TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultadt Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie — Prof. ABmann - Softwaretechnologie II

12a. Graphs for Models and Programs

e Prof Dr.U. ARmann 1. Examples of Graphsin
e Technische Universitat Dresden Models

* |nstitut fir Software- und 2. BigGraphs
Multimediatechnik

* Gruppe Softwaretechnologie

* http://st.inf.tu-
dresden.de/teaching/swt2

* Version 16-1.1,02.12.16

Obligatory Reading
2 softwaretechnologien

c
c
]
£
(]
<
=)
Y
o
|
o
©
10
l‘f
1

Goals

» Understand that graphs can be used to represent software, models and
programs
» Understand value-flow, control-flow graphs, call graphs

c
c
S
£
<
g
]
5
} .
a

Motivation

» Programs are represented by graphs

» Models and specifications are graph-based
» We have to deal with basic graph theory to be able to measure well

c
c
S
£
<
g
]
5
} .
a

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultadt Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie — Prof. ABmann - Softwaretechnologie II

How are models and programs represented in a Software Tool?

Some Relationships (Graphs) in Software Systems

12A.1 GENERATING GRAPHS FROM
DIAGRAMS AND PROGRAMS

Prof. U. ABmann 5

All Models, Specifications and Programs Have an Internal Graph-Based
Representation

» Texts are parsed to abstract syntax trees (AST). Two-step procedure:
1. Concrete Syntax Tree (CST)
2. Abstract Syntax Tree (AST) (also directly from diagram editors)

» Through name analysis, they become abstract syntax graphs (ASG) or Use-
Def-Graphs (UDG)

» Through def-use-analysis, they become Use-def-Use Graphs (UDUG)

» If value flow (data flow) between variables is analysed, the value flow
graph (VFG) or data-flow graph (DFG) result

‘ Iext / ‘Diagram/ / VEG

\:DST \‘AST ASG (UDG) UDUG (DFG)
@

AN, 4

Prof. U. ABmann

=

Concrete Syntax Tree (CST) - Example

/Expr ii= (" Expr')’ \
Expr ‘&&’ Expr
Expr ‘||’ expr

‘1" Expr
Lit.
Lit = Var | ‘true’ | ‘false’.
\Var = [a-z][a-z 0-9_]+ . /
Parsing this string:
((looking || true) && found)

@ Prof. U. ABmann

@ Prof. U. ABmann

‘1" Expr
Lit .

Lit =

‘false’.

Var =

Q_]+ .

\(l Expr |)l
Expr ‘&&’ Expr
Expr ‘||’ expr

Var | ‘true’ |

[a-z][a-z O-

Parsing this string:
((looking || true) && found)

|

Expr

Expr

Var
id = looking

true

-

I

Var

id = found

Fromthe CST to the AST

1
I 1 1
I
I |

[|
] 1
!
Expr && Expr

--- I
id = looking id = found
L Var

Expr [Expr id = found

I_ e True
Var true

id = looking

o

c
c
S
£
<
g
]
5
} .
a

Prof. U. ABmann

Abstract Syntax Trees (AST)

> Parse trees (CST) waste a fair amount of space for
terminal symbols and productions

» Compilers post-process parse trees
into ASTs

> ASTs are the fundamental data structure
of IDEs (ASTView in Eclipse JDT)

% ASTView 53 PR SRR ER=S=1

StaffEditor.java (AST Level 3). Creation time: 63 ms. Size: 2,074 nodes, 226,736 byte:
[PACKAGE o]
= TYPES (1)

=- TypeDeclaration [1022, 16347]
[#- = type binding: staff_kp.qui.views,StaffEditor
JAYADOC: null
MODIFIERS (1)
INTERFACE: 'false'
MNAME
TYPE_PARAMETERS (0)
SUPERCLASS_TYPE: null
SUPER_INTERFACE_TYPES (0)
(= BODY_DECLARATIONS (39)
#- FieldDeclaration [1055, 102]
FieldDeclaration [1163, 33]
FieldDeclaration [1202, 28]
FieldDeclaration [1236, 22]
FieldDeclaration [1264, 25]
FieldDeclaration [1295, 28]
FieldDeclaration [1329, 32]
#- FieldDeclaration [1367, 59]
FieldDeclaration [1432, 64]
FieldDeclaration [1502, 56]
#- FieldDeclaration [1564, 103]
FieldDeclaration [1673, 125]
FieldDeclaration [1871, 137]
#- FieldDeclaration [2016, 83]
FieldDeclaration [2105, 40]
FieldDeclaration [2151, 53]
@-MethodDeclaration [2212, 481]
=-MethodDeclaration [2701, 233]
> method binding: StaffEditor, StaffEditor{FormToolkit, ScrolledF
JavADOC: null
[#-MODIFIERS {1)
CONSTRUCTOR: 'true'
TYPE_PARAMETERS (0)
RETURM_TYPEZ: null
MNAME
PARAMETERS (2)
EXTRA_DIMENSIONS: '0'
THROWN_EXCEPTIONS {0)

BODY
@-MethodDeclaration [2942, 1166]
M MakhadNnaclauabinn F411c 7201 !‘

|~

m | £

@ Prof. U. ABmann

Abstract Syntax Trees (AST)

>

Problem with ASTs: They do not support static semantic checks, re-
factoring and browsing operations, e.g:
e Name semantics:
= Have all used variables been declared? Are they declared once?
= Have all Classes used been imported?
e Type semantics (type checking): are all types used in expressions / assignments
compatible?
e Type inference: can all types for variables - if not given - be inferenced?
e Referencing:
= Navigate to the declaration of method call / variable reference / type
e Pretty-printing: How can I pretty-print the AST to a CST again, so that the CST
looks like the original CST
= Necessary for hygenic refactoring

Def-Use Graphs (DUG) and Use-Definition-Use Graphs
(UDUG)

» Every language and notation has
» Definitions of items (definition of the variable Foo), who add type or other
metadata
» Uses of items (references to Foo)
» We talk in specifications or programs about names of objects and their use
» Definitions are done in a data definition language (DDL)
» Uses are part of a data query language (DQL) or data manipulation language
(DML)
» Starting from the abstract syntax tree, name analysis finds out about the
definitions of uses of names
e Building the Use-Def graph
e This revolves the meaning of used names to definitions
e Inverting the Use-Def graph to a Use-Def-Use graph (UDUG)
e This links all definitions to their uses

@ Prof. U. ABmann

Abstract Syntax Graphs (ASG) are UDGs

» Abstract Syntax Graphs
have use-def edges that boolean looking, found;

reflect semantic
relationships
e from uses of names to

i;‘.(looking && found) {...}

definitions of names Block ‘
» These edges are used for : : - .
static semantic checks VarDed! VarDed|
 Type checking type=boolean Type=boo|ean‘ ‘ IfStmt ‘
e Casts and coercions , [l .
[]
Type inference iélliToNc?l?iqneg ?éa;‘fNoaunr:g ‘ 88 ‘ Block ‘

@ Prof. U. ABmann

Refactoring on Complete Name-Resolved Graphs

(Use-

Def-Use Graphs)

» UDUGs are used in refactoring operations (e.g. renaming a class or a
method consistently over the entire program).

@ Prof. U. ABmann

> For
>

>

renaming of a definition, all uses have to be changed, too

We need to trace all uses of a definition in the Use-Def-graph, resulting in its
inverse, the Def-Use-graph

Refactoring works always on Def-Use-graphs and Use-Def-graphs, the complete
name-resolved graph (the Use-Def-Use graphs)

Example: Rename Refactorings in Programs

Refactor the name Person to Human, using bidirectional use-def-use links:

Definition

. Reference (Use)

class Human { .. }

class Course {
Human teacher = new Human(“Jim”);
Human student = new Human(“John”);

@ Prof. U. ABmann

Refactoring

» Refactoring works always in the same way:
» Change a definition
» Find all dependent references
» Change them
» Recurse handling other dependent definitions
» Refactoring can be supported by tools
» The Use-Def-Use-graph forms the basis of refactoring tools
» However, building the Use-Def-Use-Graph for a complete program costs a
lot of space and is a difficult program analysis task
» Every method that structures this graph benefits immediately the refactoring
» either simplifying or accelerating it
» UDUGs are large
e Efficient representation important

@ Prof. U. ABmann

Further Representations for Flow Analysis

From the ASG or an UDUG, more graph-based program representations can be
derived

> Inheritance Analsis

» Control-flow Analysis -> Control-Flow Graph (CFG), Call graph (CLG)
e Records control-flow relationships

» Data-Flow Analysis -> Data-Flow Graph (DFG) or Value-Flow Graph (VFG)
e Records flow relationships for data values

Inheritance Dag

7N\

: ASG (UDG) CFG, CLG VFG (DFG)
5 @

/\ — ,\

: TN

@ Q00 O O Q00 © O

Control-Flow Graphs

» Describe the control flow in a program

» Typically, if statements and switch statements split control flow
» Their ends join control flow

» Control-Flow Graphs resolve symbolic labels
» Perform name analysis on labels

» Nested loops are described by nested control flow graphs
L]
&) \
[a+=5;] { while

) o
[——

@ Prof. U. ABmann

Simple (Flow-Insensitive) Call Graph (CLG)

» Describe the call relationship between the procedures

» Interprocedural control-flow analysis performs name analysis on called procedure
names

main = procedure () { [main }
array int[] a = read();

print(a); <
quicksort(a); [read J

print(a);

) .

quicksort = procedure(a: array[0..n]) { [print J [quicksort]
int pivot = searchPivot(a);
quicksort(a[0], a[pivot-1]);
quicksort(a[pivot+1,n]);

} [searchPivot J

@ Prof. U. ABmann

20

@ Prof. U. ABmann

(Flow-Insensitive) Call Graph (CLG)

» Describe the call relationship between the procedures including call sites

» Flow-insensitive
» Flow-sensitive versions consider the control flow graph

main

Cread D

C o :

Value-Flow Graphs (VFG) aka Data-Flow Graphs (DFG)

» A data-flow graph (DFG) aka value-flow graph (VFG) describes the flow of
data through the variables
» DFG are based on control-flow graphs
» Building the data-flow graph is called data-flow analysis

» Data-flow analysis is often done by abstract interpretation, the symbolic execution
of a program at compile time

@ Prof. U. ABmann

Inheritance Analysis:
Building an Inheritance Tree or Inheritance Lattice

» A lattice is a partial order with largest and smallest element
» Inheritance hierarchies can be generalized to inheritance lattices
» An inheritance analysis builds the transitive closure of the inheritance lattice

Object

A

Don’t Know

A

[Person]

/\

Man] [Woman]
'\ /'

[Undefined J

|

T Inheritance

@ Prof. U. ABmann

UML Graphs

» All diagram sublanguages of UML generate internal graph representations

» They can be analyzed and checked with graph techniques
» Graphic languages, such as UML, need a graph parser to be recognized, or a
specific GUI who knows about graphic elements

» Hence, graph techniques are an essential tool of the software engineer

@ Prof. U. ABmann

24

@ Prof. U. ABmann

Remark: All Specifications Have a Graph-Based Representation

Texts are parsed to abstract syntax trees (AST)
Graphics are parsed by GUI or graph parser to AST also

Through name analysis, they become abstract syntax graphs (ASG)
Through def-use-analysis, they become Use-def-Use Graphs (UDUG)
Control-flow Analysis -> CFG, CLG

Data-Flow Analpesl-> DFG UDUG

VV VYV VY

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultadt Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie — Prof. ABmann - Softwaretechnologie II

» Large models have large graphs
» They can be hard to understand

» Figures taken from Goose Reengineering Tool, analysing a Java class system
[Goose, FZI Karlsruhe]

12A.2 THE PROBLEM: HOW TO MASTER
LARGE GRAPHS OF MODELS AND
PROGRAMS

Prof. U. ABmann 25

Graphlet: draw.simplified.gml
File Edit Select View Graph HNode Edge Tool Layout Help

S & BE v 100% & de

CI_,_l(:H.' dran ' , numerator |

..........

it W@.ChopPolygonConnectoﬂ

aeth‘StartHandle |

;.h;m.,gm “imggtan ool

ure

Ve rf,- CUEE

[518
- r‘f# onstrainer

o]

mRGL> >N\

|CH.ifa.draw<td$E§ i '*i

TET

“‘_"\- | .,.'. '.: ~.< Ky

% A o5 3 f ey ‘.-‘ ot o & -t

MR T feation.7329831 |

‘a'.,,._‘g.., & el

al -.‘ ?ﬁ?\—?ﬁ—’:-}.

oA N ' .‘.'- b;. U Fu T BLENRNN

.;(2 xéf%i)‘ '}Kﬁan Diesih
SR A "%.:"MTG

bieUpdateStrategyl

Ll
T YRRl Y
vV 1.

3 [=)
" -

IC}-Maara% ul\.b 5. GrhOp ‘ .' ‘1
£ ammwm i Bl e e A

.................. P § o K
i 1184 {1402 Graphlet Version 5.0.1

NS

Prof. U. ABmann

Partially Collapsed

n n
| CH.ife.draw.applet. SleeperThread L
w

A draw SEBIED

CH.iIfe.draw.’ ewors.HJDEmor

CH.ife.draw.applet.DrawApplet. 25663562

| CH.ifa.draw.applet DrawApplet. 11013976 |

[CH.ifxdraw. fmnewom FigureChange Listener |

CH.ifadraw. fmnework Figurec.uangeEuen‘ |
IpgUTTTiguie. 1,22§

[CHe-drawapple] OrawADRIer 26761112 |

<CHTTa. draw fraewoits
| CH.ifa.draw. framework. PointConstrangr |~ -~ e
[CH.ife.draw framewcrs. Faure Sxlactiof]

‘{‘ﬂﬁd@

work/Re En eraﬁon_]
-~

i Teifa.draw. figures. FontSizeHandle |
1 rd

=

FCX oA R T <Chnnechon .ifa. . ShortestDistanceConnector |

[CH.ife.draw. frameirark. D wing e LG eEvent |-
[CH.ife.draw.samples javadraw. JavaDrawApp. 15957993 |
[CATfdwrae
M

[CH.ife.drav.application.Drawapplication. 14165558 |

CH.I W, It

CH.ife.drow. framewol

iples Javadraw. JavaDrawApp. 513635274

samples.né
AN
i aw.fg
fadra
1
/
CHa draw- frsmewoOr

[CH.ife.draw.appl cation. Draonpllca

w.figures. Round Rectangle Figure

DrawApplicafion. 11853670

CH.ifo.draw Samples g adrmaran s APy JaF DA ADD. 920235 |

| CH ﬁamw Tiaures. scn BE

\ O A pREation 2 17 1 339;1

SV G o draw figures Command
"5'?'631\1{?.& -wﬁéure- le\,'.irél.ocaf:)rlnw = psérijfnage onnenc]

ClicaH
CH.ITe.drp - fgures.Gl o Som nand)

| CH.ifa.draw 2ppl cafion.OrawApplicafion 30655015

S o

‘H.ifadraw.application.DrawApplication. 14251137 |

[CHfedraw.figures. P

CH.ife.draw. figures. Ellipse Figure |
Yoo [£H.ifadraw. figures.ArowTip |

ures. FigureAfiibutes |

| CH.ife.drew.samples javadraw. JaveDrawApplet 14166447 |

[CH.ifudraw.applicafion.DrawaApplication. 1 5 34k GHife.draw figures. RadiusHandle |

[CHifadrawapplicaion.DrawApplicaion. 18830412 |

| CH.ife.draw.application.Drawapplication.? 329831 |

Totally Collapsed

28

uuewgy 'n J0.d kx|

Requirements for Modeling in Requirements and Design

» We need guidelines how to develop simple models

» We need analysis techniques to
» Analyze models
» Find out about their complexity
» Find out about simplifications
» Search in models
» Check the consistency of the models

@ Prof. U. ABmann

The End
_%_Softwaretechnologienn

Why are EARS and binary Datalog equivalent?

Explain the graph-logic isomorphism

Why does the ,SameGeneration™ Program compute layers?
Describe how you dump a UML classs diagram into a logic fact base
What can be done if a model becomes too large?

YV V V V VY

@ © Prof. U. ABmann

