M J Jcasr

ACHIEVE INSIGHT. DELIVER EXCELLENCE.

CRASH: CAST Report on Application Software Health

Presented 16.11.15 at Software Technology Group, TU Dresden
Paul Nash, CAST GmbH, p.nash@castsoftware.com

CAST: Market Space Leader for Automated Software Analytics

250+ ENTERPRISE CUSTOMERS TOP 10 SYSTEM INTEGRATORS

..

S’ o &] .
€ I 0 amae IEE @ Copeemini
at&t SANOFI vodafone I —— — LONIVLTING. TEEHNQLOGY.QUISDURTING

s RWE [e (€I CISE ‘

Telekom

e‘ Cognizant *
N

CREDIT SUlSSE‘ 'm UnitedHealthcare é Software Engineering Institute _ °

WIPRO
. TATA Tech
oo 'AMERICAN CONSULTANCY Mahindra
— o SERVICES
REPSOL 2AAHr

ANV EHGENICE Deloitte
HSBC <X

steria
| Gartner T
#UniCredit pg Broadridge
GLOBAL PRESENCE . . : MARKET LEADER, PURE
USA, Germany, UK, F e . PLAYER GILOBAL
Belgium, ltaly, Spain, India : : NYSE Euronext

- Il fcasrT

CAST products & services

ENTERPRISE

SOFTWARE ANALYTICS INDUSTRY
SOFTWARE

SERVICES BENCHMARKS SERVICES

CAST APPLICATION CASTHIGHLIGHT

INTELLIGENCE PLATFORM appmarq

ECHNICAL DEBT SECUHTY) - ®
@
L) QO ® -
- i e o) “ * . . - I
)) ® '~Q
@ ® L]
S o el
APPLICATION ANALYTICS DASHBOARD e SaaS, Cloud based. G —
* OMG compliant software metrics » Rapid portfolio analysis
e Trend analysis e Portfolio continuous monitoring

e Automated function points

Over 3,000 apps and 700 million LoC
MANAGED SERVICES e Query by industry, technology and geos
ENGINEERING DASHBOARD & CONSULTING CRASH Annual Report

e Architectural analysis and blueprinting
e Critical violation drill down
e Transaction risk

» Software analytics & engineering experts
» Software analytics as a service
* Value measurement & realization

’ Il Y fcasrT

Software Analytics - What do we measure?

RISK MAINTAINABILITY
N AL
N/
EFFICIENCY SECURITY CHANGEABILITY TRANSFERABILITY
) O]
I
Risk of critical Risk of Risk of security Ease and speed Ease and speed
failures in performance / breaches of modifying of learning
production scaling issues
Overall application Performance and
functional size productivity
AFP
406 Py
PRODUCTIVITY BENCHMARK

4 Il fcasrT

Evaluate Structural Quality of Software Deliveries

Funcnona
Testing
Design Develop
Peﬁonnance

Testing

Structural Quality Analysis

.|.
R T e T T L —
2 enty sources oferitca sk for mmediateaction
3.Define action plan orimprovementn et delveries

The Structural Quality evaluation is becoming a must-have for
verifying and validating the code delivered from vendors

5 Il Y fcasrt

Architecture Compliance

Software Analytics: How do we measure?

— Transaction Risk
Bl Propagation Risk

- Data Flow

Code style & layout
Expression complexity
Code documentation
Class or program design
Basic coding standards

Intra-technology architecture
Intra-layer dependencies
Intra-module communication
Module complexity & cohesion
Design & structure
Inter-program invocation
Security Vulnerabilities

System Level

1
1
1
1
1
- |

e

!

I

[T S e

= Integration quality = Function point &

= Architectural EFP measurement
compliance = Effort estimation

= Risk propagation = Data access control
simulation = SDK versioning

= Application security = Calibration across

= Resiliency checks technologies

= Transaction integrity

Il Y fcasrT

Overview of CAST Quality Model

(]
X
O
()
S
(&)
[}
©
o
(&)
O
=
O
()
(oL,
@
(O]
()]
©
>
(@)]
=
<
e}
=
©
@©
S
>
=]
O
()
6=
d=
O
S
@©
o
o
(@]
i
-
>
o
Q0
<

Quality Metrics Subset

SQL Complexity Distribution
Class complexity (Inh. depth)

Class complexity (Inh. width)

Artifacts having recursive calls

Method complexity (control flow)

Multiple artifacts inserting
data on the same SQL table

Coupling Distribution
File conformity

Dead code “
Structuredness */
Controled data access *
Empty code -~

Modularity

Encapsulation conformity
Inheritance

Package naming -,

Class naming -
Interface naming

Package comment

Class comment -
Method comment -~

Package size ..

Class size (methods)

Interface size -~

Programming

\
......... ¢ Performance

Robustness

Immediate Impact

Security

Transferability

3 Changeability

~—

On-Going Impact

Maintainability
J

Il Y fcasrT

Computation of Quality Scores

successful checks
X 100

Compliance Ratio =
(% of Successful checks) g ccessful checks + failed checks

Grade
. 4.00—¢ o
our e
wosewersk o T
Ignris o I
| | | |
| | | |

Threshold #1 Threshold #2 Threshold #3 || Threshold #4 Compliance Ratio
E.g.: 10% E.g.: 70% E.g.: 90% E.g.: 99% (% successful checks)

Observed
Compliance ratio

g ML Jcasr

CRASH Data Sample: Size Distribution

Figure 1. Distribution of applications by size categories
300

250

200
150
100
50
0 N

10K- >20K- >50K- >100K- >2OOK >500K >1M— >5M
20K 50K 100K 200K 500K

Frequency

Lines of Code
= 1316 applications, mostly business critical

= 212 organizations worldwide, from 12 different verticals
= 706 MLOC total code volume
= 20 large enterprise systems over 5 MLOC

9 ML Jcasr

CRASH Data Sample: Distribution Across Languages

Table 1. Descriptive statistics for application size within language categories

Oracle Oracle

Statistic JEE Cobol .NET Froms ERP ASP Mixed Sample
Sample 565 280 127 i 59 33 39 28 24 84 1,316
Mean 363 681 303 669 292 333 541 340 149 844 471
Std. Dev 914 1,446 385 798 Sl 894 13797 a93 309 1,664 1,093
Maximum 10,098 10,980 2,388 2,986 2,338 4,867 11,302 2,870 1,471 9,639 11,302
75" % - ile 323 482 408 901 279 144 336 357 82 619 390
Median 106 153 181 330 82 54 116 15 40 il 128
25M % - ile 35 63 5] 2 34 35 48 37 31 83 43
Minimum 10 10 12 15 10 16 8 12 15 il 10

= Largest number of apps in Java-EE, COBOL, .NET, Oracle, and ABAP

= Median size in each technology is half or less the size of the mean due to large
apps accounting for most of the total LOC

= "Mixed" is usually a mix of COBOL and Java-EE, usually in Financial and Telco
verticals (customer-facing web apps on top of legacy applications)

10 ML Jcasr

CRASH Data Sample: Global Quality Characteristics

120.0

Frequency

20.0

00 ¢

2.00

2.50

3.00

TQl

3.50

4.00

Most of the scores are above 3

May be due to the high dependence on quality
for large critical apps

However, there's a "tail" of apps with scores
down to around 2

Keep in mind that apps are in production, this
requires minimum quality at least

TQI distribution is similar to distribution of other
KPIs (Performance, Robustness etc.)

1 ML Jcasr

Overview of CAST Quality Model

SQL Complexity Distribution - \

Robustness

Class complexity (Inh. depth)
Class complexity (Inh. width) -
Artifacts having recursive calls =

Immediate Impact

~—

Method complexity (control flow)
Multiple artifacts inserting

data on the same SQL table
Coupling Distribution

File conformity

Dead code *

Structuredness

Controled data access *

Empty code -~

Security

Programming

Modularity

Encapsulation conformity
Inheritance ¢

Package naming -,

Class naming * -

. Transferability
Interface naming *

Package comment

Class comment -~ B Changeability On-Going Impact
Method comment ~ P4

Package size ..

Class size (methods) i Maintainability
Interface size -~

%)
X
O
()
=
[3)
[}
i)
o
o
(8)
=
o
()
o
@
[¢b]
(@)
]
S
(@)
c
IS
©
c
©
[
S
S
=
3]
()
=
-
[S)
f—
©
o
o
(@]
—
)
=
o
Q
<

12 Il Y fcasrT

CRASH Data Sample: Shared Variance in KPIs

Table 4. Percent of shared variance among health factors, Total Quality Index, and size

Transfer KLOC

TQl Robust

Robustness >
Performance 32 5 14 13 0
Security 37 2 7 2
1

1

Perform Security =~ Change

Changeability 56 30

Transferability 61

Correlations underlying all r*s # 0 are significant at p < .001, n= 1298

= Percent of shared variance is the square of the correlation coefficient between
two variables and measures the strength of their relationship

= Security and Robustness are strongly related, so good architectural and coding
practice seem to affect both in parallel

= Performance has weak relationships with the other KPIs, so the believe that
Improving performance affects the other KPIs negatively appears to be a myth

13 ML Jcasr

CRASH Data Sample: KPI Variation with App Size

Figure 3. Scatterplot of Robustness scores with size in Java-EE

Robustness

40

30
E

E
25

20

KLOC

Figure 4. Scatterplot of Security scores with size in COBOL

Security

35

25

For Java-EE, Robustness
declines slightly with size

This is surprising since the JEE
architecture is built to handle
scaling effects, so wrong usage?

For COBOL, Security drops
slightly with application size

This is from a high absolute
value, see below

All other KPIs have little variation
with application size

ML Jcasr

CRASH Results by Language: Java-EE

Figure 5. Box and whisker plots for TQl and health factors in Java-EE

40
? T B
35 5 E
o 0 l o
o i 1 ¢
30 | =
g . 8
8 Max
25 o } o 2
. g e o 3rd Quartil
* a8 Median
1st Quartil
201 7 N !

Min

TQl -

Robustness +
Performance

Security -

Changeability 4«
Transferability +

= Transferability significantly lower than other KPIs (complex constructs, no doc?)
= Lots of variation in all KPIs, many outliers
= This is concerning, especially for Security with Internet applications

15 ML Jcasr

CRASH Results by Language: COBOL

Figure 6. Box and whisker plots for TQI and health factors in COBOL

4.0

35

.

3.0

Max

L 3rd Quartil
Median
! 1st Quartil

Min

-

254

0a

L | |
0 a0 0o =l l—— 0 ¢

{10 ——mm——t——
{ ——— -

20

TQI J
Robustness 7
Performance
Security
Changeability =
Transferability

= Security significantly higher than other KPIs (due to finance industry needs?)
= Changeability/Transferability lower, probably due to module size and complexity

= Average module size in CRASH sample for COBOL is 600 LOC, while in most
modern languages it is 50 LOC (30 LOC average for Java-EE)

16 ML Jcasr

CRASH Results by Language: APAP (SAP)

Figure 8. Box and whisker plots for TQI and health factors in ABAP

40 4

35 4

o—j—0

3.0

—AE—e0
—

| B
—Hl— |¢
m—

2.5 Max
3rd Quartil

Median
2.0 - - - - - - ! 1st Quartil

Min

TQl
Robustness
Performance
Security
Changeability
Transferability

= ABAP is a language used for customizing applications built atop the SAP
application platform

= Security higher than other KPIs (finance requirement? platform restrictions?)
= Largest variation for Performance, a known issue in the SAP user base

17 ML Jcasr

CRASH Results by Language: C++

Figure 12. Box and whisker plots for TQl and health factors in C++

4.0

3.5

5= -
1

3.0

— -
—Hl—

25" ———

Max

3rd Quartil

Median
! 1st Quartil

Min

2.0

TQl

Robustness
Performance |,

Security

Ehangeability
Fransferability

= Security and Performance substantially higher than other KPIs

= C++ often chosen for performance-sensitive applications

= Changeability and Transferability were the lowest across languages

= Likely due to complex constructs with machine-accessible attributes using C++

18 ML Jcasr

CRASH Sample Variations by different Demographics

Figure 14. Health factor distributions by industry sector

Max

3rd Quartil

L Median
! 1st Quartil

Min

Total Quality Index

4.01

3.59

3.04

2.54

< =2

I 1 T
o < o
Y o
— v o
So o 2 v}
g9 g i 2

[== =3
sz = g o

co 2 v

o = 5

s =

[o

©

=

Figure 16. Health factor distributions for onshore and offshore applications

4.0

L

3.5

—
==
3.0
[

Total Quality Index

25

20

onshore offshore

Figure 15. Health factor distributions for in-house and outsourced applications

Total Quality Index

4.0

3.5

3.0

2.5

2.0

[
:

In-house

Qutsourced

= Very little variation of KPIs by Vertical,
In- vs. Outsouced, and On- vs. Off-Shore

= To avoid influence by language, only
Java-EE was used

= Changeability and Robustness slightly
better for On-Shore

Mg Jcasrd

CRASH Sample Variations by Number of Users

Figure 19. Health factor distributions for number of end users

4.0
Max

g 35 1 1 L 3rd Quartil
= E— Median
2z = = o ! st Quarti
T 30 & P
: in
o
=
o 25
2.0 . . .
<500 500- >5000

5000

= For all the health factors, the significant differences were accounted for by the
higher scores for applications serving more than 5000 users

= Applications serving more than 5000 users are typically customer facing

= Not surprisingly, greater effort would be focused on the structural quality of
these applications considering their risk to the business if they suffer
operational problems or are difficult to maintain

20 ML Jcasr

CRASH Sample Variations by CMMI Level

Figure 17. Health factor distributions for CMMI Levels 1, 2, and 3 applications

40

3.0

= = -
L 3rd Quartil
 — l Median
l ! 1st Quartil

Min

Total Quality Index

2.5

2.0
Level 1 Level 2 Level 3

= The CMMI (Capability Maturity Model) relates to the degree of formality and
optimization of processes: 1 = Initial (chaotic, ad hoc, individual heroics), 2 =
Repeatable (sufficiently documented process for repeatability), 3 = Defined, 4 =
Managed, 5 = Optimizing

= Strong dependency of all KPIs on CMMI level, expecially from 1 to 2

= This reflects the common knowledge that removing obstacles like unachievable
commitments and volatile requirements lets developers perform their work in a
more orderly and professional manner

2 ML Jcasr

CRASH Sample Variations by Development Method

Figure 18. Health factor distributions for development methods

4.0

1
+ T

Max

L 3rd Quartil
i Median
! 1st Quartil
—
3.0 | Min

il
=

Agile Mix None Waterfall

Total Quality Index

2.5

2.0

= No usage of a development model yields weakest results
= Agile and waterfall methods are almost at the same level
= A mix of Agile and waterfall methods creates significantly better quality

= This reflects the experience that while the rapid development of new
functionality profits from agile environments, overall technical requirements like
scalability require a more stable, predefined architecture that adresses these
requirements by design (platform concept)

2 ML Jcasr

M J Jcasr

ACHIEVE INSIGHT. DELIVER EXCELLENCE.

CRASH: CAST Report on Application Software Health

Presented 16.11.15 at Software Technology Group, TU Dresden
Paul Nash, CAST GmbH, p.nash@castsoftware.com

