
 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

31. Data Integration of Tools by Role-Based
Composition of Materials
(Role-Based Metamodel Composition on M2)
for Tool Interoperability on M1-Models and M0-Repositories

1) Motivational Example

Proactive vs. Retroactive Tool
Integration

2) Roles in Metaclasses

3) Role-based composition of
metamodels

4) Role-Based Composition of
Metamodels with RoleCore

5) LanGems

6) CROM from RoSI (external)

Prof. Dr. Uwe Aßmann

Mirko Seifert, Christian Wende

Technische Universität Dresden

Institut für Software- und Multimediatechnik

http://st.inf.tu-dresden.de

Version 15-1.4, 16.01.16

 ©
 P

ro
f.

U
. A

ß
m

an
n

2 Model-Driven Software Development in Technical Spaces (MOST)

Obligatory Literature

► Mirko Seifert, Christian Wende and Uwe Aßmann. Anticipating Unanticipated Tool
Interoperability using Role Models. In Proceedings of the 1st Workshop on Model
Driven Interoperability (MDI'2010) (co-located with MODELS 2010), 5th October
2010, Oslo, Norway

► Course “Design Patterns and Frameworks” (chapter about role modeling)

► http://www.langems.org

► http://www.emftext.org/language/rolecore

 ©
 P

ro
f.

U
. A

ß
m

an
n

3 Model-Driven Software Development in Technical Spaces (MOST)

Literature on Roles

T. Reenskaug, P. Wold, O. A. Lehne. Working with objects. Manning. The OOram Method.
http://heim.ifi.uio.no/~trygver/documents/book11d.pdf

H. Allert, P. Dolog, W. Nejdl, W. Siberski, F. Steimann. Role-Oriented Models for Hypermedia
Construction – Conceptual Modelling for the Semantic Web. citeseer.org.

N. Guarino, M. Carrara, and P. Giaretta. An ontology of meta-level categories. In Proceedings of the
Fourth International Conference on Knowledge Representation and Reasoning, pages 270–280.
Morgan Kaufmann, San Mateo, 1994.

F. Steimann. On the representation of roles in object-oriented and conceptual modelling. Data and
Knowledge Engineering. 2000.

T. Reenskaug, P. Wold, O. A. Lehne. Working with objects. Manning.
http://heim.ifi.uio.no/~trygver/documents/book11d.pdf

D. Riehle, T. Gross. Role Model Based Framework Design and Integration. OOPSLA 1998.

U. Aßmann, J. Henriksson, I. Savga, J. Johannes: Composition of Ontologies and Rule Sets. REASONING
WEB Summer School, LNCS 4126

Christian Wende. Language Family Engineering. PhD thesis, Technische Universität Dresden, Fakultät
Informatik, March 2012, http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-88985.

 ©
 P

ro
f.

U
. A

ß
m

an
n

4 Model-Driven Software Development in Technical Spaces (MOST)

• Role-based Architectural language: Smart Apps (SMAPPs) and
Smart Application Grids (SMAGs)

– Under development by Christian Piechnick
• C. Piechinick, S. Richly, S. Götz, C. Wilke, U. Aßmann. Using Role-

Based Composition to Support Unanticipated, Dynamic Adaptation –
Smart Application Grids. Adaptive and Self-adaptive Systems and
Applications (Adaptive 2012)

Pr
of

.
U

.
A
ß
m

an
n
,

T
U

 D
re

sd
en

4

The Role-Based Architectural Language SMAGs

 ©
 P

ro
f.

U
. A

ß
m

an
n

5 Model-Driven Software Development in Technical Spaces (MOST)

• Henrik Lochmann. HybridMDSD: Multi-Domain Engineering with
Model-Driven Software Development using Ontological
Foundations. PhD thesis, Technische Universität Dresden, Fakultät
Informatik, 2009, http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-
27380

• Mirko Seifert. Designing Round-Trip Systems by Model Partitioning
and Change Propagation. PhD thesis, Technische Universität Dresden,
Fakultät Informatik, June 2011, http://nbn-
resolving.de/urn:nbn:de:bsz:14-qucosa-71098

• Konrad Voigt. Structural Graph-based Metamodel Matching. PhD
thesis, Technische Universität Dresden, Fakultät Informatik, November
2011, http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-81671

• Jendrik Johannes. Component-Based Model-Driven Software Development.
PhD thesis, Technische Universität Dresden, Fakultät Informatik, December
2010. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-63986

• www.reuseware.org
• Birgit Grammel. Automatic Generation of Trace Links in Model-driven

Software Development. PhD thesis, Technische Universität Dresden,
Fakultät Informatik, February 2014

R
ol

le
n
b
as

ie
rt

e
S
p
ra

ch
ko

m
p
os

it
io

n

5

Works in the Last Years

http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-63986
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-63986
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-63986
http://www.reuseware.org/

 ©
 P

ro
f.

U
. A

ß
m

an
n

6 Model-Driven Software Development in Technical Spaces (MOST)

Position

► We have learned in chapter “Metamodeling” that metamodels can be composed by a
merge operator

■ Then metamodel-driven repositories can be generated

► So far, the integration was based on merge of metamodel packages, i.e., the metaclasses
stayed as they are during composition

► In this chapter, we will merge metaclasses during composition by role merge
► This achieves a much tighter integration (Datenteilung)

 ©
 P

ro
f.

U
. A

ß
m

an
n

8 Model-Driven Software Development in Technical Spaces (MOST)

Metamodel Mappings and the Composition of Languages

ExtensionBase

► Problem: Language mappings for transformation bridges should be modular
■ But the composition of two languages (and two metamodels) is difficult

► Examples:
■ Extension of a base language with a domain-specific extension
■ Design of a language family of related languages
■ Specification of a crosscut in the semantics

► Language Composition is traditionally done with declarative specifications
■ Composition of Attribute grammars

. ELI, fnc-2, LISA, Silver, JastAdd
■ Composition of Natural Semantics

. Typol, RML
■ Composition of Logic Specifications

. Datalog, OWL

 ©
 P

ro
f.

U
. A

ß
m

an
n

9 Model-Driven Software Development in Technical Spaces (MOST)

Ideally, a language designer would like to build a language simply be reusing language
definition modules...

This approach is common to component-based programming where components can be
simply plug-ins.

This cannot be done now.
[Mernik, Wu, Bryant, 2004]

Ideally, a language designer would like to build a language simply be reusing language
definition modules...

This approach is common to component-based programming where components can be
simply plug-ins.

This cannot be done now.
[Mernik, Wu, Bryant, 2004]

DSL development is hard.

[Mernik, Heering, Sloane, 2005]

DSL development is hard.

[Mernik, Heering, Sloane, 2005]

The Problem of Language Composition

 ©
 P

ro
f.

U
. A

ß
m

an
n

10 Model-Driven Software Development in Technical Spaces (MOST)

Graph Analysis Tool

Textual State Machine Editor

2D Shape Renderer

10

31.1 Motivational Example for Data Sharing in Tool
Integration

DDL: state machines
DDL: visualization concepts

DDL: graphs

► Tools may rely on different DDL, which represent similar concepts

 ©
 P

ro
f.

U
. A

ß
m

an
n

11 Model-Driven Software Development in Technical Spaces (MOST)

Node
Edge

Graph Analysis Tool

Textual State Machine Editor

State
(Initial, Final)

Transition

2D Shape Renderer
Shape

(Circle, Rectangle,
Line)

Colour

11

Example – Language Concepts in Metamodels of the Involved
Tools

DDL: state machines
DDL: visualization concepts

DDL: graphs

► Then, tools rely on different DDL metamodels with overlapping concepts

 ©
 P

ro
f.

U
. A

ß
m

an
n

12 Model-Driven Software Development in Technical Spaces (MOST)

Textual State Machine Editor Graph Analysis
Tool

Material Metamodel 3Material Metamodel 1

from

to

2D Shape
Renderer

Material Metamodel 2

Node Edgex,y,size : int
Shapesource

target
State Transition

Color

CIRCLE
RECTANGLE

Kind

How Can these Metamodels of Materials be Integrated?

► Scenario: Data Integration (Material Integration) of 3 tools

 ©
 P

ro
f.

U
. A

ß
m

an
n

13 Model-Driven Software Development in Technical Spaces (MOST)

13

Transformation
bridge

Textual State Machine
Editor Graph Analysis Tool

SM metamodel

State {
 name: String
}

Transition {
 from: State
 to: State
}

GRAPH metamodel

Node {
}

Edge {
 source: Node
 target: Node
}Repository 1

GRS, ATL, QVT,
TGG, …

Repository 2

Retroactive Tool Integration on Repositories by
Data Connection

► Often, tools, their metamodels, and the metamodel-driven repositories already exist

► Metamodel mapping (language mapping): map the concepts of one DDL to the other

► Use transformations to convert data from one tool to another (data exchange via
transformation bridge, Datenverbindung)

 ©
 P

ro
f.

U
. A

ß
m

an
n

14 Model-Driven Software Development in Technical Spaces (MOST)

14

State

name:String

Node Edge

Transition
from

to

State

name:String

Node Edge

Transition

source

target

a) „White-Box“ Inheritance b) „Black-Box“ Delegation

Classic Proactive Tool Integration

► Sometimes, metamodels and repositories are not fixed yet and can be integrated

► Use metamodel extension (integration) to make data from one tool accessible to another

– Extension by inheritance (“white-box”): Submetaclasses are formed; language
concepts are integrated, but no extension of supermetaclasses possible

– Extension by delegation (“black-box”): Language concepts stay separate, but are
connected; no real integration

source

target

from

to

 ©
 P

ro
f.

U
. A

ß
m

an
n

15 Model-Driven Software Development in Technical Spaces (MOST)

15

Proactive (Data Integration) Retroactive (Data
Connection)

Technique Inheritance Transformation

Delegation

Appropriate Abstraction Metamodels need
to be adapted

Metamodels unaffected

Tool Independence Strong coupling No coupling

Shared Data Sharing among all integrated
tools

Replicated Data,
Synchronization needed

Tool Interaction Support for anticipated
interaction only

Transformations hinder
interaction

Test effort Inheritance: high
Delegation: bit lower

Hopefully none

Proactive vs. Retroactive Tool Integration

Uwe Assmann, 12.01.2016
Here, more framework hook patterns can be discussed

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

31.2 Roles in Models, Metamodels, and Metalanguages

 ©
 P

ro
f.

U
. A

ß
m

an
n

17 Model-Driven Software Development in Technical Spaces (MOST)

Collaboration-Based Modeling
(Role Modeling) (Rpt.)

Roles are first-class modeling concepts in modern object-oriented languages

► Databases [Bachmann], Object-Role Modeling [Halpin]

► Factorization [Steimann]

► Research in Design Patterns [Reenskaug, Riehle/Gross]

:Person :Person

:Father :Child

<<plays-a>> <<plays-a>>

:Person :Person:Father :Child

 ©
 P

ro
f.

U
. A

ß
m

an
n

18 Model-Driven Software Development in Technical Spaces (MOST)

What are Roles? (Rpt.)

A role is a dynamic view onto an object

– Roles are played by the objects (the
object is the player of the role)

– A partial object

Roles are tied to collaborations
– Do not exist standalone, depend on

a partner
:Employee

:Father

:Cyclist

:Customer

:TaxPayer

:Swede

:Person

 ©
 P

ro
f.

U
. A

ß
m

an
n

19 Model-Driven Software Development in Technical Spaces (MOST)

What are Roles? (Rpt.)

Roles are services of an object in a context

– Roles can be connected to each other

– A role has an interface

Roles form role models, capturing an area of concern [Reenskaug]

– Role models are collaborative aspects

:Employee

:Father

:Cyclist

:Customer

:TaxPayer

:Swede

:Person

:Employer

:Child

:CarDriver

:Person

 ©
 P

ro
f.

U
. A

ß
m

an
n

20 Model-Driven Software Development in Technical Spaces (MOST)

What are Role Types? (Rpt.)

Role types (abilities) are

– service types
– dynamic types
– collaborative types

Roles are context-sensitive

Natural classes are context-free

Problem:

– The word “role” is also used on the
class level, i.e., for a “role type”

<<role>>
Employee

<<role>>
Father

<<role>>
Cyclist

<<role>>
Customer

<<role>>
TaxPayer

<<role>>
Borrower

<<natural>>
Person

 ©
 P

ro
f.

U
. A

ß
m

an
n

21 Model-Driven Software Development in Technical Spaces (MOST)

Collaboration Schemas (Role-Type Model) (Rpt.)

Collaboration schema (role type model, ability model):
– Set of object collaborations abstracted by a set of role types

– A constraint specification for classes and object collaborations

Ex: A figure can play many roles in different collaboration schemas

Figure
(FigureHierarchy)

Subject
(FigureObserver)

Predecessor
(FigureChain)

Client
(Graphics)

Child
(FigureHierarchy)

Subject
(Int.Fig.Observer)

Server
(Graphics)

Parent
(FigureHierarchy)

Observer
(Int.Fig.Observer)

Client
(FigureHierarchy)

Successor
(FigureChain)

Figure

X3D

Observer
(FigureObserver)

GUI

RootFigure

 ©
 P

ro
f.

U
. A

ß
m

an
n

22 Model-Driven Software Development in Technical Spaces (MOST)

Role- and Role-Type Models Underly Many Gray-Box
Component Models

Views

– Hyperspace (MDSOC)

– Orthographic Software Modeling

Collaborative Aspects

– ObjectTeams www.objectteams.org

– CaesarJ

Template-based languages

– BETA with the metaprogramming environment Mjölner

– Invasive Software Composition

 ©
 P

ro
f.

U
. A

ß
m

an
n

23 Model-Driven Software Development in Technical Spaces (MOST)

What are Role Metaclasses (on M2)?

Role metaclasses are

– service types of natural metaclasses
– view types of natural metaclasses
– collaborative metaclasses

Networking

InnerActions

Nesting

<<natural>>
<<metaclass>

State

Networking

EventTriggers

Actions

<<natural>>
<<metaclass>>

Transition

http://www.objectteams.org/

 ©
 P

ro
f.

U
. A

ß
m

an
n

24 Model-Driven Software Development in Technical Spaces (MOST)

Roles in the Metalanguage (Metametamodel) Role-EMOF

► Roles can be introduced as modeling concept in M3

► Role-EMOF is an extension of EMOF with roles:

role-EMOF

Role Model Role
roles *

RoleFeature

* roleFeature

Attribute ReferencePrimitiveType

Type

Enum

attributeType

type

Literal
literals *

enums*

M3

 ©
 P

ro
f.

U
. A

ß
m

an
n

25 Model-Driven Software Development in Technical Spaces (MOST)

“Deep-Role-EMOF”, a Metamodel for Deep Role
Composition

► Flat roles do not play roles

► Deep roles are roles playing roles, i.e., can delegate work to other roles

► Rolecore's role composition technique, specified by a role-composition metamodel,
allows for deep roles

► Grounding of a role describes how to bind the role to a Java class

role-EMOF

Role Model Role

roles *

role-composition

Composition RoleBinding

RoleFeature

* roleFeature

RoleFeatureBinding

groundings *

* bindings

* featureBindings

models * player role

binds

RoleGrounding

role

RoleFeatureGrounding

* featureGroundings

grounds

M3

 ©
 P

ro
f.

U
. A

ß
m

an
n

26 Model-Driven Software Development in Technical Spaces (MOST)

Domain Core

ColorHierarchy

<<natural metaclass>>

Shape

<<role
metaclass>>

Parent

<<role
metaclass>>

Child

0..* <<role metaclass>>
ColouredObject

color : RGB

Layout
<<role metaclass>>

Position

x,y : int

Example: The Material Metamodel of Tool ShapeRenderer
with Roles

► Roles of Material Metaclasses adhere to a context
■ A context is a specific concern (here: colors)

► Only one natural metaclass, many role metaclasses

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

31.3. Role-Based
Language Composition

Uwe Assmann, 12.01.2016
This can be shown how role metaclasses are integrated into a natural metaclass

 ©
 P

ro
f.

U
. A

ß
m

an
n

28 Model-Driven Software Development in Technical Spaces (MOST)

Good News: Role-Based Extension of
Metaclass Hierarchies is Simple

• Given a metaclass hierarchy, metaclass roles can be added in new views
• Addition of new metaclasses (blue) easy, because of role extension

TypeDecl

Declaration

Element

Expression

BinOp

┴

Type System

Checkable

Collectable
TypeDecl
Collector

TypeChecker

Metamodel Collaboration Metaclasses Package 2Metaclasses
Package 1

 ©
 P

ro
f.

U
. A

ß
m

an
n

29 Model-Driven Software Development in Technical Spaces (MOST)

Good News: Role-Based Extension of
Metaclass Hierarchies with New Metaclass Collaborations is

Simple

• Given a metaclass hierarchy, new metaclass collaborations can be added

TypeDecl

Declaration

Element

Expression

BinOp

┴

Type System
Checkable

Collectable
TypeDecl
Collector

TypeChecker

Metamodel Collaboration Metaclasses Package 2Metaclasses
Package 1

Analysis
State

Run-Time
State Interpretable

Evaluatable

Interpreter

Abstract
Interpreter

 ©
 P

ro
f.

U
. A

ß
m

an
n

30 Model-Driven Software Development in Technical Spaces (MOST)

TAM Metaphor in MDSD Tools on M2
is also Easily Extensible with New Tools

• Given a metaclass hierarchy, metaclass roles can be added in new tool-
material collaborations

TypeDecl

Declaration

Element

Expression

BinOp

┴

Type
Collector

Checkable

Collectable
TypeDecl
Collector

TypeChecker

Tool and Material
Collaboration

Material MetaclassesTool Metaclasses

Type
Checker Type

Analysis

Run-Time
System Interpretable

Evaluatable

Interpreter

Abstract
Interpreter

Abstract
Domains

Real
Domains

 ©
 P

ro
f.

U
. A

ß
m

an
n

31 Model-Driven Software Development in Technical Spaces (MOST)

Bad News: Superimposition of Entity Natural Superclasses
Stays HARD

Identity of all derived subclasses changes

 Declaration --> Declaration' under-a Statement

 Expression --> Expression' under-a Statement

TypeDecl

Declaration

Element

Expression

BinOp

┴

Statement

TypeDecl'

Declaration' Expression'

BinOp'

┴

Element

 ©
 P

ro
f.

U
. A

ß
m

an
n

32 Model-Driven Software Development in Technical Spaces (MOST)

Example: Complex Numbers

Superimposing a new concept ComplexNumber to a type hierarchy is an extension of the
entity (natural) concepts of a language

 Due to identity change, type rules for all Numbers have to be changed [van Wyk, JLE
application]

Int

Number

Type

Double

┴

ComplexNumber

Int'

Number'

Double'

┴

Type

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

31.4 Rolecore: a DSL for Metamodel Integration with
Deep Role Metaclasses

► Rolecore is a domain-specific language (DSL), with a preprocessor
generating Java (standard language)

■ Employs Role-Object Pattern for roles in the generated
code

■ Maximal runtime flexibility, but slow

► Developed by Christian Wende and Mirko Seifert

 ©
 P

ro
f.

U
. A

ß
m

an
n

34 Model-Driven Software Development in Technical Spaces (MOST)

Domain Core

ColorHierarchy

Parent Child
0..* ColouredObject

color : RGB

Layout
Position

x,y : int

Example: ShapeRenderer's Metamodel with Deep Roles

► The Rolecore-DSL is a textual DSL for the specification of Deep-Role-EMOF based
metamodels

► In Rolecore-DSL, the choice of natural metaclasses is being delayed
■ We first specify all metamodels with deep roles
■ Other materials' metamodels might provide the natural metaclasses
■ Then, they can be played by the naturals of other materials

Shape

 ©
 P

ro
f.

U
. A

ß
m

an
n

35 Model-Driven Software Development in Technical Spaces (MOST)

Domain Core

ColorHierarchy

Parent Child
0..*

Layout
Position

x,y : int

Example: Tool ShapeRenderer's Material Metamodel in
RoleCore, with Deep Roles and Enums

► In RoleCore, some roles can be represented as enums if their attributes have finite
value ranges

► Then they will become natural classes in the implementation

Shape

WHITE
BLACK
RED

<<enum>>
Color

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

31.4.1 Proactive Material Integration with Deep Roles in
RoleCore

Uwe Assmann, 11.01.2016
Unsinn – warum?

 ©
 P

ro
f.

U
. A

ß
m

an
n

37 Model-Driven Software Development in Technical Spaces (MOST)

Graph Analysis Tool

source

target

Node

invalid : bool

Edge

State Machine Editor

PLAIN
INITIAL
FINAL

TypeState

name : String

Notation

Role Enum

Transition

from to

Tool Integration using Deep-Role-Model Based Integration of
Material Metamodels on M2

► Specify M2-metamodels also with role metaclasses (abilities), not only
classes

► Difference to classical role modeling:

1) First specify everything as deep role

2)Select those roles which should become enums

3)Naturals are selected last

 ©
 P

ro
f.

U
. A

ß
m

an
n

38 Model-Driven Software Development in Technical Spaces (MOST)

For Tool Integration, the RoleCore Approach Uses
Role Bindings and Role Grounding

► Role Bindings on the logical level
■ with relationship “plays-a”
■ Connect roles and role players, producing deep roles
■ Define how to obtain value of attribute or reference
■ Allow to create views on other classes

► Role Grounding on the physical level

– Defines which attributes/classes are represented physically

– Select natural metaclasses

– Ground to implementation by design patterns or other role-
implementations (see course Design Patterns and Frameworks)

► The decision (about which data is derived and which is not) is done at tool integration
time!

 ©
 P

ro
f.

U
. A

ß
m

an
n

39 Model-Driven Software Development in Technical Spaces (MOST)

Graph Analysis Tool

source

target

Node

invalid : bool

Edge

2D Shape Renderer

WHITE
BLACK
RED

Color

CIRCLE
RECTANGLE
LINE

KindShape
x,y,size : Integer
label : String

Grounding Notation

Name

Grounded Role

Binding Notation

name : type

Grounded Attribute

name

Grounded Reference

Textual State Machine Editor

from

to

PLAIN
INITIAL
FINAL

StateTypetype

State

name : String

Transition

condition : String

Metamodel Composition based on Deep Role Type Binding

► Composition by deep role binding and role grounding
► We defer the decision “what is a natural” to later

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

31.4.2 Grounding: Mapping Role Metaclasses to
Programming Languages

 ©
 P

ro
f.

U
. A

ß
m

an
n

42 Model-Driven Software Development in Technical Spaces (MOST)

integrate statemachine, 2dShapes, graph {

State plays Shape {

label: name

kind: if (player.type == PLAIN) return RECTANGLE

else return CIRCLE

colour: if (player.type == INITIAL) return WHITE

else return BLACK

}

Transition plays Shape {

label: condition

kind: return LINE

colour: return BLACK

}

State plays Node {}

Transition plays Edge {

source: from

target: to

}

ground State { name, type }

ground Transition { condition, from, to }

}

Role Binding
Specification

Grounding
Specification

RoleCore DSL for Integration of Materials
(EMFText-Based Language)

► Role binding (playing) and role grounding can be described by the RoleCore DSL.

http://www.reuseware.org/index.php/EMFText_Concrete_Syntax_Zoo_Rolecore

Link mapping
from one role to the

other

 ©
 P

ro
f.

U
. A

ß
m

an
n

43 Model-Driven Software Development in Technical Spaces (MOST)

RoleTypeInterface

roleFeature

<<role>>
RoleTypeImpl

<<core>>
RolePlayer

role

player

RoleType
roleFeature

getRoleFeature() {
 return player.playerFeature();
}
setRoleFeature(value) {
 player.playerFeature = roleFeature;
}

GenericRoleTypeInterface

hasRole(roleType)
getRole(roleType)

getPlayerFeature() {
 return role.getRoleFeature();
}
setPlayerFeature(value) {
 role.setRoleFeature(value);
}

RolePlayer
playerFeature

Role Binding Realisation by e.g., Delegation
(Design Pattern “Generative Role Object Pattern”)

„dimension 2
variation“

„dimension 1
variation“

► Grounding is straightforward with many design patterns for role implementations

► The constructs of RoleCore can be easily expanded to design patterns (code generation), e.g., MultiBridge, Flat or
Deep Role-Object Pattern

compiling to a
design pattern

*

 ©
 P

ro
f.

U
. A

ß
m

an
n

44 Model-Driven Software Development in Technical Spaces (MOST)

Role Binding Implementation with
Generative Role Object Pattern (ROP)

RolePlayer plays Role {
 roleFeature: playerFeature}

roleFeature: Type

RolePlayer

playerFeature: Type

GenericRoleTypeInterface

hasRoleType()
getRoleByType()

RoleTypeImpl
role

getRoleFeature() {
 return player.getPlayerFeature();}
setRoleFeature(value) {
 player.setPlayerFeature(value); }

player

ground Role { roleFeature }

Role
roleFeature: Type

Role Binding Implementation

Grounding Implementation

RolePlayer

getRoleFeature()
setRoleFeature()

RoleTypeImpl

roleFeature: Type

getRoleFeature()
setRoleFeature()

getPlayerFeature()
setPlayerFeature()

RoleTypeInterface

getRoleFeature()
setRoleFeature()

 ©
 P

ro
f.

U
. A

ß
m

an
n

45 Model-Driven Software Development in Technical Spaces (MOST)

Implementation Pattern for Role Superimposition
Generative Role Implementation Pattern

 ©
 P

ro
f.

U
. A

ß
m

an
n

46 Model-Driven Software Development in Technical Spaces (MOST)

Characteristics of the Implementation Pattern

• Preserves the type interface of the composed LanGems and, thus, the compatibility
with LanGem syntax and semantics

• Encapsulates implementation of individual LanGem
• Adapts type interface of role player to contract (composition interface) of the role
• Allows for binding multiple roles to

one natural to superimpose multiple
LanGems

• Allows for binding multiple naturals
to the same role to provide variability
in LanGem composition

Implementation Pattern for Role Superimposition

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

31.5. Role-Based
Language Composition with LanGems

 ©
 P

ro
f.

U
. A

ß
m

an
n

49 Model-Driven Software Development in Technical Spaces (MOST)

Feature-Driven Development of Language Families
PhD Christian Wende (2012)

Feature-driven Process
for development of
Language families

Feature-driven Process
for development of
Language families

Feature-driven Process
for development of

Product families
(product lines)

Feature-driven Process
for development of

Product families
(product lines)

Software functions
(Features)

Software functions
(Features)

Modelling- and
 Programming languages

Modelling- and
 Programming languages

Adaption

Features of
Software variant

Features of
Software variant Software variantSoftware variant

Language FeaturesLanguage Features Metamodelling
Languages

Metamodelling
Languages

Features of
Language Variant

Features of
Language Variant Language VariantLanguage Variant

Problem Space Solution Space

Language
families

Language

Product
line

Product

Systematic variability management for language families with feature models

 ©
 P

ro
f.

U
. A

ß
m

an
n

50 Model-Driven Software Development in Technical Spaces (MOST)

Comment

Commentable

comment

ReferencedArtifact
getIdentifier()

composition chartWithComments {
 …
 State plays ReferencedArtifact (
 // example OCL-RoleOpBinding

getIdentifier() : player.stateName;
)
}

Chart

Transition

State

statechart

Christian Wende. Language Family Engineering.
PhD thesis, Technische Universität Dresden,
Fakultät Informatik, March 2012.
www.qucosa.de
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-
88985

Role-Based Language Composition with LanGems Language
Components

RoleBinding:

► Employ EMOF packages as language
components

► One natural metaclass can play several roles

► A role metaclass can be played by different
natural metaclasses

► Interfaces of EMOF packages:
■ Natural metaclasses looking for

played roles
■ Offered roles to be bound on

naturals

 ©
 P

ro
f.

U
. A

ß
m

an
n

51 Model-Driven Software Development in Technical Spaces (MOST)

Language Component: statechart

Activity

getActivityName(): String
getTriggers(): List<Trigger>
evaluate(): Trigger

Activity

getActivityName(): String
getTriggers(): List<Trigger>
evaluate(): Trigger

statechart

Action

State

Trigger

getTriggerName(): String

Trigger

getTriggerName(): String

Chart

Element

Transition

trigger

action

entryexit

do
in

out

start end

Abstract Syntax chart example
 Init: init
 End: finish cancel
{
 state init {…}

 from init to data
when login do {}

 state data {…}
 …
}

concrete Syntax (offered by EMFText)

Semantics:
Operational Semantik written in
Java based on the interfaces of
abstract syntax

Example: Statecharts and Forms

 ©
 P

ro
f.

U
. A

ß
m

an
n

52 Model-Driven Software Development in Technical Spaces (MOST)

concrete Syntax (with EMFText)

Abstract Syntax

Language Component: form

form

Form

Field

fields

Text Selection

SelectionLiteral

Button

buttons

literals

form [welcome]
-(Please enter your

login data.)-
{

name
password

}
buttons > login

 > cancel

Semantics:
Operational Semantics with Java

Example (2): Forms

 ©
 P

ro
f.

U
. A

ß
m

an
n

53 Model-Driven Software Development in Technical Spaces (MOST)

Language Composition: formFlow := form -->> statechart

Example (3) Composition of Statechart and Form

form

Form

Field

fields

Text Selection

SelectionLiteral

Button

buttons

literals

Activity

getActivityName(): String
getTriggers(): List<Trigger>
evaluate(): Trigger

Activity

getActivityName(): String
getTriggers(): List<Trigger>
evaluate(): Trigger

statechart

Action

State

Trigger

getTriggerName(): String

Trigger

getTriggerName(): String

Chart

Element

Transition

trigger

action

entryexit

do
in

out

start end

Language
Composition
Editor

 ©
 P

ro
f.

U
. A

ß
m

an
n

54 Model-Driven Software Development in Technical Spaces (MOST)

 ocl ocl

OCLExpressionOCLExpression

 xul xul

 statechart statechart

• Types contribute the composition interface of
language modules
• Role Types: required interface
• Natural Types: provided interface

• Language Composition is described by
superimposition of the collaborations of
several modules where RoleBinding
connects role player and role

• Binding of RoleOperations in the context
of a role player (RoleOperationBindings)
contributes structual and semantic
adaptation of the role player w.r.t the
role contract

GuardGuardActivityActivity

FormForm ButtonButton

TriggerTrigger

Form plays Activity {
 getActivityName(): player.getTitle();
 executeActivity (): player.open();
}

Button plays Trigger {
 getTriggerName(): player.getText();
}

OCLExpression plays Guard {
 evaluate(Object context) : if (player.type = boolean)

 then player.interpret(context)
 else false;

}

54Christian Wende, TU Dresden

LanGems Module Composition Language

 ©
 P

ro
f.

U
. A

ß
m

an
n

55 Model-Driven Software Development in Technical Spaces (MOST)

Component Model
LanGems

Specification Language

<< instance of >>

Composition Language
LanGems

Composition Language

Composition program

<< instance of >>

<< input of >>

Composition Technique
Generative Role Implementation

Pattern

Composition Tool

<< implements>>

<< executed by >>
LanGem

Specification
LanGem

Specification

Integrated Language

<< output >>

55Christian Wende, TU Dresden

LanGems Composition System

 ©
 P

ro
f.

U
. A

ß
m

an
n

56 Model-Driven Software Development in Technical Spaces (MOST)

OCL
• Complex language
• Applied at different abstraction layers and environments
• Several proposals for extension of OCL

Activities
• Separation of 13 language modules
• Each contributes specification of

abstract syntax, concrete syntax
and static semantics

• Language adaptation to use
OCL on different
metamodels
(Ecore, UML, MOF)

• Exemplary language extension
with temporal logic

56Christian Wende, TU Dresden

Case Study: Modularisation of OCL

 ©
 P

ro
f.

U
. A

ß
m

an
n

57 Model-Driven Software Development in Technical Spaces (MOST)

language composition in the large

language composition in the small

Feature-Based Family Specification

• Reduction of language complexity by
feature-based decomposition

• Language extension by adding new
features

• Language adaptation by feature
exchange and alternative features

• Language integration by composition of
their features

OCLOCL

StatechartStatechart

Object NavigationObject Navigation

CollectionCollection LogicLogic MathMathType ContextType Context

ActionActionTransitionTransitionStateState

ActivitiesActivities SQLSQLGuardsGuards

XULXUL

EcoreEcore

…

…

57Christian Wende, TU Dresden
UMLUML

Case Study Statechars:
The Problem Space Perspective

 ©
 P

ro
f.

U
. A

ß
m

an
n

58 Model-Driven Software Development in Technical Spaces (MOST)

Experienced Benefits

• Self-contained comprehensible
modules
• Independent Development and

Maintenance
• Explicit language component interfaces decouple language modules
• Adaptation of OCL by variation on language modules
• Extension of OCL by adding language modules

• Role-based modularisation and composition supports for concrete syntax and language
semantics
• Composition did not invalidate module syntax and semantics
• Composition provides means for semantic (and structural) adaptation

Problems & Open Issues

• Operator priorities needs to be considered during composition
• Context-free parsing required adjustment of token definitions among modules
• Dynamic Semantics not implemented yet

58Christian Wende, TU Dresden

Evaluation

 ©
 P

ro
f.

U
. A

ß
m

an
n

67 Model-Driven Software Development in Technical Spaces (MOST)

What Did We Learn?

► Deep Role Modelling allows for unanticipated material integration, but needs to be
applied at material design time

► Clean separation of required interface (to access tool-specific data) and realization of
this interface (to obtain data)

► Physical representation define at integration time by design patterns for role
implementation

► If ROP is used as a pattern in the code generator, a role-based access layering of the
repository results naturally.

 ©
 P

ro
f.

U
. A

ß
m

an
n

68 Model-Driven Software Development in Technical Spaces (MOST)

Db.inf.tu-dresden.de/rosi

http://st.inf.tu-dresden.de/

The End

► Explain the difference of a role metaclass and a natural metaclass.

► Why is it beneficial to use roles on M2 as role metaclasses?

► Describe the differences in the development process of RoleCore and LanGems

► Why is it easy to extend role-based metamodels?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Works in the Last Years
	Slide 6
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 67
	Slide 68

