
Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - Softwaretechnologie II

4. How to Transform Models with Graph Rewriting

1) Graph Transformations

2) Programmed Graph Rewriting

Prof. Dr. U. Aßmann

Technische Universität Dresden

Institut für Software- und
Multimediatechnik

Gruppe Softwaretechnologie

http://st.inf.tu-dresden.de

Version 15-1.1, 02.01.16

1Part of ST2 and MOST

http://www.inf.tu-dresden.de/
Uwe Assmann, 04.11.2015
Noch etwas weiter eindampfen.

Softwaretechnologie II

Obligatory Reading

● Jazayeri Chap 3. If you have other books, read the lecture slides carefully and do the
exercise sheets

● T. Mens. On the Use of Graph Transformations for Model Refactorings. In GTTSE 2005,
Springer, LNCS 4143

– http://www.springerlink.com/content/5742246115107431/

● F. Klar, A. Königs, A. Schürr: "Model Transformation in the Large", Proceedings of the
the 6th joint meeting of the European software engineering conference and the ACM
SIGSOFT symposium on the foundations of software engineering, New York: ACM
Press, 2007; ACM Digital Library Proceedings, 285-294. http://www.idt.mdh.se/esec-
fse-2007/

● www.fujaba.de www.moflon.org

● T. Fischer, J. Niere, L. Torunski, and A. Zündorf, 'Story Diagrams: A new Graph Rewrite
Language based on the Unified Modeling Language', in Proc. of the 6th International
Workshop on Theory and Application of Graph Transformation (TAGT), Paderborn,
Germany (G. Engels and G. Rozenberg, eds.), LNCS 1764, pp. 296--309, Springer
Verlag, November 1998. http://www.upb.de/cs/ag-
schaefer/Veroeffentlichungen/Quellen/Papers/1998/TAGT1998.pdf

(c
)

P
ro

f.
 U

.
A

ß
m

a
n

n

2

Softwaretechnologie II

(c
)

P
ro

f.
 U

.
A

ß
m

a
n

n

Model Structurings

Obligatory Literature

● View models (Wikipedia)

– http://en.wikipedia.org/wiki/View_model

● [Kruchten] Kruchten, P., Vancouver, B., C.: The 4+1 View Model of
Architecture; IEEE Software, 12 (6), Nov. 1995, IEEE, S. 42-50

– http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=469759

Softwaretechnologie II

Further Reading

● Reducible graphs

– [ASU86] Alfred A. Aho, R. Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques, and
Tools. Addison-Wesley, 1986.

● Search for these keywords at

– http://scholar.google.com

– http://citeseer.ist.psu.edu

– http://portal.acm.org/guide.cfm

– http://ieeexplore.ieee.org/

– http://www.gi-ev.de/wissenschaft/digitbibl/index.html

– http://www.springer.com/computer?SGWID=1-146-0-0-0

4

(c
)

P
ro

f.
 U

.
A

ß
m

a
n

n

Softwaretechnologie II

(c
)

P
ro

f.
 U

.
A

ß
m

a
n

n

5

Softwaretechnologie II

The Problem: How to Master Large Models in Requirements
Engineering, Design, Domain Modeling

● Large models have large graphs

● They can be hard to understand -> models must be simplified

– By transformation

– By refactoring (behavior-preserving transformation)

– By structurings

● To this end, we apply graph analysis and rewriting

● Figures taken from Goose Reengineering Tool, analysing a Java class system
[Goose, FZI Karlsruhe]

(c
)

P
ro

f.
 U

.
A

ß
m

a
n

n

6

Softwaretechnologie II

Typical Problems in Software Engineering

● Question: How to Treat the Models of
a big Swiss Bank?

– 25 Mio LOC

– 170 terabyte databases

● Question: How to Treat the Models of
a big Operating System?

– 25 Mio LOC

– thousands of variants

● Requirements for Modelling in Requirements and Design

– We need automatic structuring methods

– We need help in restructuring by hand...

● Motivations for structuring

– Getting better overview

– Comprehensibility

– Validatability, Verifiability(c
)

P
ro

f.
 U

.
A

ß
m

a
n

n

7

??

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - Softwaretechnologie II

4.1 Graph Transformations

8

Softwaretechnologie II

Model and Code Transformations in General

● Model and code transformations, such as refactorings, lowerings, higherings,
optimizers, and other transformations can be specified by graph
transformations [Mens]

(c
)

P
ro

f.
 U

.
A

ß
m

a
n

n

9

Horizontal Vertical

Endogeneous
(within one
language)

Structurings,
Refactorings

Syntactic and semantic
refinement

Exogeneous
(crossing
languages)

Language
migration

Generation of platform-specific
models (PSM) (see chapter
MDA)

Generation of platform-specific
implementation models (PSI)

Generation of platform-specific
implementation (code
generation)

Softwaretechnologie II

Idea: Structure the Software Systems With Graph Rewrite
Systems

● Graph transformations can be specified by graph rewrite systems (GRS)

– Or by a programming language, of course

● If a graph transformation only manipulate edges, it can be described with Edge
Addition Rewrite Systems (EARS)

● Otherwise, we arrive at general GRS

– Transformation of complex structures to simple ones

– Structure complex models and systems

10

(c
)

P
ro

f.
 U

.
A

ß
m

a
n

n

Softwaretechnologie II

Graph Rewrite Systems

● A graph rewrite system G = (S) consists of

– A set of rewrite rules S

● A rule r = (L,R) consists of 2 graphs L and R (left and right hand side)

● Nodes of left and right hand side must be identified to each other

● L = “Mustergraphen” ; R = Ersetzungsgraph”

– An application algorithm A, that applies a rule to the manipulated graph

● There are many of those application algorithms…

● A graph rewrite problem P = (G,Z) consists of

– A graph rewrite system G

– A start graph Z

– One or several result graphs

– A derivation under P consists of a sequence of applications of rules (direct derivations)

● GRS offer automatic graph rewriting

– A GRS applies a set of Graph rewrite rules until nothing changes anymore (to the fixpoint, chaotic iteration)

– Problem: Termination and Uniqueness of solution not guaranteed(c
)

P
ro

f.
 U

.
A

ß
m

a
n

n

11

Softwaretechnologie II

(c
)

P
ro

f.
 U

.
A

ß
m

a
n

n

Model Structurings

Constant Folding as Graph Rewrite Rule

Const

Plus

Const

1 2

Const

3

Softwaretechnologie II

Application of a Graph Rewrite Rule

● Match the left hand side: Look for a subgraph T of the manipulated graph: look
for a graph morphism g with g(L) = T

● Evaluate side conditions of the left hand side

● Evaluate right hand side
– Delete all nodes and edges that are no longer mentioned in R

– Allocate new nodes and edges from R, that do not occur in L

● Embedding: redirect certain edges from L to new nodes in R
– Resulting in S, the mapping of g(R)

● Evaluate side actions
– Assign attributes to nodes

(c
)

P
ro

f.
 U

.
A

ß
m

a
n

n

13

L R

T=g(L) S=g(R)

g g

I

Is replaced to

rule

manipulated
Graph

Softwaretechnologie II

The Firing Rule of Petri Nets is a Graph Rewriting Rule

Train arrived

embarkment
Passenger on train

Passenger at station

Train arrived

embarkment
Passenger on train

Passenger at station

Softwaretechnologie II

The Firing Rule of Petri Nets is a Graph Rewriting Rule

Train arrived

embarkment
Passenger on train

Passenger at station

Train arrived

embarkment
Passenger on train

Passenger at station

● Tokens can be modeled as special nodes attached to places

● The application of the rewrite rule models an event

Softwaretechnologie II

Different Kinds of Graph Transformation Systems

● Automatic Graph Rewriting

– Iteration of rules until termination

● Graph Reduction: Reducing a graph; rewrite system only has reductive rules

● Programmed Graph Rewriting: The rules are applied of a control flow program. This
program guarantees termination and selects one of several solutions

– Examples: PROGRES from Aachen/München

– Fujaba on UML class graphs, from Paderborn, Kassel www.fujaba.de

– MOFLON from Darmstadt www.moflon.org

● Strategic Graph Rewriting:

– The rules are applied by strategies, higher-order functions and recursion strategies, such as bottom-up / top-down

● Graph grammars (Graph Recognition)

– Special variant of automatic graph rewrite systems

– Graph grammars contain in their rules and in their generated graphs special nodes, so called non-terminals

– A result graph must not have non-terminals

– In analogue to String grammars, derivations can be formed and derivation trees

(c
)

P
ro

f.
 U

.
A

ß
m

a
n

n

16

Softwaretechnologie II

Simpler Forms of Transformation Systems: TRS and Context-
Sensitive TRS

● Term rewriting replaces terms (ordered trees)

– right and left hand sides are unordered trees or (ordered) terms

– Application: XML terms

● Ground term rewrite systems, GTRS: only ground terms in left hand sides

– A GTRS always works bottum-up on the leaves of a tree

– For GTRS there are very fast, linear algorithms

● Variable term rewrite systeme, VTRS: terms with variables

– Replacement everywhere in the tree

● Dag rewrite systems (DAGRS)

– If a term contains a variable twice (non-linear), it specifies a dag

– Dag rewrite systems containt dags in left and right hand sides (non-linear term rewriting)

● Context-sensitive Term Rewriting

– e.g., remote-attribute controlled-rewriting (RACR)

– Analyse the context and rewrite trees based on context attributes

(c
)

P
ro

f.
 U

.
A

ß
m

a
n

n

17

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - Softwaretechnologie II

4.2 Programmed Graph Rewriting

18

Softwaretechnologie II

MOFLON and Fujaba

● MOFLON and Fujaba embed graph rewrite rules into activity diagrams (aka
storyboards)

– A rule set executes as an atomic activity

– Colors express actions

(c
)

P
ro

f.
 U

.
A

ß
m

a
n

n

19

[Moflon homepage http://www.moflon.org]
[Fujaba homepage http://www.fujaba.de]

http://www.moflon.org/
http://www.fujaba.de/

Softwaretechnologie II

Storyboards are Procedures (Activity Diagrams) with Graph
Rewrite Rules In Activities

(c
)

P
ro

f.
 U

.
A

ß
m

a
n

n

20

Softwaretechnologie II

(c
)

P
ro

f.
 U

.
A

ß
m

a
n

n

21

Softwaretechnologie II

MOFLON

 Works on graphs typed by metamodels, specified in MOF

(c
)

P
ro

f.
 U

.
A

ß
m

a
n

n

22

Softwaretechnologie II

Other Software Engineering Applications

● Modeling state based systems (such as Petrinets)

● Mapping a PIM to a PSM in Model-Driven Architecture (transformational
design)

● Graph Structurings (for simplification of models)

● Refactorings (see also Course DPF)

● Semantic refinements (transformational design)

● Round-Trip Engineering (RTE)

(c
)

P
ro

f.
 U

.
A

ß
m

a
n

n

23

Softwaretechnologie II

The End: What Have We Learned

● Graph rewrite systems are tools to transform graph-based models and graph-
based program representations

● Petrinets are simple graph rewrite systems

● Graph rewriting can be automatic, programmed, strategic, reductive,
recognizing

(c
)

P
ro

f.
 U

.
A

ß
m

a
n

n

24

Softwaretechnologie II

04.A.1
PROGRES, the GRS tool from the IPSEN Project

 PROGRES has been the firstl tool to model graph algorithms by graph rewriting

 Textual and graphical editing

 Code generation in several languages

 http://www-i3.informatik.rwth-aachen.de/tikiwiki/tiki-index.php?page_ref_id=213

(c
)

P
ro

f.
 U

.
A

ß
m

a
n

n

25

Softwaretechnologie II

(c
)

P
ro

f.
 U

.
A

ß
m

a
n

n

26

Softwaretechnologie II

(c
)

P
ro

f.
 U

.
A

ß
m

a
n

n

27

Softwaretechnologie II

(c
)

P
ro

f.
 U

.
A

ß
m

a
n

n

28

Softwaretechnologie II

Type Scheme of a Graph
(c

)
P

ro
f.

 U
.

A
ß

m
a
n

n

29

	4. How to Transform Models with Graph Rewriting
	Obligatory Reading
	Slide 3
	Further Reading
	Slide 5
	The Problem: How to Master Large Models
	Problems
	4.1 Graph Transformations
	Model and Code Transformations in General
	Idea: Structure the Software Systems With Graph Rewrite Systems
	Graph Rewrite Systems
	Slide 12
	Application of a Graph Rewrite Rule
	Slide 14
	Slide 15
	Different Kinds of Graph Transformation Systems
	Other Forms of Transformation Systems: TRS and DAGRS
	4.2 Programmed Graph Rewriting
	MOFLON and Fujaba
	Slide 20
	Slide 21
	MOFLON
	Other Software Engineering Applications
	The End: What Have We Learned
	04.A.1 PROGRES, the GRS tool from the IPSEN Project
	Slide 26
	Slide 27
	Slide 28
	Type Scheme of a Graph

