
Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - Softwaretechnologie II

2. Software Development as Engineering
Activity

Prof. Dr. rer. nat. habil. Uwe Aßmann

Institut für Software- und
Multimediatechnik

Lehrstuhl Softwaretechnologie

Fakultät für Informatik

Technische Universität Dresden

http://st.inf.tu-dresden.de/teaching/
swt2

2015-0.9, 16.10.15

1.  So%ware	 Engineering	 Scenarios	
2. A	 run	 through	 the	 engineering	 life	
cycle	

3. Engineers	 and	 Entrepreneurs	
Prof. U. Aßmann 1

Softwaretechnologie II

Obligatory Reading

►  Balzert Introduction
►  Maciaszek/Liong Chap. 1
►  Ghezzi Chap 5+7 or
►  Pfleeger Chap 2+4
►  The ACM/IEEE Code of Ethics for Software Engineers:

►  https://www.acm.org/about/se-code
►  https://www.computer.org/cms/Computer.org/Publications/code-of-ethics.pdf

►  Wolfgang Hesse, Heinrich C. Mayr. Modellierung in der Softwaretechnik:
eine Bestandsaufnahme. Informatik Spektrum 31(5), Springer-Verlag 2008
►  DOI 10.1007/s00287-008-0276-7
►  This explains the concept of a model in general

►  Ed Seidewitz. What models mean. IEEE Software, 20:26-32, September
2003.
►  http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1231147&tag=1
►  This explains the different of prescriptive and descriptive modeling

P
ro

f.
 U

.
A

ß
m

an
n

2

Softwaretechnologie II

References

►  M. Pidd. Tools for Thinking. Modeling in Management Science. Wiley. Gives
a good overview on modeling in general (soft and hard models)

►  www.omg.org/mda Model driven architecture® is a process that structures
refinement-based development, using UML

►  Favre’s papers on egyptology (i.e., modeling):
►  Jean-Marie Favre. Foundations of model (driven) (reverse) engineering: Models -

episode I: Stories of the fidus papyrus and of the solarus. In Jean Bezivin and Reiko
Heckel, editors, Language Engineering for Model-Driven Software Development,
number 04101 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 2005.
Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss
Dagstuhl, Germany.

►  Jean-Marie Favre. Foundations of meta-pyramids: Languages vs. metamodels-
episode II: Story of thotus the baboon1. In Jean Bezivin and Reiko Heckel, editors,
Language Engineering for Model-Driven Software Development, number 04101 in
Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 2005. Internationales
Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl,
Germany.

Ø  J.R. Abrial, Stephan Hallerstede. Refinement, decomposition, and
instantiation of discrete models: Application to Event-B. Fundamenta
Informaticae, 2007
•  http://dl.acm.org/citation.cfm?id=1365974&CFID=49627514&CFTOKEN=73132377

P
ro

f.
 U

.
A

ß
m

an
n

3

Softwaretechnologie II

Horton about Engineering

Ø  The profession of engineering--which, by the way, is merely the adapting
of discoveries in science and art to the uses of mankind--is a peculiarly
isolated one.

Ø  But very little is known about it among those outside of the profession.
Laymen know something about law, a little about medicine, quite a lot--
nowadays--about metaphysics. But laymen know nothing about
engineering. Indeed, a source of common amusement among engineers is
the peculiar fact that the average layman cannot differentiate
between the man who runs a locomotive and the man who
designs a locomotive. In ordinary parlance both are called engineers.

Ø  Yet there is a difference between them--a difference as between day and
night. For one merely operates the results of the creative genius of the
other. This almost universal ignorance as to what constitutes an
engineer serves to show to what broad extent the profession of
engineering is isolated.

Ø  Charles M. Horton. Title: Opportunities in Engineering. 1920, by Harper &
Brothers. http://www.gutenberg.org/ebooks/24681

P
ro

f.
 U

.
A

ß
m

an
n

4

Softwaretechnologie II

Riddle
P

ro
f.

 U
.

A
ß

m
an

n

5

"Ironring2005" by Mobilefolk - Own work. Licensed under Public Domain via Commons - https://commons.wikimedia.org/wiki/
File:Ironring2005.JPG#/media/File:Ironring2005.JPG

Softwaretechnologie II

Scenario of Running Example

Ø  You are a project manager in Hamann/Becker Car Radios, Inc, Karlsruhe,
Germany

Ø  Your boss comes into your office and says:

P
ro

f.
 U

.
A

ß
m

an
n

“Our competitor Smith Car Radios has a new satellite
radio. Their sales are growing, and our customers
demand it, too. How quickly can you deliver me a
satellite radio?”

6

Softwaretechnologie II

First Ideas

►  How many people?
■  do we have the right ones?

►  Which milestones (deadlines)?
►  How many resources?

►  What should the radio be able to do?
►  Why will it better than the competitors? (competitive

business edge)

►  How can we go the way in a structured way towards the product?
►  How can we engineer it?

P
ro

f.
 U

.
A

ß
m

an
n

ST-II

Software-Management
Wie man Projekte macht (SS)

7

Softwaretechnologie II

What is Software Engineering?

►  It teaches the production of software with engineering techniques (the
engineer's toolkit)

►  Model and Specify
►  Analysis and Prediction
►  Construction
►  Reuse
►  Validation, Verification, Review
►  Improvement
►  Sell

P
ro

f.
 U

.
A

ß
m

an
n

Specification,
Models, Code

Software engineers model, specify, analyse,
predict, build, validate, improve, and sell

8

Softwaretechnologie II

Software Engineering in the V-Model

Ø  The most simple software development process is the V-model

©
 P

ro
f.

 U
.

A
ß

m
an

n

9

Pre-Study
• Product concept catalogue
(Lastenheft)

Requirements Analysis
• Software Requirement Specification
(SRS)

Achitectural Design
• Architecture (Grobentwurf)

Detailed Design
• (Feinentwurf)

Implementation

Acceptance Test

Installation, Beta
Test

System Test (in-
house)

Component,
Subsystem Test

Contracts, Class
Tests

System
test cases

Unit test
cases

Acceptance
test cases

Sell

Reuse

validation validation

verification

verification

verification

improve

Review

Softwaretechnologie II

The (Software) Engineer's Toolkit

Describe a reality (a domain or a system in the world) by a model: Descriptive modeling
•  World and problem modeling vs. system modeling

Ø  Analyze (measure) a reality by a model
■  Identifying the problem (problem, goal, risk analysis)
■  Measure a system (Software metrics)
■  Searching and finding, Controlling

►  Predict features of a product from the model (form hypotheses, prove)
■  Forming hypotheses about the system

Specify a system: Prescriptive modeling
►  Specifying features and requirements of a system

►  Construct a product (realize, develop, invent, build): apply
systematic engineering steps to get a high-quality, evolvable
software system
■  Elaboration (adding more details to the model to arrive at

an implementation)
■  Refinement produces a model that implies the behavior of the original

.  Refinement renders the model more precise and detailed
■  Describing the infinite and the unknown with finite descriptions
■  Structure a model (making the model more clear)

.  Abstraction (leaving out detail, focusing on the essential)

.  Architecture (leaving out application specific details)

.  Domain Transformation (changing representation of model)

.  Refactor a model: simplify its structure while retaining behavior
■  Compose a system from components
■  Reuse parts of products

►  Engineer a product line (product family)

P
ro

f.
 U

.
A

ß
m

an
n

Design Patterns and
Frameworks

Architektur objektorientierter Systeme
(WS)

Component-Based
Software Engineering

Produktlinien mit anderen
Komponentenmodellen (SS)

Model-Driven Software
Development in Technical Spaces

How to be productive in
software development (WS)

10

Softwaretechnologie II

The (Software) Engineer's Toolkit

►  Validate and verify hypotheses on the product
■  Experimentation (empirical software engineering)
■  Consolidate (Checking consistency, integrity,

wellformedness, completeness, soundness)
■  Testing
■  Proving (formal software engineering, formal methods)
■  Statistics (not covered here)
■  Review the process of construction (Process review)
■  Review the product (Product review)

►  Improve the product
■  Reverse engineer towards better structure
■  Restructure
■  Optimize with regard to a value model

►  Sell the product(s)
■  The software engineer solves problems to earn money for his company and himself
■  How to come to products?
■  How to talk to customers?
■  How to see the problem of the customer?
■  How to reach a market with a product?
■  How to found a startup?
■  Often, engineers are good technicians, but fail to sell the products

P
ro

f.
 U

.
A

ß
m

an
n

Requirements Engineering
und Testen (Dr. Demuth)
Wie man Qualität für Software erzielt

(WS)

Future-Proof Software
Systems (Dr. Furrer)

Evolvable architectures (WS)

Software as a Business
(WS)

How to develop a business model and a
startup

11

Softwaretechnologie II

The Responsibility of the Engineer
P

ro
f.

 U
.

A
ß

m
an

n

12

http://web.archive.org/web/20110714140148/
http://www.mysteriesofcanada.com/Quebec/
quebec_bridge_collapse.htm

https://en.wikipedia.org/wiki/File:Quebec_Bridge_Collapse_of_1907.jpg

https://en.wikipedia.org/wiki/Quebec_Bridge

Softwaretechnologie II

The Engineer‘s Ring and Oath (US, Canada)

Ø  https://en.wikipedia.org/wiki/Engineer%27s_Ring
Ø  https://en.wikipedia.org/wiki/Iron_Ring
Ø  http://www.ironring.ca/background.php

P
ro

f.
 U

.
A

ß
m

an
n

13

I am an Engineer.
In my profession I take deep pride. To it I owe solemn obligations.

Since the Stone Age, Human Progress has been spurred by the Engineering Genius. Engineers
have made usable Nature's vast resources of Materials and Energy for Humanity's Benefit.
Engineers have vitalized and turned to practical use the Principles of Science and the Means of
Technology. Were it not for this heritage of accumulated experiences, my efforts would be feeble.

As an engineer, I, (full name), pledge to practice Integrity and Fair Dealing, Tolerance, and
Respect, and to uphold devotion to the standards and dignity of my profession, conscious always
that my skill carries with it the obligation to serve humanity by making best use of the Earth's
precious wealth.

As an engineer, I shall participate in none but honest enterprises. When needed, my skill and
knowledge shall be given without reservation for the public good. In the performance of duty, and
in fidelity to my profession, I shall give the utmost.

2.1. SCENARIOS OF
SOFTWARE ENGINEERING

Forward Engineering, Backward Engineering,
Improvement, Round-Trip Engineering

Prof. U. Aßmann 14

Softwaretechnologie II

Rk

Dk

Ik

Rk+1

Dk+1

Ik+1

Changed
Requirements

Changed
Design

Changed
Code

Evolution

Forward Engineering and Evolution

Ø  With CASE or MDSD tools, implementations can be generated from
implementation models (model-driven software development)

P
ro

f.
 U

.
A

ß
m

an
n

15

Softwaretechnologie II

Rk

Dk

Ik

Rk+1

Dk+1

Ik+1

Changed
Requirements

Changed
Design

Changed
Code

Software Evolution

►  Changed requirements require unforeseen refactoring and extensions
►  Software must be structured flexibly so that it can be evolved
►  Sometimes, more product variants are created and a product line emerges

P
ro

f.
 U

.
A

ß
m

an
n

Changed
Requirements

16

Softwaretechnologie II

Rk

Dk

Ik

Rk+1

Dk+1

Ik+1

Changed
Requirements

Gained
Design

Changed
Code

Lost Requirements
Lost Design

Software Reengineering

►  Reverse Engineering attempts to recover design from code
►  Reengineering uses the gained design for further forward engineering

P
ro

f.
 U

.
A

ß
m

an
n

17

Softwaretechnologie II

Rk

Dk

Ik

Rk+1

Dk+1

Ik+1

Requirements

Automated
Design

Automated
Code

The Dream: Automated Programming

►  Automated programming (generative programming) generates code
from requirements automatically.
■  It will need planning and expert system support

P
ro

f.
 U

.
A

ß
m

an
n

18

Softwaretechnologie II

Rk

Dk

Ik

Rk+1

Dk+1

Ik+1

Changed
Requirements

Changed
Design

Changed
Code

Round-Trip Engineering
(Forward and Backward)

►  Round-trip engineering combines forward and reverse engineering
■  It allows for editing on all levels, keeping all artefacts consistent

P
ro

f.
 U

.
A

ß
m

an
n

19

Softwaretechnologie II

Rk

Dk

Ik

Rk+1

Dk+1

Ik+1

Changed
Requirements

Changed
Design

Software-in-
the-loop

Virtual Prototyping

Ø  For safety-critical embedded hw/sw systems, virtual prototyping is used
Ø  Software-in-the-loop (SIL): virtual prototype with simulator of hardware

P
ro

f.
 U

.
A

ß
m

an
n

20

Sysk Sysk+1

Hardware-
in-the-loop

2.2 A RUN THROUGH A
FORWARD ENGINEERING
CYCLE

Prof. U. Aßmann 21

Softwaretechnologie II 22

2.2.1 FIRST STEP: ANALYSIS

Prof. U. Aßmann 22

Softwaretechnologie II

2.2.1 First Step: Analysis

►  How do we arrive from the
requirements at the
product? Let's take an
engineer's approach
(Analysis steps):
■  Engineers analyze problems to

understand what to do
■  Engineers specify a solution

and realize (construct) it
■  For both activities, engineers

model the world to master it

►  Steps
■  We fix the requirements in a

requirement specification
(requirements models)

■  We go step by step through
different design models

■  ... until we arrive at the
implementation model (which
is the system)

P
ro

f.
 U

.
A

ß
m

an
n

Satellite radio requirement specification
(using analysis model 1, milestone 2)

Design (model 3, milestone 3)

Prototype (model 4, milestone 4)

Prototype 2 (model 5, milestone 5).
Will be delivered to beta-testers

System (model 6, milestone 6)

Satellite radio domain analysis
(milestone 1)

23

Softwaretechnologie II

But... What Is A Model?

►  Pidd suggests a hierarchy of definitions:
■  A model is a representation of reality
■  A model is a representation of reality intended for some definite purpose
■  A model is a representation of reality intended to be of use to someone charged

with understanding, changing, managing, and controlling that reality
■  A model is a representation of a part of reality as seen by the people who wish

to use it
■  To understand that reality (descriptive model, map)
■  To change, manage, and control that reality (prescriptive model,

blueprint)
►  More simply:

■  A model is a representation of a part of a domain, or of a function of a system,
its structure, or behavior

■  A model is an abstraction of a system
►  A model is partial, i.e., abstract, and neglects some parts of the reality

►  Question: what does this mean for the Satellite radio?

P
ro

f.
 U

.
A

ß
m

an
n

24

Softwaretechnologie II

Ø  (J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen.
Object-Oriented Modeling and Design. Prentice Hall, Englewood Cliffs,
New Jersey, USA, 1991) cited from Dr. Jochen Küster | MDSE 2011

P
ro

f.
 U

.
A

ß
m

an
n

25

 “A model is an abstraction of something for
the purpose of understanding before
building it”

Softwaretechnologie II

To Produce Software, We Model

►  Software construction uses two kinds of models

P
ro

f.
 U

.
A

ß
m

an
n

The World

Problem Domain

Problem Analysis

What is the problem?

Problem model

(Analysis model)

Models the problem reality

Understand a problem

Software Systems

System Domain

System Design

What is the solution?

System model
(Design model)

Models the system reality
Manage that reality

Prescriptive
models
(specifications)

Descriptive
(analytic)
models

26

Softwaretechnologie II

The World

Problem Domain

Problem Analysis

No FM in USA

Digital radio quality required

everywhere

Software Systems

System Domain

System Design

Satellite Radio

Software-controlled
embedded system

The Satellite Radio as Example
P

ro
f.

 U
.

A
ß

m
an

n

27

Softwaretechnologie II

Radio

Loudness

Tuner

RadioFeature

Loudness
Brightness

Tremble
Loudness

Descriptive Models:
Glossaries, Classifications, Taxonomies, and Ontologies

►  A glossary is a set of explained terms
►  A classification is a grouping of the concepts of a domain into classes
►  A taxonomy (Begriffshierarchie) superimposes a hierarchical or acyclic is-

a relationship
■  Analyse similarity (commonality-variability analysis)

■  A ontology adds associations, class and relation expressions, and well-
formedness constraints

P
ro

f.
 U

.
A

ß
m

an
n

28

Softwaretechnologie II

Ontologies as Standardized Domain Models

►  A (domain) ontology is a shared, standardized model for a domain,
consisting of a taxonomy and integrity constraints (consistency
constraints) constraining the hierarchy
■  Rules to produce derived parts of the hierarchy. The derived parts are intentionally

specified
►  Ontologies are standardized domain models and play an important role in

domain analysis
■  In general, a domain model need not necessarily be standardized
■  For many domains, domain modeling will start from these ontologies
■  Domain engineers produce domain ontologies

►  Example:
■  Dublin Core ontology with concepts such as Date, Author, Comment
■  Medical ontologies, such as gopubmed.org
■  Upper ontologies (conceptual ontologies), such as SUO suo.ieee.org
■  Biochemical ontologies (Gene ontology www.geneontology.org)

►  Ontologies in the Semantic Web
■  In 2003, the W3C has standardized the first ontology language for the web: OWL

(web ontology language)

P
ro

f.
 U

.
A

ß
m

an
n

29

Softwaretechnologie II

Ontology in OWL „Manchester Syntax“
P

ro
f.

 U
.

A
ß

m
an

n

30

Softwaretechnologie II

What is a Specification (Prescriptive Model)?

►  A specification is a prescriptive model (blue print) of the system, i.e., a
precise description what a system
■  should deliver (service, delivery, postconditions, guarantees)
■  requires for the delivery (requirements, preconditions, assumptions)
■  “the truth lies in the model” (J.M. Favre)

►  A specification must be realized (implemented). An implementation can be
verified with regard to a specification
■  showing that the implementation derives the delivery from the requirements

►  A specification may contain one or several prescriptive models of the
system
■  Because models are abstract, they are partial representations of partial knowledge
■  Several dimensions of abstractions can be used, so many specifications for a system

can be constructed
►  However, often, the word specification and model are used interchangeably

(which is not precise)

P
ro

f.
 U

.
A

ß
m

an
n

31

Softwaretechnologie II

Summary:
Different Kinds of Specifications and Models

Ø  Descriptive (Analysis) models
Ø  Domain model:

•  Domain analysis is the process of
identifying and organizing knowledge
about the application domain

Ø  “Real”-Problem model:
•  Usually, the requirement specification

includes a problem model –
to support description and solution
of these problems

Ø  Goal models
•  What do we want to achieve with the

system?

P
ro

f.
 U

.
A

ß
m

an
n

Ø  Prescriptive models (system
models, specifications)

Ø  From the analysis models, we
derive the system models.

Ø  Requirements specification (SRS):
•  the specification what the system

should deliver.
•  Functional requirement model:

system functions
•  Non-functional requirement model:

system qualities
Ø  Design models:

Ø  abstract representation of a system
on the level of a design language

Ø  Architecture models
•  Describing the software architecture

Ø  Implementation models:
Ø  partial representation of the

system on the level of an
implementation language

32

Softwaretechnologie II

Structural vs. Behavioral Models

►  A structural model captures the structure of a reality
►  Integrity constraints for well-formedness

►  A behavioral model captures its behavior
►  A behavioral model uses a structural model and adds a model how a reality reacts

■  operations (functions, procedures, methods, …)
■  event-condition-action rules,
■  a state space

►  Objects have a state space, often represented by
■  Petri-nets (see later) and their specializations:

■  a finite state machine
■  a hierarchical state machine (state chart)
■  data-flow diagrams

■  Process algebra

P
ro

f.
 U

.
A

ß
m

an
n

33

Softwaretechnologie II

Specifications and Models in Software Engineering

►  Developing from declarative to behavioral models
►  Earlier models should be abstractions of later ones, later models should be

concretizations or refinements of earlier ones

P
ro

f.
 U

.
A

ß
m

an
n

Domain model

Implementation model (partial code)

Steps

System requirements specification with
requirements models (SRS)

more details added

Code

System design specification with design models (SDS)
starts to be behavioral

Concretizing

Abstracting

34

Softwaretechnologie II 35

2.2.2 SECOND STEP:
PREDICTION

Prof. U. Aßmann 35

Softwaretechnologie II

Second Step: Prediction

►  Prediction is important for critical software:
►  Real-time software in embedded systems
►  Safety
►  Security and privacy
►  Energy efficiency

►  Behavioral models allow for prediction
■  Graph-based models can be consistency-checked with logic reasoners

.  Integrity constraints constrain the object sets (object extents) of the classes

.  Structural constraints (reducibility, layering)
■  Petri nets can be verified with matrix theory

.  Resource consumption (memory consumption)

.  Liveness, Fairness, Deadlocking of the processes
■  Statecharts can be checked with model checkers

■  Virtual prototyping is used to predict the behavior of a system:
■  Simulation is also called model-in-the-loop (MIL)
■  Simulation of system behavior with simulation languages (see

www.openmodelica.org)
►  This area is called formal methods of software engineering

P
ro

f.
 U

.
A

ß
m

an
n

36

Softwaretechnologie II 37

2.2.3 THIRD STEP:
CONSTRUCTION

Prof. U. Aßmann

How to come to the next model?

37

Softwaretechnologie II

Construction with Refinement-Based Development

►  The construction of systems starts off from Domain Model over
Requirement Specification and Design Specification to Implementation
Model to Code:
■  Develop the next specification, starting from the previous ones

Ø  Construction steps: For every model, start with some simple form. Then,
apply construction steps:
►  Elaboration: Elaborate more details – enrich the model with more semantics

►  Concretization: add concrete details
►  Refinement: Refine an existing specification/model, by detailing an abstract

concept
►  Check: Check consistency of models
►  Measure quality and quantity of models
►  Compose from components

►  We can distinguish several methods of constructive development

P
ro

f.
 U

.
A

ß
m

an
n

38

Softwaretechnologie II

Questions for the Methods of Development

►  Elaboration (concretizations): Elaborate more details
■  Which Elaboration steps exist?
■  How do I know in which direction to elaborate?

►  Refinements: With and without correctness proofs that the semantics of the
abstract concept is provided by the refinement

►  Syntactic refinement: replace a part of the model by something more fine-grained
►  Semantic (behavioral) refinement: prove for a syntactic refinement that it is

correct, i.e., implies semantics of the original (either preserves semantics, or enriches)
►  Pointwise Refinements: detailing an abstract concept by a net of more concrete

ones
►  Regional Refinements: detailing a region of the model by a net
►  Crosscutting Refinements: detail a slice of the model

►  Rotations (Symmetry operations): Apply a semantics-preserving change
■  Rotate: Symmetry operations (semantics-preserving operations)
■  Restructure (refactor): rearrange for more structure, but keep requirements and delivery,

i.e., semantics
■  Which restructuring? (when is a specification too complex?)

■  Semantic refinement: prove for a syntactic refinement that it is correct, i.e., either
preserves semantics, or enriches semantics

■  Transform Domains (change representation, but keep semantics)
■  Which representation change? (which representations are appropriate for which

purpose?) P
ro

f.
 U

.
A

ß
m

an
n

39

Softwaretechnologie II

Reuse of Models and Code in Construction

►  Reuse by composition: Engineers try to reuse well-established solutions
■  Components (CBSE)
■  Design patterns (-> DPF)
■  Models (model-driven architecture) (-> MOST)
■  Best practices

►  Reuse: to simplify system construction
■  To save costs
■  To reduce testing effort

P
ro

f.
 U

.
A

ß
m

an
n

40

Softwaretechnologie II 41

2.2.4. 4TH STEP: VALIDATION

Prof. U. Aßmann

Software without test architecture is called a program.

41

Softwaretechnologie II

Validation in a Software Development Process (V-Process Model)

►  All specifications and models have to be validated (demonstrated to the
customer), verified, or event formally verified.
■  Implementations against specifications

►  Result: A V-like software development process

P
ro

f.
 U

.
A

ß
m

an
n

Domain Model

Requirements
Specification

System Design

Code

Maintenance

Acceptance Test

Functional Test

verification

validation

verification

verification

validation

42

Softwaretechnologie II 43

Domain Model
(car, speed, traffic,

GPS, Wireless)

Requirements Specification
(user desires, business models)

System Design
(control, sensors, connection

to car bus, satellite connection)

Code

Maintenance
(Error feedback, customer

feedback)

Acceptance Test
Field test with user

groups and car company

Functional Test
(inhouse at Becker)

verification

verification

verification

Validation of the Satellite Radio in the V-Model
P

ro
f.

 U
.

A
ß

m
an

n

Softwaretechnologie II 44

2.2.4.1 THE ARIANE 5 LAUNCH
FAILURE

•  [JezequelMeyer] Jean-Marc Jézéquel, Bertrand Meyer. Put it in the
contract: The lessons of Ariane.

•  https://www.irisa.fr/pampa/EPEE/Ariane5.html
•  This article appeared in a slightly different form in IEEE Computer, as

part of the Object-Oriented department, in January of 1997 (vol. 30,
no. 2, pages 129-130).

•  The reaction of Ladkin on [JezequelMeyer]
•  http://www.rvs.uni-bielefeld.de/publications/Reports/ariane.html

•  https://fr.wikipedia.org/wiki/Ariane_5
•  http://sunnyday.mit.edu/accidents/Ariane5accidentreport.html

Softwaretechnologie II

The Ariane 5 Launch Failure

June 4th 1996
Total failure of the Ariane 5
launcher on its maiden
flight

The following slides are used by
permission from
[Ian Summerville, Software Engineering]

https://upload.wikimedia.org/wikipedia/commons/0/05/Ariane_5_Le_Bourget_FRA_001.jpg

Softwaretechnologie II

Ariane 5 Launch Failure
June 4, 1996 maiden flight

►  Ariane 5 was designed to launch commercial payloads
(e.g.communications satellites, etc.) into orbit
■  Heavier payload than Ariane 4
■  More thrust (Schub), launches steeper

►  37 seconds after a lift-off, the Ariane 5 launcher lost control
■  Incorrect control signals were sent to the engines
■  These swivelled so that unsustainable stresses were imposed on the rocket
■  Rocket started to break up and self-destructed

►  → $0.5 bio. Loss
►  → software failure

 Ian Summerville, Software Engineering

Softwaretechnologie II

The Problem

►  The attitude and trajectory of the rocket are measured by a inertial
reference system
■  This transmits commands to the engines to maintain attitude and direction
■  The software of this system failed: Diagnostic commands were transmitted to the

engines
■  ..which interpreted them as real data and which swivelled to an extreme

position
■  The backup system shut down the rocket

►  Integer overflow failure occurred during converting a 64-bit floating
point number to a signed 16-bit integer
►  There was no exception handler
■  So the system exception management facilities shut down the software

►  The backup software was a copy and behaved in exactly the same way.

 Ian Summerville, Software Engineering

Softwaretechnologie II

Software Reuse Error: No Contract Checking

►  The software that failed was reused from the Ariane 4 launch vehicle.
►  Contract of Ariane-4 modules were not checked, neither statically nor

dynamically [JezequelMeyer]
■  The computation that resulted in overflow was not used by Ariane 5

►  Decisions were made
■  Not to remove the facility as this could introduce new faults
■  Not to test for overflow exceptions because the processor was heavily loaded.
■  For dependability reasons, it was thought desirable to have some spare processor

capacity

 Ian Summerville, Software Engineering

A Contract is a specification summarizing the behavior of a software
module that can be checked statically or dynamically for flawless use of
the module

Softwaretechnologie II

Why not in Ariane 4?

►  Ariane 4 has a lower initial acceleration and build up of horizontal velocity
than Ariane 5
■  The value of the variable on Ariane 4 could never reach a level that caused overflow

during the launch period.
■  That had been proved (for Ariane 4)!

►  As the facility that failed was not required for Ariane 5,
■  there was no requirement associated with it.

►  As there was no associated requirement,
■  there were no tests of that part of the software and hence no possibility of

discovering the problem.
►  During system testing, simulators of the inertial reference system

computers were used.
■  These did not generate the error as there was no requirement!

 Ian Summerville, Software Engineering

Softwaretechnologie II

What Kind of Engineering Error Was It?

►  Requirements Analysis Error
►  Reuse Error, Reuse Specification Error: no contract checking
►  Review Failure (→ defensive programming)

■  The design and code of all software should be reviewed for problems during the
development process

■  Either the inertial reference system software was not reviewed because it had been
used in a previous version

.  Or the review failed to expose the problem or that the test coverage would not
reveal the problem

.  Or the review failed to appreciate the consequences of system shutdown during
a launch

 Ian Summerville, Software Engineering

Reuse without a contract is sheer folly.
[Jezequel, Meyer]

Softwaretechnologie II

Lessons Learned

►  In critical systems don’t run software unless it is actually needed
■  Return best effort values if the absolutely correct values cannot be computed
■  Do not have system shut-down as default exception handler in systems that have

no fail-safe state
■  Do run-time contract checking

►  Test for what the system should do, (good test cases)
■  and what the system should not do (error test cases)
■  And what the system does in case of exceptions (failure test cases)

►  Use Virtual Prototyping for prediction
■  First, use models (Model-in-the-loop, MIL)
■  Then, use simulations (Software-in-the-loop, SIL)
■  Finally, use real equipment (Hardware-in-the-loop, HIL)

►  Improve the review process to include external participants and
review all assumptions made in the code

 Ian Summerville, Software Engineering

Softwaretechnologie II 52

2.2.5 5TH STEP: IMPROVEMENT

Prof. U. Aßmann 52

Softwaretechnologie II

5th Step: Improvement (Optimization)

►  Done via iteration, and ad-hoc
■  Not in the focus of the course.

►  Section “Product Lines” will treat some aspects of software evolution,
namely when new products should be derived from an existing product or
product family.

►  Optimization means: Improve on the qualities of the system
■  Speed, reliability, resource consumption, energy consumption

P
ro

f.
 U

.
A

ß
m

an
n

Engineering

Domain Model

Requirements
Specification

System Design

Code

Maintenance

Acceptance Test

Functional Test

verification

verification

verification

53

Softwaretechnologie II 54

2.2.6 6TH STEP: SELLING
SOFTWARE AS REWARD FOR
THE SOLUTION OF PROBLEMS

Some aspects in section “Earning Money with Software”.

Prof. U. Aßmann 54

Softwaretechnologie II

The Best Seller Is...

►  .. the company who solves a problem best, i.e., provides the best value
proposition for the customer

►  .. the one who pretends to solve a problem best
►  .. the one who solves a problem just good enough
►  .. the one who solves a problem reliably

P
ro

f.
 U

.
A

ß
m

an
n

55

Software can be sold as a reward for
solving problems of people

Solving problems is a task for Engineers
and Entrepreneurs

Softwaretechnologie II

Why do we need to care about money?

Ø  Calculating the cost and the price of a product is essential for an engineer
Ø  While usually other people distribute the products on the markets

(„Vertrieb“), engineers must give a price for a product!

P
ro

f.
 U

.
A

ß
m

an
n

Was sich nicht verkaufen lässt, will ich nicht erfinden.

Thomas Alva Edison http://www.gratis-spruch.de/

56

Softwaretechnologie II

It is difficult to Earn Money with Software

Ø  “The winner takes it all”
Ø  OSS is cheap
Ø  Product lines is the only way out

•  They encapsulate enough knowledge of a domain which forms a “sellable core”
•  They help to follow market changes quickly

P
ro

f.
 U

.
A

ß
m

an
n

57

Softwaretechnologie II

Entrepreneurship

►  The difference of entrepreneurship and capitalism is
■  A capitalist wants to earn money
■  An entrepreneur solves problems

►  Central question: Which problems can I solve for other people?
■  Get rid of a negative life: What do people need? Where is their pain?
■  Enabler for a positive life: What do people care about? Where is a value for the

customer?

P
ro

f.
 U

.
A

ß
m

an
n

An entrepreneur solves problems of people.

“Make things that remove people’s pain”

An entrepreneur creates a value in the life of the customer.

“Make things that people need”

Pain
removers

Happiness
enablers

58

Softwaretechnologie II

Grameen

Ø  „Die Grameen-Bank ermuntert die Kinder ihrer Kreditnehmer auch zum
Schulbesuch. .. Derzeit studieren mehr als 50000 Studentinnen und
Studenten mithilfe von Ausbildungskrediten der Grameen-Bank...

Ø  Wir ermuntern diese jungen Leute, sich fest vorzunehmen, dass sie sich
niemals als Arbeitssuchende auf den Arbeitsmarkt begeben werden. Sie
sollen später einmal Arbeitsplätze schaffen, nicht sich um Arbeit
bewerben. Wir sagen ihnen: Euren Müttern gehört eine große Bank, die
Grameen-Bank. Die hat einen Haufen Geld, mit dem sich jedes
Unternehmen eurer Wahl auf den Weg bringen lässt. Warum wollt Ihr
Zeit mit Arbeitssuche vergeuden, um dann für jemand anderen zu
arbeiten? Werdet lieber Arbeitgeber, keine Arbeitnehmer.

Ø  Die Grameen-Bank ermutigt die Menschen von Bangladesh zur
unternehmerischen Selbständigkeit und wirtschaftlichen
Unabhängigkeit – weg von der Abhängigkeit.“

Ø  Mohammad Yunus – Social Business. Von der Vision zur Tat. Hanser
2010.

P
ro

f.
 U

.
A

ß
m

an
n

59

Softwaretechnologie II

The Entrepreneurial Type

►  Hard work: do you want to spent 5 years in business until your company
has survived?

►  An entrepreneur must long for freedom and independence
►  Uncertainty vs longing for freedom
►  People appear in two classes:

■  Security type: tends to avoid risks. Likes to be told what to do
■  Independence type: loves freedom, independence.

►  Self discipline
►  Are your aims realistic?

P
ro

f.
 U

.
A

ß
m

an
n

60

Softwaretechnologie II

Problem Solving – A Task for the Engineer and also the
Salesman

Ø  Successful engineers and salesmen also solve problems for their
customers.
•  A successful engineer or salesman can always return to a customer because he has

created satisfaction in the customer (Kundenzufriedenheit)
Ø  The engineer solves problem with an engineering technology
Ø  The salesman solves problem by mediating the customer’s financial

situation and the engineer’s solution
Ø  In small companies, software engineers have to play the role of a

salesman, too [Konrad Zuse, Mein Lebenswerk] [Klaus Kemper. Heinz
Nixdorf]

Ø  Some of the greatest entrepreneurs of the 20th century have been
engineers: Werner von Siemens, Konrad Zuse, Heinz Nixdorf, Robert
Bosch

P
ro

f.
 U

.
A

ß
m

an
n

61

Softwaretechnologie II 62

2.2.6.2 STRATEGIES OF SOLVING
PROBLEMS AND SELLING

Prof. U. Aßmann 62

Softwaretechnologie II

Chances

Ø  „When you find inefficiency, you find opportunity“ [Barrack]
Ø  „Make things people need“
Ø  „Remove pain to earn money“

P
ro

f.
 U

.
A

ß
m

an
n

Problem
solving

for people

Eternal
human

problems

Eternal
New new

things

63

Softwaretechnologie II

Provide Problem Solving

►  “Knowing a good problem is half the business”
►  “Problems are my best friends” (Robert Fritz)
►  “Selling drilling machines is not as important as selling holes, but these are

completely different businesses” (H. Kagermann, SAP)
►  Problem analysis of customers: Find out about problems, and you will earn

money
►  à see ZOPP Problem-Objective Analysis

►  Try to find pain problems, because they create pressure on the customer

P
ro

f.
 U

.
A

ß
m

an
n

Pain World
Value World

Solution World

Pain value
analysis

Value analysis

Technology 1

Technology 2

64

Softwaretechnologie II

Exploit the Eternal Human Problems and Needs

►  Hunger, Food, Restaurants, ...
►  Love, Relationship
►  Hobby
►  Beauty
►  Exhibiting oneself (Flickr, youtube)
►  Housing
►  Save money
►  Holidays “Ab-in-den-Urlaub.de”
►  Overcoming the Space problem: Car, Flights,...
►  Simplifying complex things

■  Overcoming bureaucracy
►  Communication (Nokia “Connecting people”)
►  Being different from others (individualism)
►  Lazyness
►  Searching knowledge (expert portals)
►  Relaxing

■  Tourism, Travel,..

►  Events
■  Party, meeting people

P
ro

f.
 U

.
A

ß
m

an
n

Which of these problems is a
pain problem?

Which of these problems is a
need, if satisfied, makes the
customer happy (happiness
problem)?

65

Softwaretechnologie II

Bedürfnisse nach Lichtenberg

Ø  Wikipeida: (d) Lichtenberg unterscheidet fünf verschiedene
Motivationssysteme,[4] die miteinander in Konflikt treten können, auf die
er durch Ergebnisse der Säuglingsbeobachtung schließt:

Ø  die biologische Notwendigkeit, physiologische Bedürfnisse zu befriedigen
Ø  ein elementares Bedürfnis nach Bindung, das sich später zu einem

Bedürfnis nach Zugehörigkeit erweitert
Ø  das Bedürfnis, Dinge zu erforschen und sich selbst zu behaupten
Ø  das Bedürfnis, auf unangenehme Stimuli aversiv zu reagieren, durch

Widerspruch oder Rückzug
Ø  das Bedürfnis nach sinnlichem Vergnügen, Zärtlichkeit und sexueller

Erregung

P
ro

f.
 U

.
A

ß
m

an
n

66

Softwaretechnologie II

Bedürfnisse nach Maslow
P

ro
f.

 U
.

A
ß

m
an

n

67

Softwaretechnologie II

Exploit the Eternal Change

►  The markets, the customers, the competitors change.
■  Find out about change, and you will earn money
■  Old players do not recognize change, but often are too immutable

►  The stock market principle: “sell when high, buy when low”
■  Investments in a crisis create value

►  Embrace change
■  Use it for your purposes, or change will roll you over.
■  Some markets die after some time. Recognize the change, and change your market.

■  Which of the expected changes will create pain? (pain change)
■  Year 2000 problem was a pain change problem with deadline.
■  Lots of problems had to be solved

►  Investigate the future
■  By looking at market change forecasts, e.g., [Canton]

■  Look out for goldrushs: A goldrush is a change with disruptive changes,
opening many new changes
■  The German “Energiewende” is a goldrush change with deadline in 2020

P
ro

f.
 U

.
A

ß
m

an
n

Which of these changes is a
pain change?

Which of these changes is a
gold rush change?

"Nenne einen Markt, der mit 20 bis 70
Prozent waechst, und es ist fast sicher:"
meint Dr. Konrad Seitz: "Die Deutschen sind
nicht dabei." -

68

Softwaretechnologie II

Exploit Eternal Differences

►  Know-how vs absent know-how
■  Consultance

►  Differences in knowledge:
■  Wikonomics: sharing knowledge in a web community

►  Cultural differences
►  Export from one region; import to the other

■  Asian restaurants, Gyros, Döner
■  Teleconferencing

P
ro

f.
 U

.
A

ß
m

an
n

69

Softwaretechnologie II

Eternal Satisfaction
IBM's secret: Customer Satisfaction

►  Satisfy your customer (Customer satisfaction)
■  IBM: T. Watson, “THINK”

►  Dont' loose a customer. Try to please him so that she returns.
■  It is much more easy to gain somebody who was customer before than getting a new

customer
■  Quality and confidence pays off.

■  It is 10 times harder to aquire a new customer than to keep an old
customer (Stammkundschaft)

P
ro

f.
 U

.
A

ß
m

an
n

70

Softwaretechnologie II

The New New Thing

Ø  Innovation creates new new things for which customers may pay higher
prices

Ø  “New New Things” are goldrush changes:
Ø  Michael Lewis. The New New Thing. A Silicon Valley Story. Coronet Books.

Hodder and Stoughton.
•  Tells the story about Jim Clark, founder of Netscape, how he founds another

company, Healtheon, end of the 90s.
•  Fascinating to read about the hypes in the Silicon Valley.

P
ro

f.
 U

.
A

ß
m

an
n

Over time, things become commodity which is
given away very cheap or for free

71

Softwaretechnologie II 72

2.2.6.3 WHAT TO SELL AS A
SOFTWARE ENGINEER

Prof. U. Aßmann 72

Softwaretechnologie II

Different Types of Things to Sell

What you might sell (types of products):
►  Consultancy: sell your know-how

►  Analysis studies on a market, trend or strategy
►  Service (Requ.analysis, testing, maintenance, modernization,

reengineering)
■  Many big companies have their focus there: IBM

►  Individual projects for “individual software”
■  SD&M, Accenture, Saxonia systems, …

►  Software Product (Licence)
►  Product line (product family)

►  Horizontal product line: one product idea in several markets
►  Vertical product line: several products in one market

►  Software platform for software ecosystem
►  Enterprise landscapes (Anwendungslandschaft) with integration of many

tools

P
ro

f.
 U

.
A

ß
m

an
n

73

Softwaretechnologie II

Guidelines

►  “Go directly to the product” (Prof. Hufenbach)
■  Always consider: which unit of my work will others want to sell?
■  What can be made to a product?
■  For products, licences can be sold

■  However, it is difficult to get a software product
■  Software is often considered as a commodity, for which people do not want to pay
■  If a software technology (tool, framework, etc.) is not used, it does not immediately

create pain in the customer
■  Software is “Soft”:

■  Does not have a production cost
■  Others may be able to easily rebuild it

■  How can we nevertheless have “software products”?

P
ro

f.
 U

.
A

ß
m

an
n

74

Softwaretechnologie II

What to Sell: How SAP Earns Money

Ø  Figures of 2005 in Mrd. Euro [IX Magazine, 3/2006]
►  Products

■  Software licences 2.7 (18% growth)
■  Products incl. maintenance 5.9 (ERP 1.2, CRM 0.6, SRM 0.12)

►  Service
■  Consultancy 2.1
■  Training 0.3

►  Turnaround (Umsatz) 8.5
►  Win (Gewinn vor Steuern) 2.3
►  Win net (Gewinn nach Steuern) 1.5
►  Market size:

■  Currently targeted: 40 Mrd Euro
■  In 2010, with an extended product portfolio: 70 Mrd Euro

P
ro

f.
 U

.
A

ß
m

an
n

75

Softwaretechnologie II

Maturity Levels of Companies

►  Class 1 (work hour business): Consultancy and service and individual
projects have no income out of licenses, and do not generate a
dependency on vendor (vendor lock-in).
►  It is easy to switch them
►  They earn money by selling work hours

►  Class 2 (licensing business): Products, product lines, software platforms,
and enterprise landscapes generate license incomes
►  Ex. Kontron (embedded systems vendor) is a product and product line company,

without vendor lock-in.
►  Class 3 (vendor lock-in): Product lines, software platforms, and

enterprise landscapes generate dependencies on the vendor.
►  Vendors are hard to switch
►  Ex. SAP is class 3

P
ro

f.
 U

.
A

ß
m

an
n

Software companies are called mature, if they generate license fees or
maintain a vendor lock-in

76

Softwaretechnologie II

Software Engineers: What They May Sell
(Types of Products)

What you might sell:
►  Consultancy: sell your know-how

►  Analysis studies on a market, trend or strategy
►  Service (Requ.analysis, testing, maintenance, modernization,

reengineering)
■  Many big companies have their focus there: IBM

►  Individual projects for “individual software”
■  SD&M, Accenture, Saxonia systems, …

►  Product
►  Product line (product family)

►  Horizontal product line: one product idea in several markets
►  Vertical product line: several products in one market

►  Software platform for software ecosystem
►  Enterprise landscapes (Anwendungslandschaft) with integration of many

tools

P
ro

f.
 U

.
A

ß
m

an
n

Chapter testing, requirements
analysis, modeling, model
structuring

Chapter “design methods”

Chapter “Product lines”

Chapter “Earning money with
software“

77

Softwaretechnologie II

What Have We Learned?

►  Specifications (complete representations of what the problem is or the
system should do) consist of models (abstract representations of worlds)
■  Analysis models in the problem domain
■  System models in the system domain

►  Engineers analyze, form hypotheses, construct, validate, improve, sell
■  Detailed models are validated against their more abstract ancestors
■  Implementations are validated against specifications

■  Software companies earn money with different forms of activities.
■  Mature companies have revenues based on licensing and vendor-lock-in.
■  Product lines are important for selling

►  The course is structured along these activities

P
ro

f.
 U

.
A

ß
m

an
n

78

Softwaretechnologie II

Remark: Software and Systems Engineering

►  Software Engineering is closely related to a twin, the Systems Engineering
■  Building software into a system (embedded system)
■  Many concepts can be used in both areas.

.  See study line “Distributed Systems Engineering (DSE)”.

P
ro

f.
 U

.
A

ß
m

an
n

79

Softwaretechnologie II

The End

Ø  Why is virtual prototyping important for safety-critical systems? Explain
its steps.

Ø  Explain the aspects of the ethics of the software engineer.
Ø  Why is the profession of software engineering often so misunderstood by

society?

P
ro

f.
 U

.
A

ß
m

an
n

80

Softwaretechnologie II

Was ist ein Profi?

►  http://www.dwds.de/pages/pages_textba/selbst_out/
Selbsteinwechslung.html

Wortform: Selbsteinwechslung
►  Unten der rechte Schuh, Größe 47, den Günter Netzer im Pokalfinale 1973

nach seiner berühmten Selbsteinwechslung trug - und auch hier irrt der
Katalog, denn es ist eben nicht der Schuh, mit dem er kurz danach das
Siegtor für Borussia Mönchengladbach schoß.

►  In: o.A., Beidfüßige Lektüre, in: Frankfurter Allgemeine 24.08.2000, S. 46
►  Nach: o.A., Beidfüßige Lektüre, in: F.A.Z.-Buchkritik 2000, Frankfurt a.M.:

Frankfurter Allgemeine Zeitung GmbH 2000

P
ro

f.
 U

.
A

ß
m

an
n

https://www.youtube.com/watch?v=yPVpJlYWTlg
http://www.zehn.de/netzer-wechselt-sich-selbst-ein-2105602-2

81

Softwaretechnologie II

Fun

Ø  http://www.zehn.de/netzer-erhaelt-den-adolf-grimme-preis-2105602-9
Ø  Netzer: "Ich sag ja, Sie hören mir nie zu!" Delling: "In Ihrem Alter

merken Sie doch gar nicht mehr, ob jemand Ihnen zuhört.“

Ø  http://www.zehn.de/netzer-bezwingt-england-2105602-3

P
ro

f.
 U

.
A

ß
m

an
n

82

