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2  Model-Driven Software Development in Technical Spaces (MOST)

Q11: A Software Factory's Heart: the Multi-TS Megamodel
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Overview

1. Find out why software engineering is important
■ see some software engineering failures

2. Get acquainted with –
■ the Chair of Software Engineering

■ the research

■ the people

■ the teaching

Synchronization of Projective Views on 
a Single Underlying Model
(A Orthographic Macromodel)

These slides are courtesy to:
Christian Vjekoslav Tunjic
Colin Atkinson

Used by permission

L‘Aquila. Italy
21 July, 2015

Presented at: VAO 2015
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52.1 Orthographic Software Modeling (OSM)

■ other engineering disciplines have a long and successful tradition of technical 
drawing - orthographic projection

■ so why don't we do this in software engineering?

■ On demand view generation 
(projective views)

■ Dimension-based navigation

■ View-based methodology
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Dimension Based Navigation

■ views organized in a multi-dimensional cube

■ one choice always “selected” from each dimension

■ each cell represents a viewpoint

6

Cell
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Traditional View-based Environment

Java sourceUML classes

Behavior

code
RegEx

test
casesXMI

AFD
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system
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On-Demand View Generation

Java sourceUML classes

Behavior

Single Underlying Model
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Scalability and Applicability

■ An approach needs to be applicable to more than just a toy example

■ An approach must scalable for the chosen field of applicabilty

■ Simple minded implementation approach –
■ uni-directional transformations (SUM-to-view, view-to-SUM)

■ create a new (version of the) view whenever there is a change in the 
SUM

■ create a new (version of the) SUM whenever there is a change in a view

■ Would work but -
■ not scalable (inefficient)

■ transformation more complex than necessary

■ too large grained

Þ Delta-based bidirectional lenses
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52.2 Delta-Based Lenses

■ Lenses (Pierce et al. 2007) are bidirectional transformations based on put 
and get operations
■ axioms for well-behaved lenses

■ axiom for very well behaved lenses

■ Delta-based Lenses (Diskin et al. 2011)
■ dput and dget operations driven by the changes to the views

■ avoids problems with the PUTPUT rule

■ much more fine-grained and scalable

if s = dput(v, s), then dget(s) = v       DeltaPUTPUT rule 

get(put(v, s)) = v      PUTGET invariant rule 
put(get(s), s) = s       GETPUT invariant rule

put(v’, put(v, s)) = put(v’, s)       PUTPUT rule
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OSM Context

■ The SUM is much larger than the views
■ the views are relatively small and compact

■ Views can be updated concurrently
■ axioms only applicable locally (i.e. to one view at a time)

■ Usually have one-to-one correspondences between view elements and SUM 
elements
■ changes can conveniently be 

traced to the affected element

■ View elements cannot be changed 
just locally
■ for example, cannot delete 

an element from just the 
view, but not the SUM
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Hybrid Approach

■ use get to create views from the SUM

■ use dput to update the SUM when a view is changed

get 

v
dput

s
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Pros and Cons

■ Traces allow affected SUM elements to be efficiently identified
■ can be generated most mainstream transformation engines

■ Traces also allow the open views impacted by a change to be identified
■ must be updated dynamically a la MVC pattern

■ Use of get to create views reduces the complexity of the transformation with 
little extra overhead
■ no need to update trace information

■ Use of dput to update the SUM greatly enhances the efficiency of updating 
SUM
■ the SUM is only ever updated via changes to views

■ However, it increases the amount of information that needs to be stored on 
the server
■ part of the SUM?
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Conclusion

■ Work in progress…. !

■ Related work
■ Inclusion of correspondences suggests connection to Triple Graph 

Grammars (definition of completeness, correctness etc.)

■ Vitruvius (change objects, projectional scope …)

■ Challenges
■ determine appropriate laws in a multi-view context -

■ e.g. when does PUTPUT make sense?

■ accommodate many-to-many correspondences

■ Possible enhancements
■ extend correspondence information with layout information to allow 

retainment of layout between view updates

■ allow local editing and manipulation of views

■ e.g. domain specific rendering
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