
Design Patterns and Frameworks, © Prof. Uwe Aßmann

1

11. Design Patterns as
Role Models

Prof. Dr. U. Aßmann

Chair for Software
Engineering

Faculty of Informatics

Dresden University of
Technology

WS 16/17 - Dec 1, 2016

Lecturer: Dr. Sebastian Götz

1) Design Patterns as Role
Models

2) Composition of Design
Patterns with Role Models

3) Effects of Role Modeling in
Frameworks

4) Optimization of Design
Patterns

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

2

Literature (To Be Read)

► D. Riehle, T. Gross. Role Model Based Framework Design and
Integration. Proc. 1998 Conf. On Object-oriented Programing
Systems, Languages, and Applications (OOPSLA 98) ACM
Press, 1998. http://citeseer.ist.psu.edu/riehle98role.html

► Dirk Riehle. Bureaucracy. In Robert Martin, Dirk Riehle, and
Frank Buschmann, editors, Pattern Languages of Program
Design 3, pages 163-185. Addison Wesley, 1998.

– http://dirkriehle.com/computer-
science/research/1996/europlop-1996-bureaucracy.pdf

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

3

Remark

► Many role models and figures have been taken from:

Dirk Riehle: A Role-Based Design Pattern Catalog of
Atomic and Composite Patterns Structured by Pattern
Purpose. In: Ubilab Technical Report 97-1-1

► http://dirkriehle.com/computer-science/research/1997/ubilab-tr-
1997-1-1.pdf

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

4

Goal

► Understand design patterns as role models
► Understand application of design patterns as merging role

models into class models
► Understand composite design patterns

– Understand how to mine composite design patterns

► Understand layered frameworks as role models
► Understand how to optimize layered frameworks and design

patterns

Design Patterns and Frameworks, © Prof. Uwe Aßmann

5

11.1 Design Patterns as
Role Models

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

6

Design Patterns have Role Models

► Observer role model

► Event Notification role model

SubjectObserver

SubjectObserver

EventPortStateChange

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

7

Participants of Patterns form Role Models

► The “participant” section of a GOF pattern is a role model

Handler

Tail

PredecessorSuccessor

HandlerClient

TailClient

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

8

Role Model of Composite

► Root role is not in the GOF pattern description

Node

Root

ChildParent

NodeClient

RootClient

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

9

Composing Role Models

► Overlaying the Composite with the Observer role model by role
equivalence

Node
(Composite)

Root
(Composite)

Child
(Composite)

Parent
(Composite)

Client
(Composite)

RootClient
(Composite)

Subject
(Observer)

Observer
(Observer)

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

10

Core Role Diagrams of Several Patterns

► Many of them are quite similar

Colleague

ObserverSubject

Mediator

AdapteeAdapter

DecoratorComponent

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

11

Adjustments to Riehle's Notation

► Riehle used special relationships between roles

► We do not use these!
► Roles have no identity and, hence, cannot aggregate
► Riehle used role aggregation to express the need to introduce

an aggregation between the classes the roles are mapped to.

Design Patterns and Frameworks, © Prof. Uwe Aßmann

12

11.2 Composite Design Patterns
with Role Model Composition

.. how to create bigger design patterns as
composed role models..

Design Patterns and Frameworks, © Prof. Uwe Aßmann

13

11.2.1 Bureaucracy

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

14

Example: Bureaucracy

► A pattern to model organizations that have a tree-like structure
(as opposed to matrix organizations)

– Composed of the role models:
Composite, Mediator, Chain of Responsibility and Observer

Clerk

Director

SubordinateManager

ClerkClient

DirectorClient

Composite,
Chain of
Responsibility

Observer,
Mediator

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

15

Example: Bureaucracy

► The Composite defines the organizational hierarchy of
managers

► The Mediator is used to let colleagues talk to their siblings
via a parent (mediator role)

► The Chain handles requests of clients
– Every node may handle requests
– If a node cannot handle a request, it is passed up in the

hierarchy (on the path to the root)

► The Observer is used to listen to actions of a subordinate node
– If a subordinate node (subject) changes something, its

manager (observer) is notified

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

16

Bureaucracy Applied to Figure Example

Node
(Composite)

Root
(Composite)

Child
(Composite)

Parent
(Composite)

Client
(Composite)

RootClient
(Composite)

Colleague
(Mediator)

Observer
(Observer)

Subject
(Observer)

Mediator
(Mediator)

Handler
(Chain)

Tail
(Chain)

Predecessor
(Chain)

Sucessor
(Chain)

HandlerClient
(Chain)

TailClient
(Chain)

DrawingEditor FigureItem

Group Circle

FigureWindow

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

17

Application of Bureaucracy

► For all hierarchies
– Figures in graphic and interactive applications
– Widgets in GUIs
– Documents in office systems
– Piece lists in production management and CAD systems
– Hierarchical tools in TAM (see later)
– Modeling organizations in domain models: companies,

governments, clubs

Design Patterns and Frameworks, © Prof. Uwe Aßmann

18

11.2.2 Model-View-Controller
(MVC)

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

19

Role Model of MVC

► MVC originates from Trygve Reenskaug and Adele Goldberg
► MVC role model can be composed from the role models of

Observer and Strategy
– Views and Controllers observe the model
– Controllers can be varied (Strategy)
– Extension with Composite Pattern for views possibles

View Controller

Model

ViewClient

ModelClient

Observer 2Observer 1

Strategy

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

20

Role-Class Model of MVC

Component
(Composite)

Root
(Composite)

Child
(Composite)

Parent
(Composite)

Client
(Composite)

RootClient
(Composite)

Strategy
(Strategy)

Observer
(Observer)

subject

Controller ViewModel

observers

LeafViewComposed
View

Root
View

Subject
(Observer)

Client
(Strategy)

► MVC originates from Trygve Reenskaug and Adele Goldberg
► MVC role model can be composed from the role models of

Observer, Strategy, Composite

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

21

This Closes a Big Loop

► Remember, Reenskaug developed MVC 1978 with Goldberg,
while working on Smalltalk-78 port for Norway

► Starting from his MVC pattern, Reenskaug has worke on role-
based design

► 1998, Riehle/Gross transferred role-based models to design
patterns

► Today, MVC can be explained as composed role model of other
design patterns

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

22

Riehle-Gross Law On Composite Design
Patterns

► Consequences
– Complex patterns can be easily split into simpler ones

(decomposition)
– Variants of patterns can more easily be related to each other

(variability of patterns)
● e.g., ClassAdapter and ObjectAdapter

– Template&Hook conceptual pattern can be explained as role
model (see next chapter)

The role model of a composite design patterns is composed of the
role models of their component design patterns

The role model of a composite design patterns is composed of the
role models of their component design patterns

Design Patterns and Frameworks, © Prof. Uwe Aßmann

23

11.2.3 Composition of Simple
Variability Patterns

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

24

Warning

► The following is an attempt to build up the basic GOF patterns
from simple role models based on the findings by Riehle and
colleagues

► The compositions of patterns depend on the concrete form of
their role models

► It explains why Strategy is different from Bridge and
TemplateClass, etc.

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

25

Derived Method

► In a class,
– A kernel method

implements the feature
directly on the attributes of
the class, calling no other
method

– A derived method is
implemented by calling only
kernel methods

► Caller and callee role have to
be bound to the same class
(as the purpose is to have
class-internal method calls)

CalleeCaller

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

26

Derived Method and TemplateMethod

► TemplateMethod is a
DerivedMethod that has

– an additional
Template/HookMethod role
model

– Inheritance hierarchy on
right side (implied by role-
class inheritance
constraint)

– The template role implies
no hierarchy on left side

CalleeCaller

CalleeCaller

HookTemplate

TemplateMethod

CalleeDescendant

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

27

Objectifier and Strategy

► Objectifier has
– A prohibition constraint on

Caller and Callee (instead
of equivalence)

– No template role

► Strategy is an Objectifier with
– Client role
– Algorithm role
– Hierarchy on right side
– No template role

CalleeCaller

Objectifier

Descendant

CalleeCaller

AlgorithmClient
Strategy

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

28

TemplateClass

► TemplateClass is an
Objectifier with

– An additional Template/
HookMethod role model

– TemplateMethod role
implies no hierarchy
on left side

– HookMethod role implies
inheritance hierarchy on
right side

– No client or algorithm role,
otherwise like Strategy

CalledCaller

CalleeDescendant

HookMTemplateM

TemplateClass

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

29

DimensionalClassHierarchies

► DimensionalClassHierarchies
is a TemplateClass

– With left hierarchy
constraint

CalledCaller

CalleeDescendantCallerDescendant

HookMTemplateM

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

30

Bridge

► Bridge is a
DimensionalHierarchies with

– Abstraction/Implementation
roles instead of T&H

– No template/hook role CalledCaller

CalleeDescendant

ImplementationAbstraction

CallerDescendant

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

31

Creational Patterns

► Add more roles with
semantics about creation

► E.g., FactoryMethod is a
TemplateMethod with a
creational role model

CalleeCaller

HookMTemplateM

FactoryMethod

CalleeDescendant

Constructor

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

32

Remember: Relation TemplateMethod,
TemplateClass, Strategy, Observer

TemplateMethod TemplateClass

Strategy

Dimensional
ClassHierarchies

Bridge

T&H Metapatterns

Objectifier

concretizing concretizingabstracting

More specific patterns (with more intent, more pragmatics, specific role denotations)

Framework Patterns (with TemplateM/HookM role model)

Design Patterns and Frameworks, © Prof. Uwe Aßmann

33

11.2.5 Consequences of the
Riehle/Gross Law

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

34

Relations between Patterns
[Zimmer, PLOP 1]

Prototype

Observer
Abstract Factory

Builder Strategy Layers

ChainOf
Responsibility

Visitor

Iterator

Command

Bridge

SingletonTemplate
Method

Objectifier

AdapterMediator Decorator

Composite

Memento

Proxy

Flyweight

Data patternsBasic patterns

Facade

Creation patterns Coupling patterns Control flow patterns
Interpreter

FactoryMethod

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

35

Vision for Pattern-Based Design

► With different role models, the fine semantic differences
between several patterns can be expressed syntactically

– A role model can capture intent (pragmatics) of a pattern
– While patterns can have the same structure, the intent may be

different
– It is possible to distinguish a Strategy, TemplateClass, a Bridge

or DimensionalClassHierarchy

► This makes designs more explicit, precise, and formal
► Prerequisite: role types have to be formally specified (which is

current research)

Strategy TemplateClass=!=

Design Patterns and Frameworks, © Prof. Uwe Aßmann

36

11.3 Effects of Role-Based Design
Patterns on Frameworks and
Applications

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

37

Role Models and Facet/Layered
Frameworks

► Remember: An n-Bridge framework maintains roles (role models) in
every facet (because a facet model is based on a class-role model)

► Similar for Chain-Bridges and layered frameworks

First dimension

Second dimension

Third dimension

Core dimension: Abstraction Framework
Reuse

0

Reuse
0&1

Reuse
0-2

Reuse
0-3

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

38

Reuse
0

Reuse
0&1

Reuse
0-3

Merging dimensions of Facet/Layered
Frameworks

► If the dimensions are seen as role models, it can be chosen to
merge them, i.e., the role models

► Here: merge second and third dimension into one physical
implementation

First dimension

Second dimension

Third dimension

Core dimension: Abstraction Framework

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

39

Role Models and Layered Frameworks

► Similar for Chain-Bridges and layered frameworks

First layer

Second layer

Third layer

Core layer: Abstraction Framework
Reuse

0

Reuse
0&1

Reuse
0-2

Reuse
0-3

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

40

Merging Dimensions/Layers of
Dimensional/Layered Frameworks

► When two layers are merged, the variability of a framework
decreases

► But its applications are more efficient:
– Less delegations (less bridges)
– Less allocations (less physical objects)
– Less runtime flexibility (less dynamic variation)

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

41

MVC as Multi-Bridge Framework

► The roles of MVC can be ordered in a n-Bridge framework

First dimension: Views

Second dimension: Controller

Third dimension: Model

Core dimension: Application
Reuse

0

Reuse
0&1

Reuse
0-2

Reuse
0-3

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

42

Reuse
0

Reuse
0&1

Reuse
0-3

MVC as Optimized Multi-Bridge
Framework

► Model and Controller layer can be merged
► Less variability, but also less runtime objects

View

Controller

Model

Core dimension: Application

Design Patterns and Frameworks, © Prof. Uwe Aßmann

43

11.4 Optimization of Design
Patterns with Role Models

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

44

Optimization for Design Patterns

► Effect:
– Less variability
– Less runtime objects
– Less delegations

Whenever you need a variant of a design pattern that is more efficient,
investigate its role model and try to merge the classes of the roles

Whenever you need a variant of a design pattern that is more efficient,
investigate its role model and try to merge the classes of the roles

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

45

Original Role-Class Model of MVC

Component
(Composite)

Root
(Composite)

Child
(Composite)

Parent
(Composite)

Client
(Composite)

RootClient
(Composite)

Strategy
(Strategy)

Observer
(Observer)

subject

Controller ViewModel

observers

LeafViewComposed
View

Root
View

Subject
(Observer)

Client
(Strategy)

► Separate classes for almost each role

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

46

Optimized Role-Class Model of MVC

Component
(Composite)

Root
(Composite)

Child
(Composite)

Parent
(Composite)

Client
(Composite)

RootClient
(Composite)

HookM
(TM)

Observer
(Observer)

ViewModel & Controller

LeafViewComposed
View

Root
View

Subject
(Observer)

TemplateM
(TM)

► Merging model and controller class leads to less delegations (i.e., a
performance improvement)

► Strategy pattern is to be exchanged with TemplateMethod pattern

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

47

The End: Summary

► Roles are important for design patterns
– If a design pattern occurs in an application, some class of the

application plays the role of a class in the pattern

► Role mapping is the process of allocating roles to concrete
implementation classes

► Hence, role mapping decides how the classes of the design
pattern are allocated to implementation classes (and this can be
quite different)

► Composite design patterns are based on role model
composition

► Layered frameworks and design patterns can be optimized by
role merging

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47

