed information about a

thing. The relation allows for reconstructing the full information
■ Example: 

. Storing two roles of an object in two different models (See “Amoeba
Object Pattern”)

. Splitting the representation of the requirements on an object and
its design  in requirements vs design model
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Different Forms of Model Mappings

► Directly specifed mappings specify a deterministic mapping function between a
source and target model.

■ Direct mappings are specifed in GUI or text fles
■ Direct mappings may be complete or incomplete

► Recursive mappings are defned in a functional language
■ Denotational semantics is a complete direct mapping of two languages
■ The coverage of the source model must be ensured  (completeness of

specifcation)

► General mappings may be intensionally specifed. Source and target models are
mapped 

■ With graph  reachability expressions (QVT-R, TgreQL, EARS)
■ With query expressions (Semmle.QL)
■ With expressions in a logic (F-Datalog)

► Inter-model mappings are defned between model elements of different models

► Lifted inter-model mappings are lifted from intra-model element mappings 
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25.4.1 Direct Mappings for Simple Traceability

► With a direct model mapping, a requirements model can be linked 
■ to a test case specifcation
■ to a documentation
■ to an architectural specifcation
■ via the architectural specifcation, to the classes and

procedures in the code
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41  Model-Driven Software Development in Technical Spaces (MOST)

Ex.: Explicit Model Mapping (Modell-Verknüpfung) with
MID INNOVATOR

► MID Innovator can be used for requirements models (use cases), design models,
implementation models, as well as for transformations in between

► How to relate these models systematically?
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Example: imbus TestBench
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Requirements get “red-yellow-green” Test Status Attribute

http://www.imbus.de/produkte/imbus-testbench/hauptfunktionen/
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25.4.2. Analysis with Reachability

► Deep model analysis: 
■ Graph reachability analyzers create direct mappings (graphs) from indirect

mappings (abbreviate intensional or recursive mappings)
■ for reachability of model elements
■ to create model slicings (projections to some subgraphs)
■ to prepare refactorings, transformers, and optimizers

. For models: For model refactoring, adaptation and specialization, weaving
and composition

. For code: Portability to new processor types and memory hierarchies
■ For optimization (time, memory, energy consumption)

► For traceability of model elements in other models. Traceability is reachability of model
elements over several models
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25.4.2 Specifying Inter-Model Mappings with Model
Mapping Languages
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Ex.: Querying in ReDeCT
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Inter-Model Relationships in The ReDeCT Macromodel  

► An Inter-model relationship is a relationship between model elements of different
models

■ Here: expresses mapping between the Requirements model, Design model,
Code, Test cases 

► The ReDeCT macromodel relies on inter-model relationships between all 4 models

Requirements Design Code Test

ComponentName

ComponentName

ComponentName

Node

Node

Package Bill {
 Uses Order; 
 Class Counting {
   Procedure count IS
   End; 
}
}

Package Order {
 Uses Bill; 
 Class Ordering {
   Procedure count IS
   End; 
}
}

Package TestBill {
 Uses TestOrder; 
 Proc  testCounting IS
…. 
 End; 
}
}

Package TestOrder {
 Uses Bill; 
 Class TestOrdering {
   Procedure
testCount IS
   End; 
}
}
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Inter-Model Relationships in The ReDeCT Macromodel  

► An (direct) inter-model  relationship is defned between top-level metaclasses in the models of the macromodel

► The ReDeCT macromodel defnes on direct inter-model relationships on RequirementsElement, DesignElement,
CodeElement, TestElement

Requirements Design Code Test

ComponentName

ComponentName

ComponentName

Node

Node

Package Bill {
 Uses Order; 
 Class Counting {
   Procedure count IS
   End; 
}
}

Package Order {
 Uses Bill; 
 Class Ordering {
   Procedure count IS
   End; 
}
}

Package TestBill {
 Uses TestOrder; 
 Proc  testCounting IS
…. 
 End; 
}
}

Package TestOrder {
 Uses Bill; 
 Class TestOrdering {
   Procedure
testCount IS
   End; 
}
}

M2

M1

Requirements
Element

Design
Element

Code
Element

Test
Element

satisfies implements verifies

instance-of instance-of instance-of instance-of



 ©
 P

ro
f. 

U
. A

ß
m

an
n

 

50  Model-Driven Software Development in Technical Spaces (MOST)

Specifcation of Traceability in ReDeCT with TGreQL

► Direct inter-model relationships form the basis of queries in the macromodel. Allow for
the defnition of 

■ Traceability relations between model elements of different models
■ Hyperedges (tuples) between several model elements of different models

► Any query language can be used for model mappings, if their results are entered into
the model resp. macromodel

// Defining a inter-model hyperedge (tuple) in TGreQL [BERS08] 
elementsIn(
   from req:V{Requirement}, archElem:V{UMLElement}, 
    desElem:V{UMLElement}, class:V{ClassDefinition} 
  with req.name=”Count Bill” 
       and req <− − {Satisfies} archElem 
       and archElem <− − {Realize} desElem
       and desElem <− − {Implements} class 
   report req, archElem, desElem, class 
end 
)

// Defining a inter-model hyperedge (tuple) in TGreQL [BERS08] 
elementsIn(
   from req:V{Requirement}, archElem:V{UMLElement}, 
    desElem:V{UMLElement}, class:V{ClassDefinition} 
  with req.name=”Count Bill” 
       and req <− − {Satisfies} archElem 
       and archElem <− − {Realize} desElem
       and desElem <− − {Implements} class 
   report req, archElem, desElem, class 
end 
)

[BERS08] 
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25.4.3 Inter-Model Reachability (Traceability)

► When models are kept in different repositories, inter-model
reachability becomes traceability
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Q9: Model Mappings and Model Weavings in the MDA
Megamodel

► Model mappings connect models horizontally (on the same level)
or vertically (crossing levels). 

► Model transformations  transform models horizontally or
vertically.

■ From a model mapping, a simple transformation can be
infered

► Model extensions (model merges, additions) extend an input
model by an extension (often done by hand) 

■ Usually, some parts are still hand-written code

Weaving

Code addition

Platform-Independent Model (CIM)
Design specification

Domain model for application domain

Requirements specification
Computationally-Independent Model (CIM)

Platform-Specific Implementation 
(PSI, Code)

Platform-Specific Extension (PSE)

Platform Description Model  (PDM)

Handwritten code

Platform Specific Model (PSM)

► Model weavings weave two input models to an output model,
based on a crosscut specification

► Model2Text expansion (code generation by template
expansion)

<<creates>>

<<creates>>
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Rpt. from ST-II: Model Mapping, Transformation and
Synchronization in the MDA

Source Language Target LanguageMapping
Specif ication

depends
upon

depends
upon

Source Model Target Model

def ined
in

def ined
in

def ined
in

Adapted from:  Kleppe, A., Warmer, J., Bast, W.: MDA Explained - Practice and Promise of the 
Model Driven Architecture; Addison Wesley 2003 (Draft 25.10.02)

PIM PSM

The MDA macromodel derives from a platform-independent model (PIM) by 
hand, by rules, by transformations, by metaprograms  platform-specif ic 
models (PSM)

The MDA macromodel derives from a platform-independent model (PIM) by 
hand, by rules, by transformations, by metaprograms  platform-specif ic 
models (PSM)

► Model mapping connects systematically all elements of a source model (in a source
language) to the elements of a target model in a target language. 

► From the mappings, a translation, transformation, or synchronization can be
automatically infered.

M2

M1 Mapping

Extension Language

Extension Model
<<create>>
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Q9b: Inter-Model Mappings in the MDA Megamodel

► Model mappings connect models horizontally (on the same level)
or vertically (crossing levels). 

► Model extensions (model merges, additions) extend an input
model by an extension (often done by hand) 

Platform-Independent Model (CIM)
Design specification

Requirements specification
Computationally-Independent Model (CIM)

Platform-Specific Implementation 
(PSI, Code)

Platform-Specific Extension (PSE)

Platform Description Model  (PDM)

Handwritten code

Platform Specific Model (PSM)

► Model weavings weave two input models to an output model,
based on a crosscut mapping specification

extends

extends

Architectural Extension 
extends

<<creates>>

<<creates>>

<<creates>>
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Application of Traceability: Inter-Model Trace Mappings in
the Macromodel MDA

 

Weaving

Code addition

Platform-Independent Model (CIM)
Design specification

Domain model for application domain

Computationally-Independent Model (CIM)
Requirements specification

Platform-Specific Implementation 
(PSI, Code)

Platform-Specific Extension (PSE)

Platform Description Model  (PDM)

Handwritten code

Platform Specific Model (PSM)

Model Trace Mapping 1
Requirements-Code-Traceability

Model Trace Mapping 2
Platform-Code-Traceability
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The End - Appendix
Comprehension Questions

► Explain program slicing as an application of graph reachability.

► Why is regular graph reachability “regular”? What is the different to context-free
graph reachability?

► How do you create a model mapping with regular graph reachability?

► Explain a typical data-fow analysis with EARS. Why do EARS rules that rewrite the
information “around” the control-fow graph form an abstract interpreter?

► EARS can rewrite models. How would you specify a model refactoring engine with
EARS?
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