
Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - Softwaretechnologie II

26. Data-Oriented Design Methods

1) Jackson Structured Programming (JSP)
and Jackson Structured Diagrams (JSD)

2) Grammar-Driven Programming

3) Extensibility of JSP and Grammar-Based
Applications

Prof. Dr. U. Aßmann
Technische Universität Dresden
Institut für Software- und
Multimediatechnik
http://st.inf.tu-dresden.de/teaching/swt2
Version 15-0.7, 1/12/16

http://st.inf.tu-dresden.de/
Uwe Assmann, 12.01.2016
Extend with AG!

Softwaretechnologie II

(c
)

P
ro

f.
 U

.
A

ß
m

a
n

n

Model Structurings

Obligatory Reading

● Ghezzi Ch. 3.3, 4.1-4, 5.5

● Pfleeger Ch. 4.1-4.4, 5

● M. Jackson. The Jackson Development Methods. Wiley Encyclopedia of Software
Engineering. J. Marciniak (ed.), 1992

– http://www.jacksonworkbench.co.uk/stevefergspages/
jackson_methods/index.html

– http://www.ferg.org%2Fpapers%2Fjackson--the_jackson_development_methods.pdf

http://www.jacksonworkbench.co.uk/stevefergspages/

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - Softwaretechnologie II

23.1 Jackson Structured Programming as
Data-Oriented Development with Regular Data

Softwaretechnologie II

(c
)

P
ro

f.
 U

.
A

ß
m

a
n

n

Model Structurings

Data-Oriented Development

● Data-oriented development focuses first on the development of a data structure

– Path specifications with automata

– Tree specification withstring grammars or tree grammars

– Attributed tree specification with attributed grammars

– Graph specifications with graph grammars and graph transformation systems (e.g., reducible
graphs)

● Second step: Derive a visiting algorithm that works on all elements of the data
structure in a pre-defined, specified way (similar to design pattern Visitor)

● Surprising: Grammars cannot only be used to parse strings, but to specify the walk
order of a visiting algorithm!

How is the data structured?
so that the algorithm can homomorphically be derived from its

structure

How is the data structured?
so that the algorithm can homomorphically be derived from its

structure

Softwaretechnologie II

(c
)

P
ro

f.
 U

.
A

ß
m

a
n

n

Model Structurings

Example for Data-Oriented Design: Jackson Structured
Programming JSP

● Data-oriented developing with hierarchical tree diagrams, a variant of a
function/action tree

● The tree defines a walk order over a sequence of data elements or an event stream
from which code is generated

– JSP was one of the earliest model-driven development methods (from specifications, code is
generated)

How is the data structured?
so that the algorithm can homomorphically be derived from its

structure

How is the data structured?
so that the algorithm can homomorphically be derived from its

structure

Softwaretechnologie II

(c
)

P
ro

f.
 U

.
A

ß
m

a
n

n

Model Structurings

Jackson Structured Diagrams (Jackson Process Trees)

produce tea

put tea in pot
add boiling
water

wait

pour spoon tea
into pot *

fetch green tea o fetch black tea o

Repetition

Alternative

Sequence

● A Jackson Structured Diagram (JSD Jackson Process Tree) is a function free with
iteration and alternatives. Its tree constructors stem from regular expressions:

– Sequence transforms to sequenced statements

– Repetition * transforms to loops or recursion (Kleene star)

– Alternative o transforms to if- and case-instructions

// regular expression
produceTea =
(fetchGreenTea | fetchBlackTea)* AddBoilingWater Wait

// regular expression
produceTea =
(fetchGreenTea | fetchBlackTea)* AddBoilingWater Wait

Softwaretechnologie II

(c
)

P
ro

f.
 U

.
A

ß
m

a
n

n

Model Structurings

Example for Data-Oriented Design: Jackson Structured
Programming JSP

● Notation:

– Jackson Structured Diagrams JSD (regular actions), equivalent to regular expressions on
actions and finite state machines

● Development Process:
– Elaboration: Draw JST trees for inputs and outputs

– Transformation: Merge them
– Elaboration: List the operations and allocate to program parts

– Elaboration: Convert program to code (generate code)

– Elaboration: Add conditions

● Heuristics:
– Readahead
– Backtracking

– Program inversion if structure of input does not match output

Softwaretechnologie II

(c
)

P
ro

f.
 U

.
A

ß
m

a
n

n

Model Structurings

When Should JSP Be Applied?

● JSP is good for problems that are “governed” by a data structure that corresponds to a
regular expression:

– if data has the structure of a regular expression

– and input is homomorphic to output

– -> Algorithm becomes homomorphic to data structure

● JST can describe the activity in a DFD (instead of minispecs in pseudocode)

– Then, input is read from the input channels until end-of-stream

– Output is produced by the JST

● Table processing in information systems is a perfect application area

– COBOL is still being used in these information systems

– DFD form the data flow

– JSP is the specification of the elementary activities

– The generated implementation is in COBOL or another imperative language

Softwaretechnologie II

(c
)

P
ro

f.
 U

.
A

ß
m

a
n

n

Model Structurings

Grammar TeaPot {
RULES
ProduceTea ::= PutTeaInPot
 AddBoilingWater Wait .

PutTeaInPot ::=
 PourSpoonTeaIntoPot* .

PourSpoonTeaIntoPot ::=
 FetchGreenTea
 | FetchBlackTea
 .
}

Grammar TeaPot {
RULES
ProduceTea ::= PutTeaInPot
 AddBoilingWater Wait .

PutTeaInPot ::=
 PourSpoonTeaIntoPot* .

PourSpoonTeaIntoPot ::=
 FetchGreenTea
 | FetchBlackTea
 .
}

Deriving a Regular Grammar from a JSD Tree

● The generated grammar can be fed into a parser generator to produce a parser recognizing
the order of events, e.g., www.antlr.org

produce tea

put tea in pot
add boiling
water

wait

pour spoon tea
into pot *

fetch green
 tea o

fetch black tea o

<<generate>>

http://www.antlr.org/

Softwaretechnologie II

(c
)

P
ro

f.
 U

.
A

ß
m

a
n

n

Model Structurings

procedure ProduceTea() {
 PutTeaInPot();
 AddBoilingWater();
 Wait();
}
procedure PutTeaInPot() {
 while (condition) {
 PourSpoonTeaIntoPot();
}
procedure PourSpoonTeaIntoPot() {
 if (condition)
 FetchGreenTea();
 else
 FetchBlackTea(),
}

procedure ProduceTea() {
 PutTeaInPot();
 AddBoilingWater();
 Wait();
}
procedure PutTeaInPot() {
 while (condition) {
 PourSpoonTeaIntoPot();
}
procedure PourSpoonTeaIntoPot() {
 if (condition)
 FetchGreenTea();
 else
 FetchBlackTea(),
}

Deriving a System of Procedures from the JSD Tree

produce tea

put tea in pot
add boiling
water

wait

pour spoon tea
into pot *

fetch green
 tea o

fetch black tea o

<<generate>>

Softwaretechnologie II

(c
)

P
ro

f.
 U

.
A

ß
m

a
n

n

Model Structurings

Table- and Record-Manipulation Programs in Information
Systems

● Many information systems rely on relational data processing with tables
containing records (tuples) with information about employees, insured
persons, members of networks, unemployed people, customers, etc

● Algorithms on these tables with recorrds can easily be expressed by JSP
process trees

– „which persons earn more than 1500€ in our company? (threshold query)

– „who earns most of our Austrian employees“ (max query)

– „compute the average salary of our employees“ (avg operator)

– „how much would a 5% increase of salary cost our company?“ (map-reduce operator)

#id Name FirstName Street Town Salary

12 John Silver Obergasse 2a Wien 1200€

13 Bobby Brown Traubenweg 12 Bad Tölz 600€

14 Frank Foster Blumenweg 6 München 2000€

20 Sue Smith Tulpengasse 3 Füssen 2300€

25 Mary Miller Heurigenweg 2 Linz 1500€

Softwaretechnologie II

(c
)

P
ro

f.
 U

.
A

ß
m

a
n

n

Model Structurings

SumUpSalaries

Open table
Process record *

Print header

Print Date
Print ”Salary
Summary”

Sum := 0
CurrentMax = NIL

Close Table

A Table-Processing Program (Sum and Max)

Sum +=
CurrentRecord.Salary

If (CurrentMax <
CurrentRecord.Salary)
then CurrentMax :=
 CurrentRecord.Salary

Print footer

Print “Average
salary is “,Sum

Print ”Max Salary is”,
CurrentMax

● Operators Sum, Max, Min, Avg, Map, Reduce, Map-Reduce, Group-By are simple to use

● JSP was used to generate COBOL applications in banks and insurances

● → JSP was also the first Big-Data approach

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - Softwaretechnologie II

26.2 Programming with Data Structure
Grammars

Grammars can indirectly specify a Visitor for a data structureGrammars can indirectly specify a Visitor for a data structure

Softwaretechnologie II

(c
)

P
ro

f.
 U

.
A

ß
m

a
n

n

Model Structurings

Grammar-Driven Programming

● A context-free grammar extends a regular grammar with free recursion: left, right,
intertwined

● Like in the regular grammar case, from the grammar similar code can be derived

– Visitors, parsers, generators
Grammar TeaPot {
RULES
ProduceTea ::= PutTeaInPot
 AddBoilingWater Wait .

PutTeaInPot ::= PourSpoonTeaIntoPot*
 AddBoilingWater .

PourSpoonTeaIntoPot ::=
 FetchGreenTea | FetchBlackTea.

AddBoilingWater ::=
 BoilWater AddBoilingWater
 ProduceTea.
}

Grammar TeaPot {
RULES
ProduceTea ::= PutTeaInPot
 AddBoilingWater Wait .

PutTeaInPot ::= PourSpoonTeaIntoPot*
 AddBoilingWater .

PourSpoonTeaIntoPot ::=
 FetchGreenTea | FetchBlackTea.

AddBoilingWater ::=
 BoilWater AddBoilingWater
 ProduceTea.
}

ProduceTea

PutTeaInPot
AddBoiling

Water
Wait

PoorSpoon
TeaIntoPot

Fetch
GreenTea o

Fetch
BlackTea o

BoilWater

Softwaretechnologie II

(c
)

P
ro

f.
 U

.
A

ß
m

a
n

n

Model Structurings

Applications of Grammar-Driven Programming

● EBNF is the standardized grammar language for all kind of actions based on context-free
languages

– Generation of code: parsers, generators, analyzers visitors

● Parsing character streams in compilers and software tools

– Many parser generators exist

– But parsing of lists of objects is also possible

● Generators of data

– Test data generators for databases, compilers, software tools, metric tools, BI tools,...

● Visitors and Analyzers for complex data structures

– Complex Big Data applications, which are non-regular

– Complex Event Recognition in event streams in cyber-physical and embedded systems

● „If several cars enter a parking house simultaneously through different gates, who gets
the last free parking lot?“

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - Softwaretechnologie II

26.3 Extensibility of JSD- and Grammar-Based
Applications

Softwaretechnologie II

(c
)

P
ro

f.
 U

.
A

ß
m

a
n

n

Model Structurings

Tree Constructors in a JSD are Open Constructs

● A new slice (view) can be added easily to the core algorithm (aspect-based extension, see
chapter „Aspect-oriented development“)

SumUpSalaries

Open table
Process record *

Print header

Print Date
Print ”Salary
Summary”

Sum := 0
CurrentMax = NIL

Close Table

Sum +=
CurrentRecord.Salary

If (CurrentMax <
CurrentRecord.Salary)
then CurrentMax :=
 CurrentRecord.Salary

Print footer

Print “Average
salary is “,Sum

Print ”Max Salary is”,
CurrentMax

Softwaretechnologie II

(c
)

P
ro

f.
 U

.
A

ß
m

a
n

n

Model Structurings

Tree Constructors in a JSD are Open Constructs

● A new slice (view) can be added easily to the core algorithm (aspect-based extension, see
chapter „Aspect-oriented development“)

SumUpSalaries

Open table
Process record *

Print header

Print Date
Print ”Salary
Summary”

Sum := 0
CurrentMax = NIL

Close Table

Sum +=
CurrentRecord.Salary

If (CurrentMax <
CurrentRecord.Salary)
then CurrentMax :=
 CurrentRecord.Salary

Print footer

Print “Average
salary is “,Sum

Print ”Max Salary is”,
CurrentMax

CurrentMin := 0

If (CurrentMin >
 CurrentRecord.Salary)
then CurrentMin :=
 CurrentRecord.Salary

Print ”Min Salary is”,
CurrentMin

Softwaretechnologie II

(c
)

P
ro

f.
 U

.
A

ß
m

a
n

n

Model Structurings

Further Data-Driven Design Methods

● Grammars:

– Attribute grammars define more complex languages (→ course MOST)

● Structure function spaces according to a hierarchic data structure

– Graph grammars describe the structure of graphs

● Room generation in MOOD games

● Test data generation for graphs

● Map-Reduce based „Big Data“ Processing

– Modern Map-Reduce frameworks such as Hadoop (Apache) offer distributed processing of
data with many operators

Softwaretechnologie II

(c
)

P
ro

f.
 U

.
A

ß
m

a
n

n

Model Structurings

The End

● Why is table and record processing important? Describe how the operators max,
min, avg, sum are used on the records of a table.

● Give an example for a DFD in which the activities are specified by JSD.

● Why will COBOL never die? (unfortunately)

● Compare the structure of a JST with its generated implementation in an imperative
language.

● Do the same for a generated grammar.

	Cost Estimation for Projects
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Jackson Structure Diagram
	Jackson Structured Programming JSP
	JSP
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

