TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie — Prof. ABmann - Softwaretechnologie II

26. Data-Oriented Design Methods

1) Jackson Structured Programming (JSP)
and Jackson Structured Diagrams (JSD)
Prof. Dr. U. ABmann

Technische Universitat Dresden

Institut fur Software- und .
Multimediatechnik 3) Extensibility of JSP and Grammar-Based

http://st.inf.tu-dresden.de/teaching/swt2 Applications
Version 15-0.7, 1/12/16

2) Grammar-Driven Programming

http://st.inf.tu-dresden.de/
Uwe Assmann, 12.01.2016
Extend with AG!

Obligatory Reading

e GhezziCh.3.3,4.1-4,5.5
* PfleegerCh.4.1-44, 5

* M. Jackson. The Jackson Development Methods. Wiley Encyclopedia of Software
Engineering. J. Marciniak (ed.), 1992

- http://www.jacksonworkbench.co.uk/stevefergspages/
jackson_methods/index.html

- http://www.ferg.org%2Fpapers%2Fjackson--the_jackson_development_methods.pdf

@ (c) Prof. U. ABmann

http://www.jacksonworkbench.co.uk/stevefergspages/

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie — Prof. ABmann - Softwaretechnologie II

23.1 Jackson Structured Programming as
Data-Oriented Development with Regular Data

Data-Oriented Development

* Data-oriented development focuses first on the development of a data structure

- Path specifications with automata
- Tree specification withstring grammars or tree grammars
- Attributed tree specification with attributed grammars

- Graph specifications with graph grammars and graph transformation systems (e.g., reducible
graphs)

* Second step: Derive avisiting algorithm that works on all elements of the data
structure in a pre-defined, specified way (similar to design pattern Visitor)

* Surprising: Grammars cannot only be used to parse strings, but to specify the walk
order of a visiting algorithm!

How is the data structured?
so that the algorithm can homomorphically be derived from its
structure

@ (c) Prof. U. ABmann

Example for Data-Oriented Design: Jackson Structured
Programming JSP

 Data-oriented developing with hierarchical tree diagrams, a variant of a
function/action tree

* Thetree defines a walk order over a sequence of data elements or an event stream
from which code is generated

JSP was one of the earliest model-driven development methods (from specifications, code is
generated)

How is the data structured?
so that the algorithm can homomorphically be derived from its
structure

@ (c) Prof. U. ABmann

Jackson Structured Diagrams (Jackson Process Trees)

* AJackson Structured Diagram (JSD Jackson Process Tree) is a function free with
iteration and alternatives. Its tree constructors stem from regular expressions:

- Sequence transforms to sequenced statements
- Repetition * transforms to loops or recursion (Kleene star)

- Alternative o transforms to if- and case-instructions

produce tea
‘ Sequence
; add boilin ;
put teain pot & walit
water
Repetition

g pour spoon tea
é intopot * // regular expression
5 produceTea =
"§ (fetchGreenTea | fetchBlackTea)* AddBoilingWater Wait
m [
O Alternative
@ fetchgreentea o fetch black tea o

Example for Data-Oriented Design: Jackson Structured
Programming JSP

e Notation:

- Jackson Structured Diagrams JSD (regular actions), equivalent to regular expressions on
actions and finite state machines
* Development Process:
- Elaboration: Draw JST trees for inputs and outputs
- Transformation: Merge them
- Elaboration: List the operations and allocate to program parts
- Elaboration: Convert program to code (generate code)
- Elaboration: Add conditions
* Heuristics:
- Readahead

- Backtracking
- Program inversion if structure of input does not match output

@ (c) Prof. U. ABmann

When Should JSP Be Applied?

@ (c) Prof. U. ABmann

JSP is good for problems that are “governed” by a data structure that corresponds to a
regular expression:
- ifdata has the structure of a regular expression

- and input is homomorphic to output

- -> Algorithm becomes homomorphic to data structure

JST can describe the activity in a DFD (instead of minispecs in pseudocode)
- Then, inputis read from the input channels until end-of-stream

— Outputis produced by the JST
Table processing in information systems is a perfect application area

- COBOL isstill being used in these information systems
- DFD form the data flow
- JSPis the specification of the elementary activities

- The generated implementation is in COBOL or another imperative language

Deriving a Regular Grammar from a JSD Tree

* The generated grammar can be fed into a parser generator to produce a parser recognizing
the order of events, e.g., www.antlr.org

produce tea

put tea in pot

pour spoon tea
intopot *

add boiling
water

wait

fetch

tea o

green

fetch black tea o

@ (c) Prof. U. ABmann

<<generate>>

Grammar TeaPot {

RULES
ProduceTea ;;:= PutTealnPot

AddBoilingWater Walit .

PutTealnPot ::=
PourSpoonTealntoPot™ .

PourSpoonTealntoPot ::=
FetchGreenTea
> | FetchBlackTea

}

http://www.antlr.org/

Deriving a System of Procedures from the JSD Tree

produce tea

put tea in pot

pour spoon tea
into pot

add boiling
water

wait

fetch green
tea o

fetch black tea o

@ (c) Prof. U. ABmann

<<generate>>

>

procedure ProduceTea(] {
PutTealnPot();
AddBoiling\Water(};
Walit();

}

procedure PutTealnPot(] {

while [condition) {
PourSpoonTealntoPot();

}

rocedure PourSpoonTealntoPot(] {
if (condition)
FetchGreenTea();

else
FetchBlackTea(),

Table- and Record-Manipulation Programs in Information
Systems

* Many information systems rely on relational data processing with tables
containing records (tuples) with information about employees, insured
persons, members of networks, unemployed people, customers, etc

* Algorithms on these tables with recorrds can easily be expressed by JSP
process trees
- ,which persons earn more than 1500€ in our company? (threshold query)

- .who earns most of our Austrian employees” (max query)
- .compute the average salary of our employees*” (avg operator)

- .how much would a 5% increase of salary cost our company?“ (map-reduce operator)

#id Name FirstName Street Town Salary

12 John Silver Obergasse 2a Wien 1200€
13 Bobby Brown Traubenweg 12 Bad Tolz 600€

14 Frank Foster Blumenweg 6 Milnchen 2000€
20 Sue Smith Tulpengasse 3 Flssen 2300€
Mary Miller Heurigenweg 2 Linz 1500€

@ (c) Prof. U. ABmann
N
ol

A Table-Processing Program (Sum and Max)

e Operators Sum, Max, Min, Avg, Map, Reduce, Map-Reduce, Group-By are simple to use
 JSPwasused to generate COBOL applications in banks and insurances

e — JSPwasalso the first Big-Data approach

SumUpSalaries

Open table
Process record * Close Table
Sum =0 |
Print header _
CurrentMax = NIL Print footer
c
c
E Print ”Sal Sum +=
(rint “Galary - If (CurrentMax < -
Print Date Summary” CurrentRecord.Salary CurrentRecord.Salary) Print ,.AVf?rage
salary is “,Sum
then CurrentMax :=
CurrentRecord.Salary

Print ”Max Salary is”,
CurrentMax

@ (c) Prof.

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie — Prof. ABmann - Softwaretechnologie II

26.2 Programming with Data Structure
Grammars

Grammars can indirectly specify a Visitor for a data structure

Grammar-Driven Programming

* A context-free grammar extends a regular grammar with free recursion: left, right,
intertwined

* Likeintheregular grammar case, from the grammar similar code can be derived

- Visitors, parsers, generators Grammar TeaPot {
RULES
ProduceTea ProduceTea ::= PutTealnPot
[\ AddBoilingWater \Walit .

v v

PutTealnPot ALl

_ PutTealnPot ::= PourSpoonTealntoPot ™
Wait AddBoilingWater .

Water ~
PourSpoonTealntoPot ::=
+ FetchGreenTea | FetchBlackTea.

=l PoorSpoon i
& TealntoPot BoilWater AddBoilingWater ::=
5 BoilWater AddBoilingWater
8 y ProduceTea.
g Fetch Fetch
Sl| GreenTea o| | BlackTea o

€

@ (c) Prof. U. ABmann

Applications of Grammar-Driven Programming

EBNF is the standardized grammar language for all kind of actions based on context-free
languages

- Generation of code: parsers, generators, analyzers visitors

Parsing character streams in compilers and software tools

- Many parser generators exist

- But parsing of lists of objects is also possible

Generators of data

- Test data generators for databases, compilers, software tools, metric tools, Bl tools,...

Visitors and Analyzers for complex data structures

- Complex Big Data applications, which are non-regular

- Complex Event Recognition in event streams in cyber-physical and embedded systems

« If several cars enter a parking house simultaneously through different gates, who gets
the last free parking lot?”

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie — Prof. ABmann - Softwaretechnologie II

26.3 Extensibility of JSD- and Grammar-Based
Applications

Tree Constructors in a JSD are Open Constructs

* Anewslice (view) can be added easily to the core algorithm (aspect-based extension, see
chapter ,Aspect-oriented development”)

Su

mUpSalaries

Open table

Print header

Sum:=0
CurrentMax = NIL

Process record *

Close Table

Print Date

Print”

Summary”

Salary Sum +=

@ (c) Prof. U. ABmann

If (CurrentMax <

CurrentRecord.Salary CurrentRecord.Salary)

then CurrentMax :=
CurrentRecord.Salary

—

Print footer

Print “Average
salary is “,Sum

Print ”Max Salary is”,
CurrentMax

Tree Constructors in a JSD are Open Constructs

* Anewslice (view) can be added easily to the core algorithm (aspect-based extension, see
chapter ,Aspect-oriented development”)

SumUpSalaries

Open table

Print header

Sum:=0
CurrentMax = NIL

Process record *

L

Close Table

—

Print footer

Print Date

Print ”Salary Sum +=
Summary”

@ (c) Prof. U. ABmann

CurrentRecord.Salary

If (CurrentMax <

CurrentMin:=0

then CurrentMax :=

CurrentRecord.Salary)

CurrentRecord.Salary

PriIt “Average
salary is “,Sum

Print ”Max Salary is”,

CurrentMax

If (CurrentMin >
CurrentRecord.Salary)
then CurrentMin :=

Print ”Min Salary is”,
CurrentMin

CurrentRecord.Salary

Further Data-Driven Design Methods

* Grammars:
- Attribute grammars define more complex languages (— course MOST)

* Structure function spaces according to a hierarchic data structure

- Graph grammars describe the structure of graphs
* Room generationin MOOD games

* Test data generation for graphs

* Map-Reduce based ,Big Data“ Processing

- Modern Map-Reduce frameworks such as Hadoop (Apache) offer distributed processing of
data with many operators

@ (c) Prof. U. ABmann

The End

* Why is table and record processing important? Describe how the operators max,
min, avg, sum are used on the records of a table.

* Give an example for a DFD in which the activities are specified by JSD.

* Why will COBOL never die? (unfortunately)

* Compare the structure of a JST with its generated implementation in an imperative
language.

* Do the same for a generated grammar.

@ (c) Prof. U. ABmann

	Cost Estimation for Projects
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Jackson Structure Diagram
	Jackson Structured Programming JSP
	JSP
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

