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1) Running Example

2) The Role-object Pattern

3) Object Schizophrenia

4) Delegation vs. Forwarding

5) Role types formally



D
r.

 S
eb

as
tia

n
 G

öt
z,

 D
e

si
g n

 P
a

tte
rn

s 
an

d 
F

ra
m

ew
or

k s

2

Goals

► Understand how roles can be implemented in current 
mainstream object-oriented languages (e.g., Java)

■ Role-Object Pattern

► Understand the problem of object-oriented compared to 
role-oriented programming

■ Object Schizophrenia

► Understand the problem of identity and state
■ Delegation versus Forwarding

► Know how role types can be formally distinguished from 
natural types (i.e., classes in OOP)
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11.1 Running Example 

A Dialog asking a User for its 
EMail-Address
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A Dialog Requesting an Email-Address

Provide EMail-Address

Please provide your Email-Address:

sebastian.goetz@acm.org

OKCancel

► User shall provide his Email-Address
► Application want's to ensure that the provided address is 

valid (Pattern: a@b.c) 
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A Dialog Requesting an Email-Address

Provide EMail-Address

Please provide your Email-Address:

test

OKCancel

► User shall provide his Email-Address
► Application want's to ensure that the provided address is 

valid (Pattern: a@b.c) 
► Application want's to visualize invalid Email-Addresses
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11.2 Role-object Pattern (ROP)

Delegation-based Realization of 
Roles in Object-oriented Languages

Slides based on:
Dirk Bäumer, Dirk Riehle, Wolf Siberski, and Martina Wulf: Role Object Pattern. 
In: Pattern languages of program design (PLoP) 4, pp. 15-32
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Purpose of Role-Object Pattern

► Transparently adapting objects to client context
► Management of role playership, where roles are 

represented as individual objects

addressField: 
TextFieldChild

root : Dialog

Parent



D
r.

 S
eb

as
tia

n
 G

öt
z,

 D
e

si
g n

 P
a

tte
rn

s 
an

d 
F

ra
m

ew
or

k s

8

Purpose of Role-Object Pattern

► Transparently adapting objects to client context
► Management of role playership, where roles are 

represented as individual objects

addressField: 
TextFieldChild DataSource

root : Dialog

Parent

formProcessor : 
Validator DataSink
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Purpose of Role-Object Pattern

► Transparently adapting objects to client context
► Management of role playership, where roles are 

represented as individual objects

description: 
TextAreaChild DataSource

root : Dialog

Parent

formProcessor : 
Validator DataSink

2nd Client = 
2nd Context =
Validation

1st Client = 1st Context = Drawing
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Structure of Role-Object Pattern

Dirk Bäumer, Dirk Riehle, Wolf Siberski, and Martina Wulf: Role Object Pattern. 
In: Pattern languages of program design (PLoP) 4, pp. 15-32
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Running Example: Email Checking

TextFieldCore

Child DataSource

TextFieldRole

TextField

Parent DataSink
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Running Example: Email Checking

description: 
TextFieldCore

descriptionChild: 
Child

addRole(descriptionChild);
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Running Example: Email Checking

description: 
TextFieldCore

descriptionChild: 
Child

addRole(descriptionDS);

descriptionDS: 
DataSource
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Running Example: Email Checking

description: 
TextAreaCore

removeRole(descriptionChild);

descriptionDS: 
DataSource
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Running Example: Email Checking

description: 
TextAreaCore

descriptionChild: 
Child

descriptionDS: 
DataSource

drawer 
: Parent

validator 
: DataSink
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11.3 Object Schizophrenia

The Problem of Split Objects
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The problem of split objects

► Object schizophrenia covers the problems, which arise 
from splitting a conceptual object into multiple parts.

TextField

DataSourceChild

TextField

DataSourceChild

TextField

text : String
parent : Parent

TextField

text : String

Child

parent : Parent

DataSource

text : String
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The problem of split objects

► Object schizophrenia covers the problems, which arise 
from splitting a conceptual object into multiple parts.

► Question for identity depends on which object is asked.
“Who are you?”

■ User: “I'm a TextField.”
■ Drawer: “I'm the child of this parent.”
■ Validator: “I'm a data source for you.”

TextField

DataSourceChild
User

Drawer Validator
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The problem of split objects

► Object schizophrenia covers the problems, which arise 
from splitting a conceptual object into multiple parts.

► Who manages the state of the compound object?
■ The text of the field is required for both roles
■ The size of the field is specific to the drawing task
■ The color of the text crosscuts both roles (drawing + validation)

► When should a role delegate to the player and when should a 
player delegate to its roles?

TextField

DataSourceChild
User

Drawer Validator
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The ROP and Object Schizophrenia

► Clients always have to “ask” the core object
► The core object delegates the call to the respective role
► The core object represents the identity 
► But, all of this has to be implemented manually!

■ Role management code
- AddRole, RemoveRole, Operation

■ Code for reflection
- HasRole, GetRole

► Roles need to be implemented aware of their core
■ Delegation to core object for every method call, as it could 

be overridden by another role object, which is currently 
being played.
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11.4 Delegation vs. Forwarding

The meaning of this
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Delegation vs. Forwarding

► What does this or self actually mean?

ClassA ClassB

m1()
m2()

m1()
m2()

class B {
  A a;
  m1() { a.m1(); }
  m2() { print(“B”); }
}

a

class A {
  m1() { this.m2(); }
  m2() { print(“A”); }
}

a = new A();
b = new B(a);

b.m1();
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Delegation

► What does this or self actually mean?

► Delegation Semantics:
this bound to delegatee
(i.e., object “a”) 

ClassA ClassB

m1()
m2()

m1()
m2()

class B {
  A a;
  m1() { a.m1(); }
  m2() { print(“B”); }
}

a

class A {
  m1() { this.m2(); }
  m2() { print(“A”); }
}

a = new A();
b = new B(a);

b.m1();
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Forwarding

► What does this or self actually mean?

► Forwarding Semantics:
no delegation of this
(i.e., this = b)

ClassA ClassB

m1()
m2()

m1()
m2()

class B {
  A a;
  m1() { a.m1(); }
  m2() { print(“B”); }
}

a

class A {
  m1() { this.m2(); }
  m2() { print(“A”); }
}

a = new A();
b = new B(a);

b.m1();
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Forwarding in Java

► Java does not directly support forwarding
► Workaround required

■ Passing this to the receiver

► Keep this in mind when implementing operations in the 
Role-Object Pattern!

ClassA ClassB

m1(me : Object)
m2()

m1()
m2()

class B {
  A a;
  m1() { a.m1(this); }
  m2() { print(“B”); }
}

a

class A {
  m1(Object me) { me.m2(); }
  m2() { print(“A”); }
}
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11.5 Roles Types Formally

How role types differ 
from other types.
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Rigidity

► Role types differ from natural types in terms of rigidity
■ Natural types are rigid
■ Role types are non-rigid

► Instances of a rigid type, cannot stop being of this type without 
ceasing to exist

► Instances of a non-rigid type can!
■ You can stop being an employee without dying

- Employee is a role type

■ You cannot stop being a human

- Human is a natural type

► Instances of rigid types provide identity

► Instances of non-rigid types derive identity from players

► The non-rigidity property and the need for identity motivate 
the distinction of players and their roles
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Foundedness

► Role types differ from natural types in terms of foundedness
■ Natural types are non-founded
■ Role types are founded

► Instances of a founded type, cannot exist on their own; they always 
need to be connected to another instance 

■ Being a listener only works if there is a speaker

- Listener is a founded type

■ Being a tree does not have such a constraint

- Tree is a non-founded type

► Instances of founded types always require a counter-type against 
which they are defined 

► The foundedness property of role types motivates the need for at 
least two role types forming a role model
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startNumber : int

Current Research on Role Types

Non-Founded Founded

Rigid Natural types Compartment Types

Non-Rigid Phase types Role types

► Phase types don't have an own identity (non-rigid), but do not depend on 
other types. They describe phases of an object.

■ For example, Child and Adult are phase types of Person

► Compartment types describe objectified collaborations 

Rider Horse

Contest

Participant Jury

Team
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What have we learned?

► The Role-object Pattern
■ Realization of roles in object-oriented languages
■ Using delegation and forwarding

► Object Schizophrenia
■ Problem of identity
■ Problem of state management

► Formal properties of role types (and others)
■ Rigidity
■ Foundedness
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