Accenture Digital: Helping clients use digital to change the way the world lives and works

High performance. Delivered.

accenturedigital

Strategy | Digital | Technology | Operations

We tap the full power of Accenture

to help our clients

Ktober

accenture digital accenture technology accenture strategy accenture operations

We tap the power of our global delivery network for unmatched global reach

Copyright© Accenture. All rights reserved. Copyright © 2016 Accenture All rights reserved.

3

Accenture Digital

Copyright© Accenture. All rights reserved. Copyright © 2016 Accenture All rights reserved.

The heart of your business

We work at the heart of your business @speed @scale

APPLY NOW

accenture.com/digitalcareers

Strategy | Consulting | Digital | Technology | Operations

E-Mail: andreas.range@accenture.com

0

Technische Universität Dresden 7.11.2016

.

accenturedigital

High performance. Delivered.

Strategy | Consulting | Digital | Technology | Operations

4

What is the IoT?

What is Connected Analytics in the IIoT & Industrie 4.0

Based on ANSI/ISA-95 layered model, an important reference for Enterprise Control System Integration on Industrial Environments.

What is Connected Analytics in the IIoTS & Industrie 4.0

Example on an Industrial Environment

IoT helps companies on their path to digital business by digitizing customer experience and operations

Digital Strategy Framework

Mobile experiences have led the way ...

Connected Product

... but are just as relevant in other sectors

Driving value across specific business levers for PRD industry

Analytics may additional revenue streams from new business modes depending on the

To exploit IoTS business transformation opportunities six core capabilities have to developed

IoTS Capabilities

What is the IoT?

Definition IoT – Internet of Things

New Business New Digital Products and Services create new revenue

Operational Efficiency Automation, flexible production, optimized and predictive maintenance

Example Daimler

PTU – Predictive Analytics for Daimler Power Train

Objectives and Challenges in Detail

- High internal reject rate in cylinder head production (foundry)
- Unknown causes of these complex quality issues
- Significant reduction of rejects
- Reduction of run-up phase
- Complex quality issues
- Consideration of 632 processes and quality parameters
- Limited, circuitous, and time-consuming analysis options with Excel
- > Outlook: Predict probability that component is rejected in order to minimize redundant
 - work

What is a cylinder-head?

- The cylinder-head is a part of the motor in cars
- Must be very robust and perfectly fitting to prevent leaking of oil and water

Reducing failure by automated multivariate root cause analysis

Initial situation

- On average 3000 cylinder-heads a produced per day
 - 500 variables are tracked at the quality managment process
 - The later a quality problem is detected in the process, the higher are the costs

Predictve technologies

- Process optimization based on new findings about the failure pattern (root cause)
- Causes of erros are detected daily and can be solved the same day
- Responible operators get clear information about causes of errors
- Complex root cause are reported as

Results:

- 100% reduction of worktime for creating regular reporting 2*(3h/Day)
- 40% reduction for ad hoc analysis
- reduction of scrap rate from 9% to 1,5%
- Optimized maintenace for production equipment, reduced stand times of the factory
- 50% reduction of scrap rate during ramp up process of the factory

25% increase of productivty of the cylinder-head production line reduction of the time to deploy a compliant and controled process by 3 years

(based on 7-year-plan) ROI after 8 week

Assumptions of the project

- Data are only partly structured
- A not correct produced cylinder-head wastes time and money
- The faster reasons for production failures can be detected and solved, the faster and cheaper the production runs
- The earlier in the production process defective cylinder-heads can be located, the cheaper the following costs are
 - Example: If the measure of the sand mold does not fit, destroy the mold, cheaper 1 Euro, loss the complete cylinder-head means 500 Euro
- The responsible operators are neither statistical experts nor IT experts, they need easy to understand information about complex multivariate failure reasons
- The structured ongoing root cause analysis is optimizing the production process
 - Example: Even new facts about production rules were found, such as new optimized temperature curves during casting
- Measurement, quality, process and maintenance data in different databases
- Data can have various errors from processing
 - Example: Wrong optical tracked DMC, duplicates from post processing, sensor defects, etc
- · Various data are collected, so it is highly manual work to run analysis

Conventional quality control loop

Search for causal realtions (cause $\leftarrow \rightarrow$ reaction) between measured command variable and input parameters that could be changed

data stream

Cylinder-head production

Optimized process getting deep multivariate insights of failure patterns Copyright © 2016 Accenture All rights reserved.

next best steps can be planed and maintenance can be prioritized

Detecting the right failure reason combination (Root cause analysis)

Failure Diagnostics:

New failure patterns:

erall Scrap (Status).37% Rate	New Failure Patterns 5 Reasons	Failure Pree 1.43% 0.4 Average Predicti	diction 9% on Score	Anomaly Ana 3.72 0.21 Overall Anomaly In
Rank		Scrap reason	Parts produced	Number scrap	Scrap rate
	0	All segments including Remainder	1,728	49	2.86%
$\left(\right)$					\square
	1	Heating9_Max, Cooling7Temp_Max Heating9_Max > 628.000 and	39	11	28.21%
	2	Thermo8_Start, Cooling16Flow_End Thermo8_Start <= 339.951 and Cooling16Flow End <= 38.600	41	9	21.95%
	2	Thermo8_Start, Cooling16Flow_End Thermo8_Start <= 339.951 and Cooling16Flow_End <= 38.600 Cooling16Temp_End, Heating13_Max Cooling16Temp_End <= 457.600 and Heating13_Max <= 726.200	41	9 8	21.95% 20.00%
	2 3 4	Inermo8_start, Cooling16Flow_End Thermo8_start <= 339.951 and	41 40 42	9 8 7	21.95% 20.00% 16.67%

lysis

The next step: Proactive dynamic testing – M2M – predictive quality

Analytical Value Tree on Machine 4.0

Copyright © 2016 Accenture All rights reserved.

Connected & Predictive Asset Maintenance (CAM) – an Evolution of Asset Management and Process Quality

CAM services focus on the evolution of optimum asset and operational performance

Copyright © 2016 Accenture All rights reserved.

IoT Trends

IoT Solutions are started small and have to be ready to grow

Industrial IoT adds incremental value in the near term but becomes transformative over the long-term

Beyond Product Transformation

Connected world enables new ecosystems across industries faster than ever before

Interconnected Platform of Platform

Governance and IT concepts are close connected in the IoT development

Trend to application engineering

Companies need to address aspects around data management, technology, operating model and governance

Data value chain from data ingestion to business value

Thank you!

Thorsten BurdeskaSenior PrincipalASG Analytics Digital

+49 – 15205760506 Thorsten.Burdeska@accenture.com

