
Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - Softwaretechnologie II

12a. Graphs for Models and Programs

• Prof. Dr. U. Aßmann
• Technische Universität Dresden
• Institut für Software- und

Multimediatechnik
• Gruppe Softwaretechnologie
• http://st.inf.tu-

dresden.de/teaching/swt2
• Version 16-1.1, 02.12.16

1. Examples of Graphs in
Models

2. Big Graphs

Softwaretechnologie II

Obligatory Reading
©

 P
ro

f.
 U

. A
ßm

an
n

2

Softwaretechnologie II

Goals

Ø Understand that graphs can be used to represent software, models and
programs

Ø Understand value-flow, control-flow graphs, call graphs

P
ro

f.
 U

. A
ßm

an
n

3

Softwaretechnologie II

Motivation

Ø Programs are represented by graphs
Ø Models and specifications are graph-based

Ø We have to deal with basic graph theory to be able to measure well

P
ro

f.
 U

. A
ßm

an
n

4

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - Softwaretechnologie II

12A.1 GENERATING GRAPHS FROM
DIAGRAMS AND PROGRAMS

How are models and programs represented in a Software Tool?

Some Relationships (Graphs) in Software Systems

Prof. U. Aßmann 5

Softwaretechnologie II

All Models, Specifications and Programs Have an Internal Graph-Based
Representation

Ø Texts are parsed to abstract syntax trees (AST). Two-step procedure:
1. Concrete Syntax Tree (CST)
2. Abstract Syntax Tree (AST) (also directly from diagram editors)

Ø Through name analysis, they become abstract syntax graphs (ASG) or Use-
Def-Graphs (UDG)

Ø Through def-use-analysis, they become Use-def-Use Graphs (UDUG)
Ø If value flow (data flow) between variables is analysed, the value flow

graph (VFG) or data-flow graph (DFG) result

P
ro

f.
 U

. A
ßm

an
n

6

.......

AST

.......

ASG (UDG)

.......

UDUG

.......

CST

Text Diagram/
Model

.......

VFG
(DFG)

Softwaretechnologie II

Concrete Syntax Tree (CST) – Example
P

ro
f.

 U
. A

ßm
an

n

7

Expr ::= ‘(’ Expr ‘)’
| Expr ‘&&’ Expr
| Expr ‘||’ expr
| ‘!’ Expr
| Lit .

Lit ::= Var | ‘true’ | ‘false’.
Var ::= [a-z][a-z 0-9_]+ .

Parsing this string:
((looking || true) && !found)

Softwaretechnologie II

Expr

(Expr

Expr

(Expr

Expr

Var
id = looking

|| Expr

true

)

&& Expr

! Expr

Var
id = found

)

P
ro

f.
 U

. A
ßm

an
n

8

Expr ::= ‘(’ Expr ‘)’
| Expr ‘&&’ Expr
| Expr ‘||’ expr
| ‘!’ Expr
| Lit .

Lit ::= Var | ‘true’ |
‘false’.
Var ::= [a-z][a-z 0-
9_]+ .

Parsing this string:
((looking || true) && !found)

Softwaretechnologie II

From the CST to the AST

&&

||

Var
id = looking

True

!

Var
id = found

P
ro

f.
 U

. A
ßm

an
n

9

Expr

(Expr

Expr

(Expr

Expr

Var
id = looking

|| Expr

true

)

&& Expr

! Expr

Var
id = found

)

Softwaretechnologie II

Abstract Syntax Trees (AST)

Ø Parse trees (CST) waste a fair amount of space for representation of
terminal symbols and productions

Ø Compilers post-process parse trees
into ASTs

Ø ASTs are the fundamental data structure
of IDEs (ASTView in Eclipse JDT)

P
ro

f.
 U

. A
ßm

an
n

10

Softwaretechnologie II

Abstract Syntax Trees (AST)

Ø Problem with ASTs: They do not support static semantic checks, re-
factoring and browsing operations, e.g:
• Name semantics:

§ Have all used variables been declared? Are they declared once?
§ Have all Classes used been imported?

• Type semantics (type checking): are all types used in expressions / assignments
compatible?

• Type inference: can all types for variables – if not given – be inferenced?
• Referencing:

§ Navigate to the declaration of method call / variable reference / type
• Pretty-printing: How can I pretty-print the AST to a CST again, so that the CST

looks like the original CST
§ Necessary for hygenic refactoring

P
ro

f.
 U

. A
ßm

an
n

11

Softwaretechnologie II

Def-Use Graphs (DUG) and Use-Definition-Use Graphs
(UDUG)

Ø Every language and notation has
Ø Definitions of items (definition of the variable Foo), who add type or other

metadata
Ø Uses of items (references to Foo)

Ø We talk in specifications or programs about names of objects and their use
Ø Definitions are done in a data definition language (DDL)
Ø Uses are part of a data query language (DQL) or data manipulation language

(DML)
Ø Starting from the abstract syntax tree, name analysis finds out about the

definitions of uses of names
• Building the Use-Def graph
• This revolves the meaning of used names to definitions
• Inverting the Use-Def graph to a Use-Def-Use graph (UDUG)
• This links all definitions to their uses

P
ro

f.
 U

. A
ßm

an
n

12

Softwaretechnologie II

Abstract Syntax Graphs (ASG) are UDGs

Ø Abstract Syntax Graphs
have use-def edges that
reflect semantic
relationships
• from uses of names to

definitions of names
Ø These edges are used for

static semantic checks
• Type checking
• Casts and coercions
• Type inference

P
ro

f.
 U

. A
ßm

an
n

13

boolean looking, found;
…
if (looking && !found) {…}

Block

VarDecl
type=boolean

VarName
id=looking

VarDecl
Type=boolean

VarName
id=found

IfStmt

&&

looking !

found

Block

Softwaretechnologie II

Refactoring on Complete Name-Resolved Graphs
(Use-Def-Use Graphs)

Ø UDUGs are used in refactoring operations (e.g. renaming a class or a
method consistently over the entire program).

Ø For renaming of a definition, all uses have to be changed, too
Ø We need to trace all uses of a definition in the Use-Def-graph, resulting in its

inverse, the Def-Use-graph
Ø Refactoring works always on Def-Use-graphs and Use-Def-graphs, the complete

name-resolved graph (the Use-Def-Use graphs)

P
ro

f.
 U

. A
ßm

an
n

14

Softwaretechnologie II

class Person { .. }

class Course {

Person teacher = new Person(“Jim”);

Person student = new Person(“John”);

}

Example: Rename Refactorings in Programs
P

ro
f.

 U
. A

ßm
an

n

15

Definition

Reference (Use)

Refactor the name Person to Human, using bidirectional use-def-use links:

class Human { .. }
class Course {

Human teacher = new Human(“Jim”);
Human student = new Human(“John”);

}

Softwaretechnologie II

Refactoring

Ø Refactoring works always in the same way:
Ø Change a definition
Ø Find all dependent references
Ø Change them
Ø Recurse handling other dependent definitions

Ø Refactoring can be supported by tools
Ø The Use-Def-Use-graph forms the basis of refactoring tools

Ø However, building the Use-Def-Use-Graph for a complete program costs a
lot of space and is a difficult program analysis task
Ø Every method that structures this graph benefits immediately the refactoring
Ø either simplifying or accelerating it

Ø UDUGs are large
• Efficient representation important

P
ro

f.
 U

. A
ßm

an
n

16

Softwaretechnologie II

Further Representations for Flow Analysis

From the ASG or an UDUG, more graph-based program representations can be
derived

Ø Inheritance Analsis
Ø Control-flow Analysis -> Control-Flow Graph (CFG), Call graph (CLG)

• Records control-flow relationships

Ø Data-Flow Analysis -> Data-Flow Graph (DFG) or Value-Flow Graph (VFG)
• Records flow relationships for data values

P
ro

f.
 U

. A
ßm

an
n

17

.......

CFG, CLG

.......

VFG (DFG)

.......

ASG (UDG)

Inheritance Dag

Softwaretechnologie II

Control-Flow Graphs

Ø Describe the control flow in a program
Ø Typically, if statements and switch statements split control flow

Ø Their ends join control flow
Ø Control-Flow Graphs resolve symbolic labels

Ø Perform name analysis on labels
Ø Nested loops are described by nested control flow graphs

P
ro

f.
 U

. A
ßm

an
n

18

while

if

print a

a+=5;

print a++

return

Softwaretechnologie II

Simple (Flow-Insensitive) Call Graph (CLG)

Ø Describe the call relationship between the procedures
Ø Interprocedural control-flow analysis performs name analysis on called procedure

names

P
ro

f.
 U

. A
ßm

an
n

19

main = procedure () {
array int[] a = read();
print(a);
quicksort(a);
print(a);

}
quicksort = procedure(a: array[0..n]) {

int pivot = searchPivot(a);
quicksort(a[0], a[pivot-1]);
quicksort(a[pivot+1,n]);

}

quicksort

main

print

read

searchPivot

Softwaretechnologie II

(Flow-Insensitive) Call Graph (CLG)

Ø Describe the call relationship between the procedures including call sites
Ø Flow-insensitive
Ø Flow-sensitive versions consider the control flow graph

P
ro

f.
 U

. A
ßm

an
n

20

quicksort

main

print

read
2

1

1 2

searchPivot

Softwaretechnologie II

Value-Flow Graphs (VFG) aka Data-Flow Graphs (DFG)

Ø A data-flow graph (DFG) aka value-flow graph (VFG) describes the flow of
data through the variables
Ø DFG are based on control-flow graphs

Ø Building the data-flow graph is called data-flow analysis
Ø Data-flow analysis is often done by abstract interpretation, the symbolic execution

of a program at compile time

P
ro

f.
 U

. A
ßm

an
n

21

while

if

print a

a=a+5;

print a++

b=a

a=0

Softwaretechnologie II

Inheritance Analysis:
Building an Inheritance Tree or Inheritance Lattice

Ø A lattice is a partial order with largest and smallest element
Ø Inheritance hierarchies can be generalized to inheritance lattices
Ø An inheritance analysis builds the transitive closure of the inheritance lattice

P
ro

f.
 U

. A
ßm

an
n

22

Don’t Know

Man Woman

Undefined

Object

Person

Inheritance

Softwaretechnologie II

UML Graphs

Ø All diagram sublanguages of UML generate internal graph representations
Ø They can be analyzed and checked with graph techniques
Ø Graphic languages, such as UML, need a graph parser to be recognized, or a

specific GUI who knows about graphic elements

Ø Hence, graph techniques are an essential tool of the software engineer

P
ro

f.
 U

. A
ßm

an
n

23

Softwaretechnologie II

Remark: All Specifications Have a Graph-Based Representation

Ø Texts are parsed to abstract syntax trees (AST)
Ø Graphics are parsed by GUI or graph parser to AST also
Ø Through name analysis, they become abstract syntax graphs (ASG)
Ø Through def-use-analysis, they become Use-def-Use Graphs (UDUG)
Ø Control-flow Analysis -> CFG, CLG
Ø Data-Flow Analysis -> DFG

P
ro

f.
 U

. A
ßm

an
n

24

.......

AST

.......

ASG

.......

UDUG

.......

CFG, CLG

.......

DFG

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - Softwaretechnologie II

12A.2 THE PROBLEM: HOW TO MASTER
LARGE GRAPHS OF MODELS AND
PROGRAMS

Ø Large models have large graphs
Ø They can be hard to understand

Ø Figures taken from Goose Reengineering Tool, analysing a Java class system
[Goose, FZI Karlsruhe]

Prof. U. Aßmann 25

Softwaretechnologie II

P
ro

f.
 U

. A
ßm

an
n

26

Softwaretechnologie II

Partially Collapsed
P

ro
f.

 U
. A

ßm
an

n

27

Softwaretechnologie II

Totally Collapsed
P

ro
f.

 U
. A

ßm
an

n

28

Softwaretechnologie II

Requirements for Modeling in Requirements and Design

Ø We need guidelines how to develop simple models
Ø We need analysis techniques to

Ø Analyze models
Ø Find out about their complexity
Ø Find out about simplifications

Ø Search in models
Ø Check the consistency of the models

P
ro

f.
 U

. A
ßm

an
n

29

Softwaretechnologie II

The End

Ø Why are EARS and binary Datalog equivalent?
Ø Explain the graph-logic isomorphism
Ø Why does the „SameGeneration“ Program compute layers?
Ø Describe how you dump a UML classs diagram into a logic fact base
Ø What can be done if a model becomes too large?

©
 P

ro
f.

 U
. A

ßm
an

n

30

