
Design Patterns and Frameworks, © Dr. Sebastian Götz

1

11. Role-Based Design

Dr. Sebastian Götz

Software Technology Group

Department of Computer
Science

Technische Universität
Dresden

WS16/17 - Dec 7, 2016

1) Running Example

2) The Role-object Pattern

3) Object Schizophrenia

4) Delegation vs. Forwarding

5) Role types formally

D
r.

 S
eb

as
tia

n
 G

öt
z,

 D
e

si
g n

 P
a

tte
rn

s
an

d
F

ra
m

ew
or

k s

2

Goals

► Understand how roles can be implemented in current
mainstream object-oriented languages (e.g., Java)

■ Role-Object Pattern

► Understand the problem of object-oriented compared to
role-oriented programming

■ Object Schizophrenia

► Understand the problem of identity and state
■ Delegation versus Forwarding

► Know how role types can be formally distinguished from
natural types (i.e., classes in OOP)

Design Patterns and Frameworks, © Dr. Sebastian Götz

3

11.1 Running Example

A Dialog asking a User for its
EMail-Address

D
r.

 S
eb

as
tia

n
 G

öt
z,

 D
e

si
g n

 P
a

tte
rn

s
an

d
F

ra
m

ew
or

k s

4

A Dialog Requesting an Email-Address

Provide EMail-Address

Please provide your Email-Address:

sebastian.goetz@acm.org

OKCancel

► User shall provide his Email-Address
► Application want's to ensure that the provided address is

valid (Pattern: a@b.c)

D
r.

 S
eb

as
tia

n
 G

öt
z,

 D
e

si
g n

 P
a

tte
rn

s
an

d
F

ra
m

ew
or

k s

5

A Dialog Requesting an Email-Address

Provide EMail-Address

Please provide your Email-Address:

test

OKCancel

► User shall provide his Email-Address
► Application want's to ensure that the provided address is

valid (Pattern: a@b.c)
► Application want's to visualize invalid Email-Addresses

Design Patterns and Frameworks, © Dr. Sebastian Götz

6

11.2 Role-object Pattern (ROP)

Delegation-based Realization of
Roles in Object-oriented Languages

Slides based on:
Dirk Bäumer, Dirk Riehle, Wolf Siberski, and Martina Wulf: Role Object Pattern.
In: Pattern languages of program design (PLoP) 4, pp. 15-32

D
r.

 S
eb

as
tia

n
 G

öt
z,

 D
e

si
g n

 P
a

tte
rn

s
an

d
F

ra
m

ew
or

k s

7

Purpose of Role-Object Pattern

► Transparently adapting objects to client context
► Management of role playership, where roles are

represented as individual objects

addressField:
TextFieldChild

root : Dialog

Parent

D
r.

 S
eb

as
tia

n
 G

öt
z,

 D
e

si
g n

 P
a

tte
rn

s
an

d
F

ra
m

ew
or

k s

8

Purpose of Role-Object Pattern

► Transparently adapting objects to client context
► Management of role playership, where roles are

represented as individual objects

addressField:
TextFieldChild DataSource

root : Dialog

Parent

formProcessor :
Validator DataSink

D
r.

 S
eb

as
tia

n
 G

öt
z,

 D
e

si
g n

 P
a

tte
rn

s
an

d
F

ra
m

ew
or

k s

9

Purpose of Role-Object Pattern

► Transparently adapting objects to client context
► Management of role playership, where roles are

represented as individual objects

description:
TextAreaChild DataSource

root : Dialog

Parent

formProcessor :
Validator DataSink

2nd Client =
2nd Context =
Validation

1st Client = 1st Context = Drawing

D
r.

 S
eb

as
tia

n
 G

öt
z,

 D
e

si
g n

 P
a

tte
rn

s
an

d
F

ra
m

ew
or

k s

10

Structure of Role-Object Pattern

Dirk Bäumer, Dirk Riehle, Wolf Siberski, and Martina Wulf: Role Object Pattern.
In: Pattern languages of program design (PLoP) 4, pp. 15-32

D
r.

 S
eb

as
tia

n
 G

öt
z,

 D
e

si
g n

 P
a

tte
rn

s
an

d
F

ra
m

ew
or

k s

11

Running Example: Email Checking

TextFieldCore

Child DataSource

TextFieldRole

TextField

Parent DataSink

D
r.

 S
eb

as
tia

n
 G

öt
z,

 D
e

si
g n

 P
a

tte
rn

s
an

d
F

ra
m

ew
or

k s

12

Running Example: Email Checking

description:
TextFieldCore

descriptionChild:
Child

addRole(descriptionChild);

D
r.

 S
eb

as
tia

n
 G

öt
z,

 D
e

si
g n

 P
a

tte
rn

s
an

d
F

ra
m

ew
or

k s

13

Running Example: Email Checking

description:
TextFieldCore

descriptionChild:
Child

addRole(descriptionDS);

descriptionDS:
DataSource

D
r.

 S
eb

as
tia

n
 G

öt
z,

 D
e

si
g n

 P
a

tte
rn

s
an

d
F

ra
m

ew
or

k s

14

Running Example: Email Checking

description:
TextAreaCore

removeRole(descriptionChild);

descriptionDS:
DataSource

D
r.

 S
eb

as
tia

n
 G

öt
z,

 D
e

si
g n

 P
a

tte
rn

s
an

d
F

ra
m

ew
or

k s

15

Running Example: Email Checking

description:
TextAreaCore

descriptionChild:
Child

descriptionDS:
DataSource

drawer
: Parent

validator
: DataSink

Design Patterns and Frameworks, © Dr. Sebastian Götz

16

11.3 Object Schizophrenia

The Problem of Split Objects

D
r.

 S
eb

as
tia

n
 G

öt
z,

 D
e

si
g n

 P
a

tte
rn

s
an

d
F

ra
m

ew
or

k s

17

The problem of split objects

► Object schizophrenia covers the problems, which arise
from splitting a conceptual object into multiple parts.

TextField

DataSourceChild

TextField

DataSourceChild

TextField

text : String
parent : Parent

TextField

text : String

Child

parent : Parent

DataSource

text : String

D
r.

 S
eb

as
tia

n
 G

öt
z,

 D
e

si
g n

 P
a

tte
rn

s
an

d
F

ra
m

ew
or

k s

18

The problem of split objects

► Object schizophrenia covers the problems, which arise
from splitting a conceptual object into multiple parts.

► Question for identity depends on which object is asked.
“Who are you?”

■ User: “I'm a TextField.”
■ Drawer: “I'm the child of this parent.”
■ Validator: “I'm a data source for you.”

TextField

DataSourceChild
User

Drawer Validator

D
r.

 S
eb

as
tia

n
 G

öt
z,

 D
e

si
g n

 P
a

tte
rn

s
an

d
F

ra
m

ew
or

k s

19

The problem of split objects

► Object schizophrenia covers the problems, which arise
from splitting a conceptual object into multiple parts.

► Who manages the state of the compound object?
■ The text of the field is required for both roles
■ The size of the field is specific to the drawing task
■ The color of the text crosscuts both roles (drawing + validation)

► When should a role delegate to the player and when should a
player delegate to its roles?

TextField

DataSourceChild
User

Drawer Validator

D
r.

 S
eb

as
tia

n
 G

öt
z,

 D
e

si
g n

 P
a

tte
rn

s
an

d
F

ra
m

ew
or

k s

20

The ROP and Object Schizophrenia

► Clients always have to “ask” the core object
► The core object delegates the call to the respective role
► The core object represents the identity
► But, all of this has to be implemented manually!

■ Role management code
- AddRole, RemoveRole, Operation

■ Code for reflection
- HasRole, GetRole

► Roles need to be implemented aware of their core
■ Delegation to core object for every method call, as it could

be overridden by another role object, which is currently
being played.

Design Patterns and Frameworks, © Dr. Sebastian Götz

21

11.4 Delegation vs. Forwarding

The meaning of this

D
r.

 S
eb

as
tia

n
 G

öt
z,

 D
e

si
g n

 P
a

tte
rn

s
an

d
F

ra
m

ew
or

k s

22

Delegation vs. Forwarding

► What does this or self actually mean?

ClassA ClassB

m1()
m2()

m1()
m2()

class B {
 A a;
 m1() { a.m1(); }
 m2() { print(“B”); }
}

a

class A {
 m1() { this.m2(); }
 m2() { print(“A”); }
}

a = new A();
b = new B(a);

b.m1();

D
r.

 S
eb

as
tia

n
 G

öt
z,

 D
e

si
g n

 P
a

tte
rn

s
an

d
F

ra
m

ew
or

k s

23

Delegation

► What does this or self actually mean?

► Delegation Semantics:
this bound to delegatee
(i.e., object “a”)

ClassA ClassB

m1()
m2()

m1()
m2()

class B {
 A a;
 m1() { a.m1(); }
 m2() { print(“B”); }
}

a

class A {
 m1() { this.m2(); }
 m2() { print(“A”); }
}

a = new A();
b = new B(a);

b.m1();

D
r.

 S
eb

as
tia

n
 G

öt
z,

 D
e

si
g n

 P
a

tte
rn

s
an

d
F

ra
m

ew
or

k s

24

Forwarding

► What does this or self actually mean?

► Forwarding Semantics:
no delegation of this
(i.e., this = b)

ClassA ClassB

m1()
m2()

m1()
m2()

class B {
 A a;
 m1() { a.m1(); }
 m2() { print(“B”); }
}

a

class A {
 m1() { this.m2(); }
 m2() { print(“A”); }
}

a = new A();
b = new B(a);

b.m1();

D
r.

 S
eb

as
tia

n
 G

öt
z,

 D
e

si
g n

 P
a

tte
rn

s
an

d
F

ra
m

ew
or

k s

25

Forwarding in Java

► Java does not directly support forwarding
► Workaround required

■ Passing this to the receiver

► Keep this in mind when implementing operations in the
Role-Object Pattern!

ClassA ClassB

m1(me : Object)
m2()

m1()
m2()

class B {
 A a;
 m1() { a.m1(this); }
 m2() { print(“B”); }
}

a

class A {
 m1(Object me) { me.m2(); }
 m2() { print(“A”); }
}

Design Patterns and Frameworks, © Dr. Sebastian Götz

26

11.5 Roles Types Formally

How role types differ
from other types.

D
r.

 S
eb

as
tia

n
 G

öt
z,

 D
e

si
g n

 P
a

tte
rn

s
an

d
F

ra
m

ew
or

k s

27

Rigidity

► Role types differ from natural types in terms of rigidity
■ Natural types are rigid
■ Role types are non-rigid

► Instances of a rigid type, cannot stop being of this type without
ceasing to exist

► Instances of a non-rigid type can!
■ You can stop being an employee without dying

- Employee is a role type

■ You cannot stop being a human

- Human is a natural type

► Instances of rigid types provide identity

► Instances of non-rigid types derive identity from players

► The non-rigidity property and the need for identity motivate
the distinction of players and their roles

D
r.

 S
eb

as
tia

n
 G

öt
z,

 D
e

si
g n

 P
a

tte
rn

s
an

d
F

ra
m

ew
or

k s

28

Foundedness

► Role types differ from natural types in terms of foundedness
■ Natural types are non-founded
■ Role types are founded

► Instances of a founded type, cannot exist on their own; they always
need to be connected to another instance

■ Being a listener only works if there is a speaker

- Listener is a founded type

■ Being a tree does not have such a constraint

- Tree is a non-founded type

► Instances of founded types always require a counter-type against
which they are defined

► The foundedness property of role types motivates the need for at
least two role types forming a role model

D
r.

 S
eb

as
tia

n
 G

öt
z,

 D
e

si
g n

 P
a

tte
rn

s
an

d
F

ra
m

ew
or

k s

29

startNumber : int

Current Research on Role Types

Non-Founded Founded

Rigid Natural types Compartment Types

Non-Rigid Phase types Role types

► Phase types don't have an own identity (non-rigid), but do not depend on
other types. They describe phases of an object.

■ For example, Child and Adult are phase types of Person

► Compartment types describe objectified collaborations

Rider Horse

Contest

Participant Jury

Team

D
r.

 S
eb

as
tia

n
 G

öt
z,

 D
e

si
g n

 P
a

tte
rn

s
an

d
F

ra
m

ew
or

k s

30

What have we learned?

► The Role-object Pattern
■ Realization of roles in object-oriented languages
■ Using delegation and forwarding

► Object Schizophrenia
■ Problem of identity
■ Problem of state management

► Formal properties of role types (and others)
■ Rigidity
■ Foundedness

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30

