
 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

52. Orthographic Software Modeling (OSM) with
Single Underlying Model (SUM) -
A 1-TS-Megamodel with Total Consistency

Prof. Dr. U. Aßmann

Technische Universität Dresden

Institut für Software- und
Multimediatechnik

http://st.inf.tu-dresden.de
/teaching/most

Version 15-0.5, 01.02.16

1) Orthographic Software
Modeling (OSM) and Single
Underlying Model (SUM)

2) Lenses

LO

http://st.inf.tu-dresden.de/

 ©
 P

ro
f.

U
. A

ß
m

an
n

2 Model-Driven Software Development in Technical Spaces (MOST)

Q11: A Software Factory's Heart: the Multi-TS Megamodel

Mega- and MacromodelsMega- and Macromodels

Method EngineeringMethod Engineering

Model Management
Mapping, Transf., Composition

Model Management
Mapping, Transf., Composition

Technical
Space
Bridges

Technical
Space
Bridges

Technical SpaceTechnical Space

Pattern
Languages

Pattern
Languages

Model Analysis
Querying, Interpretation

Model Analysis
Querying, Interpretation

Metapyramid (Metahierarchy) for Token ModelingMetapyramid (Metahierarchy) for Token Modeling

Mega- and MacromodelsMega- and Macromodels

Method EngineeringMethod Engineering

Model Management
Mapping, Transf., Composition

Model Management
Mapping, Transf., Composition

Technical
Space
Bridges

Technical
Space
Bridges

Technical SpaceTechnical Space

Pattern
Languages

Pattern
Languages

Model Analysis
Querying, Interpretation

Model Analysis
Querying, Interpretation

Metapyramid (Metahierarchy) for Token ModelingMetapyramid (Metahierarchy) for Token Modeling

Software Factory

Multi-TS Megamodel

In this chapter:
1-TS Megamodel

 ©
 P

ro
f.

U
. A

ß
m

an
n

3 Model-Driven Software Development in Technical Spaces (MOST)

References

► Zinovy Diskin and Yingfei Xiong and Krzysztof Czarnecki. From State- to Delta-Based
Bidirectional Model Transformations: the Asymmetric Case. Journal of Object
Technology, 2011, vol. 10, 6, pp. 1-25,

■ http://dx.doi.org/10.5381/jot.2011.10.1.a6

► J. Nathan Foster and Michael B. Greenwald and Jonathan T. Moore and Benjamin C.
Pierce and Alan Schmitt. ombinators for Bi-Directional Tree Transformations: A
Linguistic Approach to the View Update Problem, ACM Transactions on Programming
Languages and Systems, Vol 29(3), pp. 17, 2007

■ http://www.cis.upenn.edu/~bcpierce/papers/newlenses-popl.pdf

http://dx.doi.org/10.5381/jot.2011.10.1.a6

4

Software Engineering
Prof. Dr. Colin Atkinson 4

Overview

1. Find out why software engineering is important
■ see some software engineering failures

2. Get acquainted with –
■ the Chair of Software Engineering

■ the research

■ the people

■ the teaching

Synchronization of Projective Views on
a Single Underlying Model
(A Orthographic Macromodel)

These slides are courtesy to:
Christian Vjekoslav Tunjic
Colin Atkinson

Used by permission

L‘Aquila. Italy
21 July, 2015

Presented at: VAO 2015

5

Software Engineering
Prof. Dr. Colin Atkinson 5

52.1 Orthographic Software Modeling (OSM)

■ other engineering disciplines have a long and successful tradition of technical
drawing - orthographic projection

■ so why don't we do this in software engineering?

■ On demand view generation
(projective views)

■ Dimension-based navigation

■ View-based methodology

6

Software Engineering
Prof. Dr. Colin Atkinson 6

Dimension Based Navigation

■ views organized in a multi-dimensional cube

■ one choice always “selected” from each dimension

■ each cell represents a viewpoint

6

Cell

...

...

...

7

Software Engineering
Prof. Dr. Colin Atkinson 7

Traditional View-based Environment

Java sourceUML classes

Behavior

code
RegEx

test
casesXMI

AFD

OpSpec

system

8

Software Engineering
Prof. Dr. Colin Atkinson 8

On-Demand View Generation

Java sourceUML classes

Behavior

Single Underlying Model

9

Software Engineering
Prof. Dr. Colin Atkinson 9

10

Software Engineering
Prof. Dr. Colin Atkinson 10

11

Software Engineering
Prof. Dr. Colin Atkinson 11

12

Software Engineering
Prof. Dr. Colin Atkinson 12

Scalability and Applicability

■ An approach needs to be applicable to more than just a toy example

■ An approach must scalable for the chosen field of applicabilty

■ Simple minded implementation approach –
■ uni-directional transformations (SUM-to-view, view-to-SUM)

■ create a new (version of the) view whenever there is a change in the
SUM

■ create a new (version of the) SUM whenever there is a change in a view

■ Would work but -
■ not scalable (inefficient)

■ transformation more complex than necessary

■ too large grained

Þ Delta-based bidirectional lenses

13

Software Engineering
Prof. Dr. Colin Atkinson 13

52.2 Delta-Based Lenses

■ Lenses (Pierce et al. 2007) are bidirectional transformations based on put
and get operations
■ axioms for well-behaved lenses

■ axiom for very well behaved lenses

■ Delta-based Lenses (Diskin et al. 2011)
■ dput and dget operations driven by the changes to the views

■ avoids problems with the PUTPUT rule

■ much more fine-grained and scalable

if s = dput(v, s), then dget(s) = v DeltaPUTPUT rule

get(put(v, s)) = v PUTGET invariant rule
put(get(s), s) = s GETPUT invariant rule

put(v’, put(v, s)) = put(v’, s) PUTPUT rule

14

Software Engineering
Prof. Dr. Colin Atkinson 14

OSM Context

■ The SUM is much larger than the views
■ the views are relatively small and compact

■ Views can be updated concurrently
■ axioms only applicable locally (i.e. to one view at a time)

■ Usually have one-to-one correspondences between view elements and SUM
elements
■ changes can conveniently be

traced to the affected element

■ View elements cannot be changed
just locally
■ for example, cannot delete

an element from just the
view, but not the SUM

15

Software Engineering
Prof. Dr. Colin Atkinson 15

Hybrid Approach

■ use get to create views from the SUM

■ use dput to update the SUM when a view is changed

get

v
dput

s

16

Software Engineering
Prof. Dr. Colin Atkinson 16

Pros and Cons

■ Traces allow affected SUM elements to be efficiently identified
■ can be generated most mainstream transformation engines

■ Traces also allow the open views impacted by a change to be identified
■ must be updated dynamically a la MVC pattern

■ Use of get to create views reduces the complexity of the transformation with
little extra overhead
■ no need to update trace information

■ Use of dput to update the SUM greatly enhances the efficiency of updating
SUM
■ the SUM is only ever updated via changes to views

■ However, it increases the amount of information that needs to be stored on
the server
■ part of the SUM?

17

Software Engineering
Prof. Dr. Colin Atkinson 17

Conclusion

■ Work in progress…. !

■ Related work
■ Inclusion of correspondences suggests connection to Triple Graph

Grammars (definition of completeness, correctness etc.)

■ Vitruvius (change objects, projectional scope …)

■ Challenges
■ determine appropriate laws in a multi-view context -

■ e.g. when does PUTPUT make sense?

■ accommodate many-to-many correspondences

■ Possible enhancements
■ extend correspondence information with layout information to allow

retainment of layout between view updates

■ allow local editing and manipulation of views

■ e.g. domain specific rendering

	2. Werkzeugfunktionen in den Basistechniken
	Slide 2
	Slide 3
	Overview
	Orthographic Software Modeling (OSM)
	Dimension Based Navigation
	Traditional View-based Environment
	On-Demand View Generation
	Slide 9
	Slide 10
	Slide 11
	Scalability and Applicability
	Delta-Based Lenses
	OSM Context
	Hybrid Approach
	Pros and Cons
	Conclusion

