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Obligatory Reading

● Jazayeri Chap 3. If you have other books, read the lecture slides carefully and do the
exercise sheets

● T. Mens. On the Use of Graph Transformations for Model Refactorings. In GTTSE 2005,
Springer, LNCS 4143

– http://www.springerlink.com/content/5742246115107431/

● F. Klar, A. Königs, A. Schürr: "Model Transformation in the Large", Proceedings of the
the 6th joint meeting of the European software engineering conference and the ACM
SIGSOFT symposium on the foundations of software engineering, New York: ACM
Press, 2007; ACM Digital Library Proceedings, 285-294. http://www.idt.mdh.se/esec-
fse-2007/

● www.fujaba.de www.moflon.org

● T. Fischer, J. Niere, L. Torunski, and A. Zündorf, 'Story Diagrams: A new Graph Rewrite
Language based on the Unified Modeling Language', in Proc. of the 6th International
Workshop on Theory and Application of Graph Transformation (TAGT), Paderborn,
Germany (G. Engels and G. Rozenberg, eds.), LNCS 1764, pp. 296--309, Springer
Verlag, November 1998. http://www.upb.de/cs/ag-
schaefer/Veroeffentlichungen/Quellen/Papers/1998/TAGT1998.pdf

(c
) 

P
ro

f.
 U

. 
A

ß
m

a
n

n

2



Softwaretechnologie II

(c
) 

P
ro

f.
 U

. 
A

ß
m

a
n

n

Model Structurings

Obligatory Literature

● View models (Wikipedia)

– http://en.wikipedia.org/wiki/View_model

● [Kruchten] Kruchten, P., Vancouver, B., C.: The 4+1 View Model of
Architecture; IEEE Software, 12 (6), Nov. 1995, IEEE, S. 42-50

– http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=469759
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Further Reading

● Reducible graphs 

– [ASU86] Alfred A. Aho, R. Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques, and
Tools. Addison-Wesley, 1986.

● Search for these keywords at

– http://scholar.google.com

– http://citeseer.ist.psu.edu

– http://portal.acm.org/guide.cfm

– http://ieeexplore.ieee.org/

– http://www.gi-ev.de/wissenschaft/digitbibl/index.html

– http://www.springer.com/computer?SGWID=1-146-0-0-0
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The Problem: How to Master Large Models in Requirements
Engineering, Design, Domain Modeling

● Large models have large graphs 

● They can be hard to understand -> models must be simplified

– By transformation

– By refactoring (behavior-preserving transformation)

– By structurings

● To this end, we apply graph analysis and rewriting

● Figures taken from Goose Reengineering Tool, analysing a Java class system
[Goose, FZI Karlsruhe]
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Typical Problems in Software Engineering

● Question: How to Treat the Models of
a big Swiss Bank?

– 25 Mio LOC

– 170 terabyte databases

● Question: How to Treat the Models of
a big Operating System?

– 25 Mio LOC

– thousands of variants

● Requirements for Modelling in Requirements and Design

– We need automatic structuring methods

– We need help in restructuring by hand...

● Motivations for structuring

– Getting better overview

– Comprehensibility

– Validatability, Verifiability(c
) 

P
ro

f.
 U

. 
A

ß
m

a
n

n

7

??



Fakultät Informatik  -  Institut Software- und Multimediatechnik  -  Softwaretechnologie – Prof. Aßmann  -  Softwaretechnologie II

4.1 Graph Transformations 
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Model and Code Transformations in General

● Model and code transformations, such as refactorings, lowerings, higherings,
optimizers, and other transformations can be specified by graph
transformations [Mens]
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(within one
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Structurings,
Refactorings
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(crossing
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Language
migration

Generation of platform-specific
models (PSM) (see chapter
MDA)

Generation of platform-specific
implementation models (PSI) 

Generation of platform-specific
implementation (code
generation)
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Idea: Structure the Software Systems With Graph Rewrite
Systems

● Graph transformations can be specified by graph rewrite systems (GRS)

– Or by a programming language, of course

● If a graph transformation only manipulate edges, it can be described with Edge
Addition Rewrite Systems (EARS)

● Otherwise, we arrive at general GRS

– Transformation of complex structures to simple ones

– Structure complex models and systems

10
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Graph Rewrite Systems

● A graph rewrite system G = (S) consists of

– A set of rewrite rules S

● A rule r = (L,R) consists of 2 graphs L and R (left and right hand side)

● Nodes of left and right hand side must be identified to each other

● L = “Mustergraphen” ; R = Ersetzungsgraph”

– An application algorithm A, that applies a  rule to the manipulated graph

● There are many of those application algorithms…

● A graph rewrite problem P = (G,Z)  consists of

– A graph rewrite system G

– A start graph Z

– One or several result graphs

– A derivation under P consists of a sequence of applications of rules (direct derivations)

● GRS offer automatic graph rewriting

– A GRS applies a set of Graph rewrite rules until nothing changes anymore (to the fixpoint, chaotic iteration)

– Problem: Termination and Uniqueness of solution not guaranteed(c
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Model Structurings

Constant Folding as Graph Rewrite Rule

Const

Plus

Const

1 2

Const
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Application of a Graph Rewrite Rule

● Match the left hand side: Look for a subgraph T of the manipulated graph: look
for a graph morphism g with g(L) = T

● Evaluate side conditions of the left hand side

● Evaluate right hand side
– Delete all nodes and edges that are no longer mentioned in R

– Allocate new nodes and edges from R, that do not occur in L

● Embedding: redirect certain edges from L to new nodes in R
– Resulting in S, the mapping of g(R)

● Evaluate side actions
– Assign attributes to nodes
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The Firing Rule of Petri Nets is a Graph Rewriting Rule

Train arrived

embarkment
Passenger on train

Passenger at station

Train arrived

embarkment
Passenger on train

Passenger at station
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The Firing Rule of Petri Nets is a Graph Rewriting Rule

Train arrived

embarkment
Passenger on train

Passenger at station

Train arrived

embarkment
Passenger on train

Passenger at station

● Tokens can be modeled as special nodes attached to places

● The application of the rewrite rule models an event
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Different Kinds of  Graph Transformation Systems

● Automatic Graph Rewriting

– Iteration of rules until termination

● Graph Reduction: Reducing a graph; rewrite system only has reductive rules

● Programmed Graph Rewriting: The rules are applied of a control flow program. This 
program guarantees termination and selects one of several solutions

– Examples: PROGRES from  Aachen/München

– Fujaba on UML class graphs, from Paderborn, Kassel  www.fujaba.de

– MOFLON from Darmstadt www.moflon.org

● Strategic Graph Rewriting:

– The rules are applied by strategies, higher-order functions and recursion strategies, such as bottom-up / top-down

● Graph grammars (Graph Recognition)

– Special variant of automatic graph rewrite systems

– Graph grammars contain in their rules and in their generated graphs special nodes, so called non-terminals

– A result graph must not have non-terminals

– In analogue to String grammars, derivations can be formed and derivation trees
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Simpler Forms of Transformation Systems: TRS and Context-
Sensitive TRS

● Term rewriting replaces terms (ordered trees)

– right and left hand sides are unordered trees or (ordered) terms

– Application: XML terms

● Ground term rewrite systems, GTRS: only ground terms in left hand sides

– A GTRS always works bottum-up on the leaves of a tree

– For GTRS there are very fast, linear algorithms

● Variable term rewrite systeme, VTRS:  terms with variables

– Replacement everywhere in the tree

● Dag rewrite systems (DAGRS)

– If  a term contains a variable twice (non-linear), it specifies a  dag

– Dag rewrite systems containt dags in left and right hand sides (non-linear term rewriting)

● Context-sensitive Term Rewriting

– e.g., remote-attribute controlled-rewriting (RACR)

– Analyse the context and rewrite trees based  on context attributes
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4.2 Programmed Graph Rewriting
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MOFLON and Fujaba 

● MOFLON and Fujaba embed graph rewrite rules into activity diagrams (aka
storyboards)

– A rule set executes as an atomic activity

– Colors express actions
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Storyboards are Procedures (Activity Diagrams) with Graph
Rewrite Rules In Activities
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MOFLON

 Works on graphs typed by metamodels, specified in MOF
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Other Software Engineering Applications

● Modeling state based systems (such as Petrinets)

● Mapping a PIM to a PSM in Model-Driven Architecture (transformational
design)

● Graph Structurings (for simplification of models)

● Refactorings (see also Course DPF)

● Semantic refinements (transformational design)

● Round-Trip Engineering (RTE)
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The End: What Have We Learned

● Graph rewrite systems are tools to transform graph-based models and graph-
based program representations

● Petrinets are simple graph rewrite systems

● Graph rewriting can be automatic, programmed, strategic, reductive,
recognizing
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04.A.1 
PROGRES, the GRS tool from the IPSEN Project

 PROGRES has been the firstl tool to model graph algorithms by graph rewriting

 Textual and graphical editing

 Code generation in several languages

 http://www-i3.informatik.rwth-aachen.de/tikiwiki/tiki-index.php?page_ref_id=213
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Type Scheme of a Graph
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