
Presented 16.11.15 at Software Technology Group, TU Dresden
Paul Nash, CAST GmbH, p.nash@castsoftware.com

CRASH: CAST Report on Application Software Health

CAST: Market Space Leader for Automated Software Analytics

250+ ENTERPRISE CUSTOMERS TOP 10 SYSTEM INTEGRATORS

GLOBAL PRESENCE
USA, Germany, UK, France,
Belgium, Italy, Spain, India

MARKET LEADER, PURE
PLAYER, GLOBAL

NYSE Euronext

THE UNIT OF MEASURE FOR THOSE
WHO BUY OR BUILD SOFTWARE

2

SOFTWARE ANALYTICS
SERVICES

CAST products & services

3

INDUSTRY
BENCHMARKS SERVICES

ENTERPRISE
SOFTWARE

• Over 3,000 apps and 700 million LoC
• Query by industry, technology and geos
• CRASH Annual Report

• SaaS, Cloud based.
• Rapid portfolio analysis
• Portfolio continuous monitoring

APPLICATION ANALYTICS DASHBOARD
• OMG compliant software metrics
• Trend analysis
• Automated function points

ENGINEERING DASHBOARD
• Architectural analysis and blueprinting
• Critical violation drill down
• Transaction risk

• Software analytics & engineering experts
• Software analytics as a service
• Value measurement & realization

MANAGED SERVICES
& CONSULTING

CAST APPLICATION
INTELLIGENCE PLATFORM

Software Analytics ‐What do we measure?

Risk of critical
failures in
production

Risk of
performance /
scaling issues

Risk of security
breaches

Ease and speed
of modifying

Ease and speed
of learning

RISK MAINTAINABILITY

PRODUCTIVITY

Overall application
functional size

Performance and
productivity

BENCHMARK

4

Evaluate Structural Quality of Software Deliveries

QA

Design Develop Deploy Maintain

Functional
Testing

Performance
Testing

Structural Quality Analysis

1. Verify delivery compliance with goals set in SLA

2. Identify sources of critical risk for immediate action

3. Define action plan for improvement in next deliveries

The Structural Quality evaluation is becoming a must-have for
verifying and validating the code delivered from vendors

5

A
rc

hi
te

ct
ur

e
C

om
pl

ia
nc

e
Software Analytics: How do we measure?

6

 Intra-technology architecture
 Intra-layer dependencies
 Intra-module communication
 Module complexity & cohesion
 Design & structure
 Inter-program invocation
 Security Vulnerabilities

Technology Level

 Integration quality
 Architectural

compliance
 Risk propagation

simulation
 Application security
 Resiliency checks
 Transaction integrity

 Function point &
EFP measurement

 Effort estimation
 Data access control
 SDK versioning
 Calibration across

technologies

System Level

Data FlowTransaction Risk

 Code style & layout
 Expression complexity
 Code documentation
 Class or program design
 Basic coding standards

Program Unit Level

Propagation Risk

Java

JSP

EJB
PL/SQL

ASP.NET

Oracle

SQL
Server

DB2

T/SQL

Hibernate

Spring

Struts
.NET

C# VB
COBOL

C++

COBOL

Sybase IMS

Messaging

Java
Web

Services

APIs

A
bo

ut
 1

00
0

ar
ch

ite
ct

ur
al

 a
nd

 la
ng

ua
ge

-s
pe

ci
fic

 c
od

e
ch

ec
ks

Overview of CAST Quality Model

7

TransferabilityTransferability

ChangeabilityChangeability

RobustnessRobustness

Performance Performance

Size

Naming
Conventions

Documentation

Architecture

Complexity

Package naming
Class naming

Interface naming

Package comment
Class comment

Method comment

Package size
Class size (methods)

Interface size

Class complexity (Inh. depth)
Class complexity (Inh. width)

Artifacts having recursive calls
Method complexity (control flow)

MaintainabilityMaintainability

SecuritySecurity

Programming
Practices

File conformity
Dead code

Controled data access
Structuredness

Modularity

Encapsulation conformity

Empty code

Inheritance

Immediate Impact

On-Going Impact

Business CriteriaTechnical CriteriaQuality Metrics Subset Metrics Dashboard

Multiple artifacts inserting
data on the same SQL table

Coupling Distribution

SQL Complexity Distribution

8

Computation of Quality Scores

Low risk
Moderate risk
High risk

Compliance Ratio
(% successful checks)

Grade

4.00
3.00
2.00
1.00

Threshold #1
E.g.: 10%

Threshold #2
E.g.: 70%

Threshold #3
E.g.: 90%

Threshold #4
E.g.: 99%

Observed
Compliance ratio

Compliance Ratio =
(% of Successful checks)

successful checks

successful checks + failed checks

X 100

9

CRASH Data Sample: Size Distribution

 1316 applications, mostly business critical
 212 organizations worldwide, from 12 different verticals
 706 MLOC total code volume
 20 large enterprise systems over 5 MLOC

10

CRASH Data Sample: Distribution Across Languages

 Largest number of apps in Java-EE, COBOL, .NET, Oracle, and ABAP
 Median size in each technology is half or less the size of the mean due to large

apps accounting for most of the total LOC
 "Mixed" is usually a mix of COBOL and Java-EE, usually in Financial and Telco

verticals (customer-facing web apps on top of legacy applications)

11

CRASH Data Sample: Global Quality Characteristics

 Most of the scores are above 3
 May be due to the high dependence on quality

for large critical apps
 However, there's a "tail" of apps with scores

down to around 2
 Keep in mind that apps are in production, this

requires minimum quality at least
 TQI distribution is similar to distribution of other

KPIs (Performance, Robustness etc.)

A
bo

ut
 1

00
0

ar
ch

ite
ct

ur
al

 a
nd

 la
ng

ua
ge

-s
pe

ci
fic

 c
od

e
ch

ec
ks

Overview of CAST Quality Model

12

TransferabilityTransferability

ChangeabilityChangeability

RobustnessRobustness

Performance Performance

Size

Naming
Conventions

Documentation

Architecture

Complexity

Package naming
Class naming

Interface naming

Package comment
Class comment

Method comment

Package size
Class size (methods)

Interface size

Class complexity (Inh. depth)
Class complexity (Inh. width)

Artifacts having recursive calls
Method complexity (control flow)

MaintainabilityMaintainability

SecuritySecurity

Programming
Practices

File conformity
Dead code

Controled data access
Structuredness

Modularity

Encapsulation conformity

Empty code

Inheritance

Immediate Impact

On-Going Impact

Business CriteriaTechnical CriteriaQuality Metrics Subset Metrics Dashboard

Multiple artifacts inserting
data on the same SQL table

Coupling Distribution

SQL Complexity Distribution

13

CRASH Data Sample: Shared Variance in KPIs

 Percent of shared variance is the square of the correlation coefficient between
two variables and measures the strength of their relationship

 Security and Robustness are strongly related, so good architectural and coding
practice seem to affect both in parallel

 Performance has weak relationships with the other KPIs, so the believe that
improving performance affects the other KPIs negatively appears to be a myth

14

CRASH Data Sample: KPI Variation with App Size

 For Java-EE, Robustness
declines slightly with size

 This is surprising since the JEE
architecture is built to handle
scaling effects, so wrong usage?

 For COBOL, Security drops
slightly with application size

 This is from a high absolute
value, see below

 All other KPIs have little variation
with application size

15

CRASH Results by Language: Java-EE

 Transferability significantly lower than other KPIs (complex constructs, no doc?)
 Lots of variation in all KPIs, many outliers
 This is concerning, especially for Security with Internet applications

16

CRASH Results by Language: COBOL

 Security significantly higher than other KPIs (due to finance industry needs?)
 Changeability/Transferability lower, probably due to module size and complexity
 Average module size in CRASH sample for COBOL is 600 LOC, while in most

modern languages it is 50 LOC (30 LOC average for Java-EE)

17

CRASH Results by Language: APAP (SAP)

 ABAP is a language used for customizing applications built atop the SAP
application platform

 Security higher than other KPIs (finance requirement? platform restrictions?)
 Largest variation for Performance, a known issue in the SAP user base

18

CRASH Results by Language: C++

 Security and Performance substantially higher than other KPIs
 C++ often chosen for performance-sensitive applications
 Changeability and Transferability were the lowest across languages
 Likely due to complex constructs with machine-accessible attributes using C++

19

CRASH Sample Variations by different Demographics

 Very little variation of KPIs by Vertical,
In- vs. Outsouced, and On- vs. Off-Shore

 To avoid influence by language, only
Java-EE was used

 Changeability and Robustness slightly
better for On-Shore

20

CRASH Sample Variations by Number of Users

 For all the health factors, the significant differences were accounted for by the
higher scores for applications serving more than 5000 users

 Applications serving more than 5000 users are typically customer facing
 Not surprisingly, greater effort would be focused on the structural quality of

these applications considering their risk to the business if they suffer
operational problems or are difficult to maintain

21

CRASH Sample Variations by CMMI Level

 The CMMI (Capability Maturity Model) relates to the degree of formality and
optimization of processes: 1 = Initial (chaotic, ad hoc, individual heroics), 2 =
Repeatable (sufficiently documented process for repeatability), 3 = Defined, 4 =
Managed, 5 = Optimizing

 Strong dependency of all KPIs on CMMI level, expecially from 1 to 2
 This reflects the common knowledge that removing obstacles like unachievable

commitments and volatile requirements lets developers perform their work in a
more orderly and professional manner

22

CRASH Sample Variations by Development Method

 No usage of a development model yields weakest results
 Agile and waterfall methods are almost at the same level
 A mix of Agile and waterfall methods creates significantly better quality
 This reflects the experience that while the rapid development of new

functionality profits from agile environments, overall technical requirements like
scalability require a more stable, predefined architecture that adresses these
requirements by design (platform concept)

Presented 16.11.15 at Software Technology Group, TU Dresden
Paul Nash, CAST GmbH, p.nash@castsoftware.com

CRASH: CAST Report on Application Software Health

